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Heterogeneous multi/many core 
systems

● Processors: Intel Sandy Bridge, Ivy Bridge and 
 AMD APUs
– multi core + integrated GPU.

– Each core has SIMD capabilities.  

● Discrete graphics: NVIDIA, AMD 
– Now about a thousand of compute elements.

– CUDA, OpenCL.



  

Intel's Array Building Blocks

● Increase programmer productivity by:
– Providing a high level programming model that 

abstracts from details such as: 
● Number of cores.
● SIMD width.

– JIT compile for the current architecture.
● Platform independence.
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Intel's Array Building Blocks

● What is ArBB?

ArBB Virtual Machine

ArBB-VM C API

A language embedded in C++



  

Intel's Array Building Blocks

● The ArBB-VM C API
– A platform for implementing embeddings. 

– ArBB functions are created by calls to various API routines. 
● arbb_begin_function, arbb_end_function
● arbb_op

– add, sub, mul …
– add_reduce, mul_reduce, … 
– add_scan, mul_scan, ...
– scatter, gather, ...

● Low level. The “assembly” language of the ArBB VM.

– ArBB ops work on 
● Scalars.
● Dense  1D, 2D and 3D vectors 
● (Irregular) Nested vectors. 



  

Intel's Array Building Blocks

void arbb_matrix_vector(const dense<f32, 2>& a, 
                        const dense<f32>& x,
                        dense<f32>& b) {
  b = add_reduce(a * repeat_row(x, a.num_rows()));
}

● The C++ Embedding



  

Intel's Array Building Blocks

void arbb_matrix_vector(const dense<f32, 2>& a, 
                        const dense<f32>& x,
                        dense<f32>& b) {
  b = add_reduce(a * repeat_row(x, a.num_rows()));
}

● The C++ Embedding

● Uses C++ features.
● Templates.
● Overloading of operators.



  

Intel's Array Building Blocks and 
Haskell

● Haskell Bindings to ArBB-VM exist. 
– A very direct mapping of the ArBB-VM C API into 

Haskell. 

– Started working on an implementation of a 
backend to Data.Array.Accelerate using these 
bindings. 



  

Intel's Array Building Blocks and 
Haskell

● ArBB-VM
– add_reduce, mul_reduce, …

– gather, scatter, reverse, rotate, ...  

– 1D, 2D, 3D vectors

● Accelerate
– fold

– permute, backpermute

– Arbitrary dimensionality  

● ArBB-VM and Data.Array.Accelerate
– API missmatch



  

Intel's Array Building Blocks and 
Haskell

● EmbArBB
– Taking the middle path approach.

– Goal is to provide the same kind of functionality 
that the C++ embedding has to Haskell 
programmers.
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Intel's Array Building Blocks and 
Haskell

● EmbArBB
– Taking the middle path approach.

– Goal is to provide the same kind of functionality 
that the C++ embedding has to Haskell 
programmers.
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EmbArBB Programming

matVec :: Exp (DVector Dim2 Float) 
       -> Exp (DVector Dim1 Float) 
       -> Exp (DVector Dim1 Float) 
matVec m v = addReduce rows 
           $ m * (repeatRow (getNRows m) v)



  

EmbArBB Programming

● Vectors 
– DVector d a

– NVector a
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EmbArBB Programming

● Vectors 
– DVector d a

– NVector a

{1,2,3,4,5,6,...}

{{1,0,0},
 {0,1,0},
 {0,0,1}}

{{{1,1,1},{2,2,2},{3,3,3}},
 {{4,4,4},{5,5,5},{6,6,6}}}

DVectors

{{1,2},{3,4,5,6},{7},{9,10}}

NVectors



  

EmbArBB Programming

● Library of functions

addReduce :: Num a 
          => Exp USize   -- rows, cols or pages
          -> Exp (DVector (t:.Int) a) 
          -> Exp (DVector t a)

repeatRow :: Exp USize            -- #repetitions
          -> Exp (DVector Dim1 a) -- row
          -> Exp (DVector Dim2 a)

getNRows :: Exp (DVector (t:.Int:.Int) a) 
         -> Exp USize
 



  

EmbArBB Programming: Interfacing 
with Haskell

main =  
  withArBB $ 
  do 
     f <- capture matVec  
     let m1 = V.fromList [2,0,0,0,
                          0,2,0,0,
                          0,0,2,0,
                          0,0,0,2]
         v1 = V.fromList [1,2,3,4] 
     
     m <- copyIn $ mkDVector m1 (Z:.4:.4) 
     v <- copyIn $ mkDVector v1 (Z:.4) 

     r1 <- new (Z:.4) 0 

     execute f (m :- v)  r1
              
     r <- copyOut r1
              
     liftIO$ putStrLn$ show r



  

EmbArBB: Benchmarks



  

EmbArBB and REPA Programming 
differences 

● In the paper EmbArBB is compared to the 
REPA embedded language.
– Similarities: both have shape polymorphic library 

functions. 

– Differences: The same as in the ArBB / 
Data.Array.Accelerate case.

● Specific reductions, add, mul .. in ArBB. 
● …  



  

EmbArBB: The benchmark results 



  

EmbArBB: The benchmark results
ArBB/C++ compared to EmbArBB 



  

Just a few words about the  
Implementation

data Expr = Lit Literal
          | Var Variable 
            
          | Index0 Expr 
          | ResIndex Expr Int 
            
          | Call (R GenRecord) [Expr]  
          | Map  (R GenRecord) [Expr]   
            
          | While ([Expr] -> Expr)  
                  ([Expr] -> [Expr])  
                  [Expr] 
                             
          | If Expr Expr Expr 
          | Op Op [Expr]   



  

Just a few words about the  
Implementation

data a :. b = a :. b   

data Z = Z 
 
type Dim0 = Z             
type Dim1 = Dim0 :. Int
type Dim2 = Dim1 :. Int 
type Dim3 = Dim2 :. Int



  

Just a few words about the  
Implementation

addReduce :: Num a 
           => Exp USize 
           -> Exp (DVector (t:.Int) a) 
           -> Exp (DVector t a) 
addReduce (E lev) (E vec) = 
  E $ Op AddReduce [vec,lev]



  

Just a few words about the  
Implementation

● Phantom types supplies a typed interface.
● Deeply embedded language.
● Uses the StableName library for sharing 

detection. 
● Took influence from Nikola when implementing 

Call and Map (similar to the vapply approach 
in Nikola).



  

Related Work

● REPA & Data.Array.Accelerate
– Are more expressive languages. (higher order 

functions).

– Arbitrary dimensionality on arrays.

– Accelerate has GPU execution.

– REPA executes on many threads.  

● Nikola
– Was used as inspiration. 

– GPU execution. 



  

Future Work

● Add support for tuples as elements in vectors.
– The C++ embedding supports vectors of structs 

via some AOS to SOA transformation. 

● See if it is possible to support higher 
dimensionality of vectors. 
– Needs to compile down to operations on 1D, 2D, 

3D vectors. 

● Improve overall robustness.
– EmbArBB is work in progress.



  

Conclusion

● EmbArBB
– Good performance at little implementation effort.

– Pleasant and simple programming model. 

– Threaded and Vectorized code (SIMD + threads) for 
free.  

– Portable:
● Multi core CPUs, MIC. 
● Will it also support GPU execution in the future? 

– Intel integrated GPUs and or Discrete GPUs?

– Closely tied to Intel ArBB. 
● The usefulness of EmbArBB very much depends on Intel's 

future plans for ArBB. 
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