
Obsidian

A Domain Specific Embedded Language for Parallel Programming
of Graphics Processors

Joel Svensson, Mary Sheeran, Koen Claessen

Chalmers University of Technology

Aim of the Obsidian project

 A platform for experimenting with data-parallel

algorithms

 Generate efficient code for GPUs from short and clean high

level descriptions

 Make design decisions easy

 Where to place data in memory hierarchy

 Control what is computed where and when

Graphics Processing Units (GPUs)

 NVIDIA 8800 GTX (G80)

 681 Million transistors

 128 Processing cores

 In groups of 8 (16 ”multiprocessors”)

 Intel Core 2 Quad

 582 Million transistors

 4 cores

Transistor numbers from Wikipedia.

NVIDIA GPU

 In each Multiprocessor

 Shared Memory (currently

16Kb)

 32 bit registers (8192)

 Memory

 Uncached Device Memory

 Read-only constant

memory

 Read-only texture memory

GPGPU

 General Purpose computations using a GPU

 Many success stories

 Sorting

 Bioinformatics

 Physics Modelling

 For more information

 www.nvidia.com/cuda

 www.gpgpu.org

http://www.nvidia.com/cuda
http://www.gpgpu.org/

NVIDIA CUDA

 Compute Unified Device Architecture

 NVIDIAs hardware architecture + programming model

 Provides a Compiler and Libraries

 An extension of C

 Programs written for execution on the GPU are called Kernels.

 Related

 Brook, Brook+

 AMD ”Close to Metal”

CUDA Programming Model

 Execute a high number of threads in parallel

 Block of threads

 Up to 512 threads (1024 on the latest GPUs from NVIDIA)

 Executed by a multiprocessor

 Blocks are organized into grids

 Maximum grid dimensions: 65536*65536

 Thread Warp

 32 threads

 Scheduled unit

 SIMD execution (SIMT)

CUDA Example

__global__ static void sum(int * values,int n)

{

extern __shared__ int shared[];

const int tid = threadIdx.x;

shared[tid] = values[tid];

for (int j = 1; j < n; j *= 2) {

__syncthreads();

if ((tid + 1) % (2*j) == 0)

shared[tid] += shared[tid - j];

}

values[tid] = shared[tid];

}

Obsidian

 Embedded in Haskell

 Tries to stay in the spirit of Lava

 Combinator library

 Higher level of Abstraction compared to CUDA

 While still assuming knowledge of architecture characteristics

in the programmer.

First example
revIncr :: GArr IntE -> W (GArr IntE)

revIncr = rev ->- fun (+1) ->- sync

*Main> execute EMU revIncr [1..5]

[E (LitInt 6),E (LitInt 5),E (LitInt 4),E (LitInt 3),E

(LitInt 2)]

execute :: ExecMode ->

(GArr (Exp a) -> W (GArr (Exp b)) ->

[Exp a] -> IO [Exp b]

Type GArr a = Arr Global a

Matrix Scan

 Recently published GPGPU paper by Yuri Dotsenko et al.

Presents a fast implementation of parallel prefix (Scan) on

a GPU [1].

 They call the algorithm matrix Scan.

 Combines running several sequential reductions/scans on

uniformly sized subarrays with parallel computations.

 The following slides will show a Scan in Obsidian taking

much influence from the above described algorithm.

Scan
seqReduce op id = fun (foldl op id) ->- sync

seqScan op id arr column = do

arr' <- fun (tail . scanl op id) arr

c <- prefix (singleton id) column

(zipp ->- fun (\(xs,x) -> map (op x) xs) ->- sync(arr',c)

chopN :: Monad m => Int -> Arr s a -> m (Arr s [a])

flatten :: (Choice a , Monad m) => Arr s [a] -> m (Arr s a)

Scan

matrixScan op id w arr = do

arr' <- chopN w arr

sc <- (seqReduce op id ->- sklansky op n) arr'

(seqScan op id arr' ->- flatten) sc

where

n = floor (logBase 2 (fromInt (len arr `div` w)))

Scan

matrixScan :: (Syncable (Arr t t1), Choice t1) =>

(t1 -> t1 -> t1) -> t1 -> Int ->

Arr t t1 - > W (Arr t t1)

Scan Kernel

 Turn matrixScan into a kernel

scan_add_kernel :: GArr IntE -> W (GArr IntE)

scan_add_kernel = cache ->- matrixScan (+) 0 32 ->- wb ->- sync

*Main> execute EMU (scan_add_kernel) [1..256]

[E (LitInt 1),E (LitInt 3),E (LitInt 6),...,E (LitInt 32896)]

cache :: Arr Global a -> W (Arr Shared a)

wb :: Arr Shared a -> W (Arr Global a)

Implementation Of Obsidian

 Array representation

data Arr s a = Arr (\IxExp -> a, Int)

type GArr a = Arr Global a

type SArr a = Arr Shared a

 Global Arrays

 Live in device memory

 Roughly 1GB

 Shared Arrays

 Live in on-chip shared

memory

 16KB

Implementation

1. Runing an Obsidian program produces two things

1. Intermediate Code

2. A symbol table, (name -> (type, size)) mapping

2. Intermediate Code goes through liveness analysis

1. Outputs IC annotated with liveness information

3. Symbol table + annotated IC is used to build a memory

map

1. Outputs a memory map, (name -> adress) mapping

2. Outputs IC annotated with ”number of threads needed info”

4. Memory mapped Code is generated from the output of

stage 3

Implementation

 Now CUDA C code is generated from the memory mapped
code.

 Passed to CUDA C compiler

 Taking advantage of whatever optimisations it performs.

__global__ static void generated(int *source0,char *gbase){

extern __shared__ char sbase[] __attribute__ ((aligned(4)));

const int tid = threadIdx.x;

const int n0 __attribute__ ((unused)) = 10;

((int *)(gbase+0))[tid] = (source0[((10 - 1) - tid)] + 1);

__syncthreads();

}

Conclusion

 Previous version of Obsidian showed that it is possible to

get good performance out of the generated code

 The version described here is more general

 But performance needs to be improved

 A nice platform for experimenting with algorithms on the

GPU.

 Compared to CUDA

 Easier to experiment with different choices in

 Where to place things in memory.

 How much to compute per thread.

Reflections

 Working on this project has been a great learning

experiance.

 However, we do not yet have a clear picture exactly of how to

write parallel programs for these kinds of processors.

 Keep all the little processors busy

 Use shared memory extensively

 Large ”fan outs” is not a problem (will use efficient broadcasting

capabilities)

Questions ?

References:

[1] : Fast Scan Algorithms on Graphics Processors Yuri Dotsenko Naga

K. Govindaraju Peter-Pike Sloan Charles Boyd John Manferdelli

Microsoft Corporation One Microsoft Way Redmond, WA 98052, USA

{yurido, nagag, ppsloan, chasb, jmanfer}@microsoft.com

Performance

Experiments performed on previous version of Obsidian

