

Concurrency

Message-passing

Pattern-matching

Work in progress

LispBM (LBM)
● Hobby coding.

– A lisp-like language by a non-lisper.
– Runs on 32bit platforms – microcontrollers.

Tiny Lisp primer
● There are lots of parenthesis.

– This is because in lisp lists are enclosed in parenthesis and lists are used everywhere!
– Your program is a list (nested).
– Your data is in lists.

● No infix operators.
– Application is a list and the first element of that list is applied to the rest of the elements of the list as

arguments.
– (+ 1 2)
– (f a b c)

– In applications, the arguments are evaluated before being passed to the function.

● There are “special forms” that look quite like applications but are very different under the hood.
– (define apa 1)

Tiny Lisp primer
● '(1 2 3) is data
● '(+ 1 2) is also data
● (1 2 3) is an error
● (+ 1 2) is 3

● `(1 2 3) is data
● `(+ 1 2) is also data
● `(+ 1 ,(+ 1 1)) is a

mix of data and code

Concurrency
● Cooperative concurrency

– Processes must be well behaved and go to sleep
every now and then.

Concurrency

(define fred (lambda ()
 (progn (print "fred iteration" \#newline)

 (yield 25000)
 (fred))))

(define bella (lambda (x)
(progn (print "bella iteration" x \#newline)

 (yield 50000)
 (bella (+ x 1)))))

(spawn '(fred) '(bella 0))

Message Passing
● Each Process has a mailbox and messages

can be sent to a process if you know the
process id.
– LBM process ↔ LBM process
– C → LBM process
– Processes are blocked while waiting for a message.

Message Passing

(define fred (lambda ()
 (progn (print "fred iteration" \#newline)
 (recv ((? x) (print "fred received: " x \#newline)))
 (fred))))

(define bella (lambda (pid x)
 (progn (print "bella iteration " x \#newline)
 (send pid x)
 (yield 50000)
 (bella pid (+ x 1)))))

(define fredpid (spawn '(fred)))

(spawn '(bella (car fredpid) 0))

Pattern Matching
● Inspired by SICP lecture 4A: https://youtu.be/_fXQ1SwKjDg

But simplified...

https://youtu.be/_fXQ1SwKjDg

Pattern Matching
● Symbol foo matches only symbol foo.
● Values match values that are exactly the same (including type) so: 1i28 matches

1i28 but not 1i32 and so on.
● A list (a b c) matches a list with 3 element where a b c recursively matches with the

elements of that list.
● _ and ? matches anything.
● (? x) matches anything and binds that anything to x
● (?i28 x) matches any i28 and binds that i28 value to x (and so on for i32, u28, u32,

float).
● (?cons x) matches anything that is built out of a cons cell.

Pattern Matching
● Symbol foo matches only symbol foo.
● Values match values that are exactly the same (including type) so: 1i28 matches

1i28 but not 1i32 and so on.
● A list (a b c) matches a list with 3 element where a b c recursively matches with the

elements of that list.
● _ and ? matches anything.
● (? x) matches anything and binds that anything to x
● (?i28 x) matches any i28 and binds that i28 value to x (and so on for i32, u28, u32,

float).
● (?cons x) matches anything that is built out of a cons cell.

_ can be used
In place of x

_ can be used
In place of x

Pattern Matching
● There are two pattern matching forms.

– recv
– match

Pattern Matching
● There are two pattern matching forms.

– recv
– match

(define f (lambda (ls)
 (match ls
 (nil 0)
 ((?cons c) (+ (car c) (f (cdr c))))
 (_ 'error-not-a-list))))

Pattern Matching

(define fred (lambda ()
 (progn (print "fred iteration" \#newline)
 (recv ((apa (? x) 107) (print "fred received apa " x \#newline))
 ((bepa (?i28 x)) (print "fred received bepa " x \#newline)))
 (fred))))

(define bella (lambda (pid x)
 (progn (print "bella iteration" x \#newline)
 (send pid `(apa ,x 107))
 (yield 500000)
 (print "bella waking up" \#newline)
 (send pid '(bepa 2))
 (yield 500000)
 (bella pid (+ x 1)))))

Special forms
UINT sym_id = dec_sym(head);

 switch(sym_id) {
 case SYM_QUOTE: eval_quote(ctx); return;
 case SYM_DEFINE: eval_define(ctx); return;
 case SYM_PROGN: eval_progn(ctx); return;
 case SYM_SPAWN: eval_spawn(ctx); return;
 case SYM_LAMBDA: eval_lambda(ctx); return;
 case SYM_IF: eval_if(ctx); return;
 case SYM_LET: eval_let(ctx); return;
 case SYM_AND: eval_and(ctx); return;
 case SYM_OR: eval_or(ctx); return;
 case SYM_MATCH: eval_match(ctx); return;
 case SYM_RECEIVE: eval_receive(ctx); return;

 default: break; /* May be general application form. Checked below*/
 }

(match ls
 '(nil 0)
 '((?cons c) (+ (car c) (f (cdr c))))
 '(_ 'error-not-a-list))))

(match ls
 (f)
 (g))

(match ls
 '((nil 0)
 ((?cons c) (+ (car c) (f (cdr c))))
 (_ 'error-not-a-list)))))

(match ls (f))

(define apa 1)

(define 'apa 1)

(f apa 1)

(f 'apa 1)

Future work
● (DONE) The reader (parser) is stack hungry. Can it be improved?

● Stack can be traded for heap if made tail-recursive.
– The list reversal can be dropped with some imperative hacks. (set-cdr)

● Pattern matching is a recursive tree comparison. Also stack hungry. But
patterns may generally be quite small trees.

● Rewrite in the same CPS style as the evaluator and reader.

● There is 1k buffer in the GC for the recursion over “trees”.
● Replace with Pointer reversal GC algorithm. (steal from sensevm)

● Interrupts, input, output
● Not a priority

Future work
● More testing:

– Currently run “infer” and clang’s “scan-build”.
● Very useful!

– 116 tiny test programs that are run on 14 different
configurations of the evaluator. (32768 – 512) cons
cells.

(= (+ 4i32 7i32) 11i32)

(define fold (lambda (f i xs)
 (if (= xs nil)
 i
 (fold f (f i (car xs)) (cdr xs)))))

(= (fold '+ 0 (list 1 2 3 4 5 6 7 8 9 10)) 55)

Looking for friends
● If anyone here like lisps and wants to chat I would love

it.
● The implementation is interesting. If anyone likes

strange C code and wants a walk-through, let me know!
● Collaboration? Maybe there is a nugget in this

somewhere that we can develop and write about
together.

More WIP
● Working with Benjamin Vedder on putting LBM

inside of the VESC motor controller as a
scripting language.
– Future Octopi talk by Benjamin is possible

● In Feb. or later.

https://vesc-project.com/

https://github.com/vedderb/bldc

Benchmarks

File Load time (s) Eval time (s)

q2.lisp (q2 6 7) 0.001799999 1.861400008

dec_cnt2.lisp 0.001399999 3.529599905

dec_cnt1.lisp 0.001300000 4.334300041

fibonacci.lisp (fib 23) 0.001300000 4.466599941

dec_cnt3.lisp 0.001300000 1.519999980

tak.lisp (tak 18 12 6) 0.001700000 4.285699844

fibonacci_tail.lisp (fib 23) 0.001900000 0.005200000

Insertionsort.lisp 0.002700000 0.006099999

STM32F405: 168 MHz ARM Cortex M4.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

