
Obsidian

A Domain Specific Embedded Language for Parallel Programming
of Graphics Processors

Joel Svensson, Mary Sheeran, Koen Claessen

Chalmers University of Technology

Aim of the Obsidian project

 A platform for experimenting with data-parallel

algorithms

 Generate efficient code for GPUs from short and clean high

level descriptions

 Make design decisions easy

 Where to place data in memory hierarchy

 Control what is computed where and when

Graphics Processing Units (GPUs)

 NVIDIA 8800 GTX (G80)

 681 Million transistors

 128 Processing cores

 In groups of 8 (16 ”multiprocessors”)

 Intel Core 2 Quad

 582 Million transistors

 4 cores

Transistor numbers from Wikipedia.

NVIDIA GPU

 In each Multiprocessor

 Shared Memory (currently

16Kb)

 32 bit registers (8192)

 Memory

 Uncached Device Memory

 Read-only constant

memory

 Read-only texture memory

GPGPU

 General Purpose computations using a GPU

 Many success stories

 Sorting

 Bioinformatics

 Physics Modelling

 For more information

 www.nvidia.com/cuda

 www.gpgpu.org

http://www.nvidia.com/cuda
http://www.gpgpu.org/

NVIDIA CUDA

 Compute Unified Device Architecture

 NVIDIAs hardware architecture + programming model

 Provides a Compiler and Libraries

 An extension of C

 Programs written for execution on the GPU are called Kernels.

 Related

 Brook, Brook+

 AMD ”Close to Metal”

CUDA Programming Model

 Execute a high number of threads in parallel

 Block of threads

 Up to 512 threads (1024 on the latest GPUs from NVIDIA)

 Executed by a multiprocessor

 Blocks are organized into grids

 Maximum grid dimensions: 65536*65536

 Thread Warp

 32 threads

 Scheduled unit

 SIMD execution (SIMT)

CUDA Example

__global__ static void sum(int * values,int n)

{

extern __shared__ int shared[];

const int tid = threadIdx.x;

shared[tid] = values[tid];

for (int j = 1; j < n; j *= 2) {

__syncthreads();

if ((tid + 1) % (2*j) == 0)

shared[tid] += shared[tid - j];

}

values[tid] = shared[tid];

}

Obsidian

 Embedded in Haskell

 Tries to stay in the spirit of Lava

 Combinator library

 Higher level of Abstraction compared to CUDA

 While still assuming knowledge of architecture characteristics

in the programmer.

First example
revIncr :: GArr IntE -> W (GArr IntE)

revIncr = rev ->- fun (+1) ->- sync

*Main> execute EMU revIncr [1..5]

[E (LitInt 6),E (LitInt 5),E (LitInt 4),E (LitInt 3),E

(LitInt 2)]

execute :: ExecMode ->

(GArr (Exp a) -> W (GArr (Exp b)) ->

[Exp a] -> IO [Exp b]

Type GArr a = Arr Global a

Matrix Scan

 Recently published GPGPU paper by Yuri Dotsenko et al.

Presents a fast implementation of parallel prefix (Scan) on

a GPU [1].

 They call the algorithm matrix Scan.

 Combines running several sequential reductions/scans on

uniformly sized subarrays with parallel computations.

 The following slides will show a Scan in Obsidian taking

much influence from the above described algorithm.

Scan
seqReduce op id = fun (foldl op id) ->- sync

seqScan op id arr column = do

arr' <- fun (tail . scanl op id) arr

c <- prefix (singleton id) column

(zipp ->- fun (\(xs,x) -> map (op x) xs) ->- sync(arr',c)

chopN :: Monad m => Int -> Arr s a -> m (Arr s [a])

flatten :: (Choice a , Monad m) => Arr s [a] -> m (Arr s a)

Scan

matrixScan op id w arr = do

arr' <- chopN w arr

sc <- (seqReduce op id ->- sklansky op n) arr'

(seqScan op id arr' ->- flatten) sc

where

n = floor (logBase 2 (fromInt (len arr `div` w)))

Scan

matrixScan :: (Syncable (Arr t t1), Choice t1) =>

(t1 -> t1 -> t1) -> t1 -> Int ->

Arr t t1 - > W (Arr t t1)

Scan Kernel

 Turn matrixScan into a kernel

scan_add_kernel :: GArr IntE -> W (GArr IntE)

scan_add_kernel = cache ->- matrixScan (+) 0 32 ->- wb ->- sync

*Main> execute EMU (scan_add_kernel) [1..256]

[E (LitInt 1),E (LitInt 3),E (LitInt 6),...,E (LitInt 32896)]

cache :: Arr Global a -> W (Arr Shared a)

wb :: Arr Shared a -> W (Arr Global a)

Implementation Of Obsidian

 Array representation

data Arr s a = Arr (\IxExp -> a, Int)

type GArr a = Arr Global a

type SArr a = Arr Shared a

 Global Arrays

 Live in device memory

 Roughly 1GB

 Shared Arrays

 Live in on-chip shared

memory

 16KB

Implementation

1. Runing an Obsidian program produces two things

1. Intermediate Code

2. A symbol table, (name -> (type, size)) mapping

2. Intermediate Code goes through liveness analysis

1. Outputs IC annotated with liveness information

3. Symbol table + annotated IC is used to build a memory

map

1. Outputs a memory map, (name -> adress) mapping

2. Outputs IC annotated with ”number of threads needed info”

4. Memory mapped Code is generated from the output of

stage 3

Implementation

 Now CUDA C code is generated from the memory mapped
code.

 Passed to CUDA C compiler

 Taking advantage of whatever optimisations it performs.

__global__ static void generated(int *source0,char *gbase){

extern __shared__ char sbase[] __attribute__ ((aligned(4)));

const int tid = threadIdx.x;

const int n0 __attribute__ ((unused)) = 10;

((int *)(gbase+0))[tid] = (source0[((10 - 1) - tid)] + 1);

__syncthreads();

}

Conclusion

 Previous version of Obsidian showed that it is possible to

get good performance out of the generated code

 The version described here is more general

 But performance needs to be improved

 A nice platform for experimenting with algorithms on the

GPU.

 Compared to CUDA

 Easier to experiment with different choices in

 Where to place things in memory.

 How much to compute per thread.

Reflections

 Working on this project has been a great learning

experiance.

 However, we do not yet have a clear picture exactly of how to

write parallel programs for these kinds of processors.

 Keep all the little processors busy

 Use shared memory extensively

 Large ”fan outs” is not a problem (will use efficient broadcasting

capabilities)

Questions ?

References:

[1] : Fast Scan Algorithms on Graphics Processors Yuri Dotsenko Naga

K. Govindaraju Peter-Pike Sloan Charles Boyd John Manferdelli

Microsoft Corporation One Microsoft Way Redmond, WA 98052, USA

{yurido, nagag, ppsloan, chasb, jmanfer}@microsoft.com

Performance

Experiments performed on previous version of Obsidian

