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LispBM (LBM) 
● Hobby coding. 

– A lisp-like language by a non-lisper.
– Runs on 32bit platforms – microcontrollers.



  



  

Tiny Lisp primer
● There are lots of parenthesis.

– This is because in lisp lists are enclosed in parenthesis and lists are used everywhere!
– Your program is a list (nested).
– Your data is in lists.

● No infix operators.
– Application is a list and the first element of that list is applied to the rest of the elements of the list as 

arguments.
– (+ 1 2) 
– (f a b c)

– In applications, the arguments are evaluated before being passed to the function.

● There are “special forms” that look quite like applications but are very different under the hood. 
– (define apa 1)



  

Tiny Lisp primer
● '(1 2 3) is data
● '(+ 1 2) is also data
● (1 2 3) is an error
● (+ 1 2) is 3

● `(1 2 3) is data
● `(+ 1 2) is also data
● `(+ 1 ,(+ 1 1)) is a 

mix of data and code



  

Concurrency
● Cooperative concurrency

– Processes must be well behaved and go to sleep 
every now and then.



  

Concurrency

(define fred (lambda ()
       (progn (print "fred iteration" \#newline )

                  (yield 25000)
          (fred))))

(define bella (lambda (x)
(progn (print "bella iteration" x \#newline)

               (yield 50000)
       (bella (+ x 1)))))

(spawn '(fred) '(bella 0))



  



  

Message Passing
● Each Process has a mailbox and messages 

can be sent to a process if you know the 
process id.
– LBM process ↔ LBM process
– C → LBM process
– Processes are blocked while waiting for a message.



  

Message Passing

(define fred (lambda ()
               (progn (print "fred iteration" \#newline )
                      (recv ( (? x)  (print "fred received: " x \#newline)))
                      (fred))))

(define bella (lambda (pid x)
                (progn (print "bella iteration " x \#newline)
                       (send pid x)
                       (yield 50000)
                       (bella pid (+ x 1)))))

(define fredpid (spawn '(fred)))

(spawn '(bella (car fredpid) 0))



  



  

Pattern Matching
● Inspired by SICP lecture 4A: https://youtu.be/_fXQ1SwKjDg 

But simplified...

https://youtu.be/_fXQ1SwKjDg


  

Pattern Matching
● Symbol foo matches only symbol foo.
● Values match values that are exactly the same (including type) so: 1i28 matches 

1i28 but not 1i32 and so on. 
● A list (a b c) matches a list with 3 element where a b c recursively matches with the 

elements of that list.
● _ and ? matches anything.
● (? x) matches anything and binds that anything to x
● (?i28 x) matches any i28 and binds that i28 value to x (and so on for i32, u28, u32, 

float).
● (?cons x) matches anything that is built out of a cons cell.



  

Pattern Matching
● Symbol foo matches only symbol foo.
● Values match values that are exactly the same (including type) so: 1i28 matches 

1i28 but not 1i32 and so on. 
● A list (a b c) matches a list with 3 element where a b c recursively matches with the 

elements of that list.
● _ and ? matches anything.
● (? x) matches anything and binds that anything to x
● (?i28 x) matches any i28 and binds that i28 value to x (and so on for i32, u28, u32, 

float).
● (?cons x) matches anything that is built out of a cons cell.

_ can be used
In place of x

_ can be used
In place of x



  

Pattern Matching
● There are two pattern matching forms.

– recv
– match



  

Pattern Matching
● There are two pattern matching forms.

– recv
– match

(define f (lambda (ls)
            (match ls
                   ( nil 0 )
                   ( (?cons c) (+ (car c) (f (cdr c))))
                   ( _ 'error-not-a-list))))



  

Pattern Matching

(define fred (lambda ()
               (progn (print "fred iteration" \#newline )
                      (recv ( (apa (? x) 107)  (print "fred received apa " x \#newline))
                            ( (bepa (?i28 x))  (print "fred received bepa " x \#newline)))
                      (fred))))

(define bella (lambda (pid x)
                (progn (print "bella iteration" x \#newline)
                       (send pid `(apa ,x 107))
                       (yield 500000)
                       (print "bella waking up" \#newline)
                       (send pid '(bepa 2))
                       (yield 500000)
                       (bella pid (+ x 1)))))



  



  

Special forms
UINT sym_id = dec_sym(head);

      switch(sym_id) {
      case SYM_QUOTE:   eval_quote(ctx); return;
      case SYM_DEFINE:  eval_define(ctx); return;
      case SYM_PROGN:   eval_progn(ctx); return;
      case SYM_SPAWN:   eval_spawn(ctx); return;
      case SYM_LAMBDA:  eval_lambda(ctx); return;
      case SYM_IF:      eval_if(ctx); return;
      case SYM_LET:     eval_let(ctx); return;
      case SYM_AND:     eval_and(ctx); return;
      case SYM_OR:      eval_or(ctx); return;
      case SYM_MATCH:   eval_match(ctx); return;
      case SYM_RECEIVE: eval_receive(ctx); return;

      default: break; /* May be general application form. Checked below*/
      }



  

(match ls
       '( nil 0 )
       '( (?cons c) (+ (car c) (f (cdr c))))
       '( _ 'error-not-a-list))))

(match ls
       (f)
       (g))

(match ls
       '(( nil 0 )
         ( (?cons c) (+ (car c) (f (cdr c))))
         ( _ 'error-not-a-list)))))

(match ls (f))

     

(define apa 1)

(define 'apa 1)  

(f apa 1)

(f 'apa 1)



  

Future work
● (DONE) The reader (parser) is stack hungry. Can it be improved?

● Stack can be traded for heap if made tail-recursive.
– The list reversal can be dropped with some imperative hacks. (set-cdr)

● Pattern matching is a recursive tree comparison. Also stack hungry. But 
patterns may generally be quite small trees. 

● Rewrite in the same CPS style as the evaluator and reader.

● There is 1k buffer in the GC for the recursion over “trees”.
● Replace with Pointer reversal GC algorithm. (steal from sensevm) 

● Interrupts, input, output 
● Not a priority



  

Future work
●  More testing: 

– Currently run “infer” and clang’s “scan-build”.
● Very useful!

– 116 tiny test programs that are run on 14 different 
configurations of the evaluator. (32768 – 512) cons 
cells. 

(= (+ 4i32 7i32) 11i32)

(define fold (lambda (f i xs)
               (if (= xs nil)
                   i
                   (fold f (f i (car xs)) (cdr xs)))))

(= (fold '+ 0 (list 1 2 3 4 5 6 7 8 9 10)) 55)



  

Looking for friends
● If anyone here like lisps and wants to chat I would love 

it. 
● The implementation is interesting. If anyone likes 

strange C code and wants a walk-through, let me know! 
● Collaboration? Maybe there is a nugget in this 

somewhere that we can develop and write about 
together.



  

More WIP
● Working with Benjamin Vedder on putting LBM 

inside of the VESC motor controller as a 
scripting language. 
– Future Octopi talk by Benjamin is possible 

● In Feb. or later.



  

https://vesc-project.com/

https://github.com/vedderb/bldc



  

Benchmarks

File Load time (s) Eval time (s)

q2.lisp (q2 6 7) 0.001799999 1.861400008

dec_cnt2.lisp 0.001399999 3.529599905

dec_cnt1.lisp 0.001300000 4.334300041

fibonacci.lisp (fib 23) 0.001300000 4.466599941

dec_cnt3.lisp 0.001300000 1.519999980

tak.lisp (tak 18 12 6) 0.001700000 4.285699844

fibonacci_tail.lisp (fib 23) 0.001900000 0.005200000

Insertionsort.lisp 0.002700000 0.006099999

STM32F405: 168 MHz ARM Cortex M4. 
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