

Parallel Programming in Haskell
Almost For Free

An Embedding of Intel's Array Building Blocks

Bo Joel Svensson
Mary Sheeran

Chalmers University of Technology

Heterogeneous multi/many core
systems

● Processors: Intel Sandy Bridge, Ivy Bridge and
 AMD APUs
– multi core + integrated GPU.

– Each core has SIMD capabilities.

● Discrete graphics: NVIDIA, AMD
– Now about a thousand of compute elements.

– CUDA, OpenCL.

Intel's Array Building Blocks

● Increase programmer productivity by:
– Providing a high level programming model that

abstracts from details such as:
● Number of cores.
● SIMD width.

– JIT compile for the current architecture.
● Platform independence.

Intel's Array Building Blocks

● What is ArBB?

ArBB Virtual Machine

Intel's Array Building Blocks

● What is ArBB?

ArBB Virtual Machine

ArBB-VM C API

Intel's Array Building Blocks

● What is ArBB?

ArBB Virtual Machine

ArBB-VM C API

A language embedded in C++

Intel's Array Building Blocks

● The ArBB-VM C API
– A platform for implementing embeddings.

– ArBB functions are created by calls to various API routines.
● arbb_begin_function, arbb_end_function
● arbb_op

– add, sub, mul …
– add_reduce, mul_reduce, …
– add_scan, mul_scan, ...
– scatter, gather, ...

● Low level. The “assembly” language of the ArBB VM.

– ArBB ops work on
● Scalars.
● Dense 1D, 2D and 3D vectors
● (Irregular) Nested vectors.

Intel's Array Building Blocks

void arbb_matrix_vector(const dense<f32, 2>& a,
 const dense<f32>& x,
 dense<f32>& b) {
 b = add_reduce(a * repeat_row(x, a.num_rows()));
}

● The C++ Embedding

Intel's Array Building Blocks

void arbb_matrix_vector(const dense<f32, 2>& a,
 const dense<f32>& x,
 dense<f32>& b) {
 b = add_reduce(a * repeat_row(x, a.num_rows()));
}

● The C++ Embedding

● Uses C++ features.
● Templates.
● Overloading of operators.

Intel's Array Building Blocks and
Haskell

● Haskell Bindings to ArBB-VM exist.
– A very direct mapping of the ArBB-VM C API into

Haskell.

– Started working on an implementation of a
backend to Data.Array.Accelerate using these
bindings.

Intel's Array Building Blocks and
Haskell

● ArBB-VM
– add_reduce, mul_reduce, …

– gather, scatter, reverse, rotate, ...

– 1D, 2D, 3D vectors

● Accelerate
– fold

– permute, backpermute

– Arbitrary dimensionality

● ArBB-VM and Data.Array.Accelerate
– API missmatch

Intel's Array Building Blocks and
Haskell

● EmbArBB
– Taking the middle path approach.

– Goal is to provide the same kind of functionality
that the C++ embedding has to Haskell
programmers.

Intel's Array Building Blocks and
Haskell

● EmbArBB
– Taking the middle path approach.

– Goal is to provide the same kind of functionality
that the C++ embedding has to Haskell
programmers.

ArBB-VM Bindings EmbArBB
ArBB-VM as

Accelerate backend

Intel's Array Building Blocks and
Haskell

● EmbArBB
– Taking the middle path approach.

– Goal is to provide the same kind of functionality
that the C++ embedding has to Haskell
programmers.

ArBB-VM Bindings EmbArBB
ArBB-VM as

Accelerate backend
LOW

 L
EVEL

Com
plic

at
ed

 c
om

pila
tio

n

EmbArBB Programming

matVec :: Exp (DVector Dim2 Float)
 -> Exp (DVector Dim1 Float)
 -> Exp (DVector Dim1 Float)
matVec m v = addReduce rows
 $ m * (repeatRow (getNRows m) v)

EmbArBB Programming

● Vectors
– DVector d a

– NVector a

EmbArBB Programming

● Vectors
– DVector d a

– NVector a

{1,2,3,4,5,6,...}

{{1,0,0},
 {0,1,0},
 {0,0,1}}

{{{1,1,1},{2,2,2},{3,3,3}},
 {{4,4,4},{5,5,5},{6,6,6}}}

DVectors

EmbArBB Programming

● Vectors
– DVector d a

– NVector a

{1,2,3,4,5,6,...}

{{1,0,0},
 {0,1,0},
 {0,0,1}}

{{{1,1,1},{2,2,2},{3,3,3}},
 {{4,4,4},{5,5,5},{6,6,6}}}

DVectors

{{1,2},{3,4,5,6},{7},{9,10}}

NVectors

EmbArBB Programming

● Library of functions

addReduce :: Num a
 => Exp USize -- rows, cols or pages
 -> Exp (DVector (t:.Int) a)
 -> Exp (DVector t a)

repeatRow :: Exp USize -- #repetitions
 -> Exp (DVector Dim1 a) -- row
 -> Exp (DVector Dim2 a)

getNRows :: Exp (DVector (t:.Int:.Int) a)
 -> Exp USize

EmbArBB Programming: Interfacing
with Haskell

main =
 withArBB $
 do
 f <- capture matVec
 let m1 = V.fromList [2,0,0,0,
 0,2,0,0,
 0,0,2,0,
 0,0,0,2]
 v1 = V.fromList [1,2,3,4]

 m <- copyIn $ mkDVector m1 (Z:.4:.4)
 v <- copyIn $ mkDVector v1 (Z:.4)

 r1 <- new (Z:.4) 0

 execute f (m :- v) r1

 r <- copyOut r1

 liftIO$ putStrLn$ show r

EmbArBB: Benchmarks

EmbArBB and REPA Programming
differences

● In the paper EmbArBB is compared to the
REPA embedded language.
– Similarities: both have shape polymorphic library

functions.

– Differences: The same as in the ArBB /
Data.Array.Accelerate case.

● Specific reductions, add, mul .. in ArBB.
● …

EmbArBB: The benchmark results

EmbArBB: The benchmark results
ArBB/C++ compared to EmbArBB

Just a few words about the
Implementation

data Expr = Lit Literal
 | Var Variable

 | Index0 Expr
 | ResIndex Expr Int

 | Call (R GenRecord) [Expr]
 | Map (R GenRecord) [Expr]

 | While ([Expr] -> Expr)
 ([Expr] -> [Expr])
 [Expr]

 | If Expr Expr Expr
 | Op Op [Expr]

Just a few words about the
Implementation

data a :. b = a :. b

data Z = Z

type Dim0 = Z
type Dim1 = Dim0 :. Int
type Dim2 = Dim1 :. Int
type Dim3 = Dim2 :. Int

Just a few words about the
Implementation

addReduce :: Num a
 => Exp USize
 -> Exp (DVector (t:.Int) a)
 -> Exp (DVector t a)
addReduce (E lev) (E vec) =
 E $ Op AddReduce [vec,lev]

Just a few words about the
Implementation

● Phantom types supplies a typed interface.
● Deeply embedded language.
● Uses the StableName library for sharing

detection.
● Took influence from Nikola when implementing

Call and Map (similar to the vapply approach
in Nikola).

Related Work

● REPA & Data.Array.Accelerate
– Are more expressive languages. (higher order

functions).

– Arbitrary dimensionality on arrays.

– Accelerate has GPU execution.

– REPA executes on many threads.

● Nikola
– Was used as inspiration.

– GPU execution.

Future Work

● Add support for tuples as elements in vectors.
– The C++ embedding supports vectors of structs

via some AOS to SOA transformation.

● See if it is possible to support higher
dimensionality of vectors.
– Needs to compile down to operations on 1D, 2D,

3D vectors.

● Improve overall robustness.
– EmbArBB is work in progress.

Conclusion

● EmbArBB
– Good performance at little implementation effort.

– Pleasant and simple programming model.

– Threaded and Vectorized code (SIMD + threads) for
free.

– Portable:
● Multi core CPUs, MIC.
● Will it also support GPU execution in the future?

– Intel integrated GPUs and or Discrete GPUs?

– Closely tied to Intel ArBB.
● The usefulness of EmbArBB very much depends on Intel's

future plans for ArBB.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

