Obsidian

A Domain Specific Embedded Language for Parallel Programming
of Graphics Processors

Joel Svensson, Mary Sheeran, Koen Claessen
Chalmers University of Technology

Aim of the Obsidian project

» A platform for experimenting with data-parallel
algorithms

Generate efficient code for GPUs from short and clean high
level descriptions
Make design decisions easy

Where to place data in memory hierarchy

Control what is computed where and when

Graphics Processing Units (GPUs)
» NVIDIA 8800 GTX (G80)

681 Million transistors

128 Processing cores
In groups of 8 (16 "multiprocessors”)

» Intel Core 2 Quad
582 Million transistors
4 cores

Transistor numbers from Wikipedia.

NVIDIA GPU

» In each Multiprocessor T
» Shared Memory (currently sz-"
| 6Kb)
» 32 bit registers (8192)
» Memory
» Uncached Device Memory

» Read-only constant
memory

» Read-only texture memory

GPGPU

» General Purpose computations using a GPU

Many success stories
Sorting
Bioinformatics

Physics Modelling

For more information

http://www.nvidia.com/cuda
http://www.gpgpu.org/

NVIDIA CUDA

» Compute Unified Device Architecture
NVIDIAs hardware architecture + programming model
Provides a Compiler and Libraries

An extension of C

Programs written for execution on the GPU are called Kernels.

» Related

Brook, Brook+
AMD ’Close to Metal”

CUDA Programming Model

» Execute a high number of threads in parallel

Block of threads
Up to 512 threads (1024 on the latest GPUs from NVIDIA)
Executed by a multiprocessor

Blocks are organized into grids
Maximum grid dimensions: 6553665536

Thread Warp
32 threads
Scheduled unit
SIMD execution (SIMT)

CUDA Example

__global static void sum(int * values,int n)

{

extern shared int shared]];

const int tid = threadIdx.x;

shared|[tid] = wvalues|[tid];

for (int jJ = 1; 3 < n; j *= 2) {
__syncthreads () ;
if ((tid + 1) % (2*3) == 0)
shared[tid] += shared[tid - Jj];

values|[tid] = shared[tid];

Obsidian

» Embedded in Haskell
» Tries to stay in the spirit of Lava

Combinator library

» Higher level of Abstraction compared to CUDA

While still assuming knowledge of architecture characteristics
in the programmer.

First example

revIincr :: GArr IntE -> W (GArr IntE)

revIncr = rev ->- fun (+1) ->- sync

*Main> execute EMU revIncr [1..5]

[E (LitInt 6),E (LitInt 5),E (LitInt 4),E (LitInt 3),E

(LitInt 2)]
execute :: ExecMode ->
(GArr (Exp a) -> W (GArr (Exp b)) ->

[Exp a] -> IO [Exp b]

Type GArr a = Arr Global a

Matrix Scan

» Recently published GPGPU paper by Yuri Dotsenko et al.
Presents a fast implementation of parallel prefix (Scan) on
a GPU [1].
They call the algorithm matrix Scan.

Combines running several sequential reductions/scans on
uniformly sized subarrays with parallel computations.

» The following slides will show a Scan in Obsidian taking
much influence from the above described algorithm.

Scan

segReduce op 1id = fun (foldl op 1d) ->- sync

segScan op 1d arr column = do

arr' <- fun (tail . scanl op 1d) arr

C <- prefix (singleton id) column

(zipp ->- fun (\(xs,x) -> map (op x) xs) ->- sync(arr',c)
chopN :: Monad m => Int -> Arr s a -> m (Arr s [a])

flatten :: (Choice a , Monad m) => Arr s [a] -> m (Arr s a)

Scan

matrixScan op 1d w arr = do
arr' <- chopN w arr
scC <- (segReduce op i1id ->- sklansky op n) arr'
(segScan op id arr' ->- flatten) sc
where

n = floor (logBase 2 (fromInt (len arr "div w)))

Scan

matrixScan :: (Syncable (Arr t tl), Choice tl) =>
(tl -> tl1 -> t1) -> tl1l -> Int ->
Arr t t1 - > W (Arr t tl)

Scan Kernel

» Turn matrixScan into a kernel

scan _add kernel :: GArr IntE -> W (GArr IntkE)
scan_add kernel = cache ->- matrixScan (+) 0 32 ->- wb ->- sync

*Main> execute EMU (scan add kernel) [1..256]
[E (LitInt 1),E (LitInt 3),E (LitInt 6),...,E (LitInt 328906)]

cache :: Arr Global a -> W (Arr Shared a)
whb :: Arr Shared a -> W (Arr Global a)

Implementation Of Obsidian

» Array representation » Global Arrays
Live in device memory
data Arr s a = Arr (\IxExp -> a, Int) Rough|y 1GB

type GArr a = Arr Global a
type SArr a = Arr Shared a

» Shared Arrays

Live in on-chip shared
memory

16KB

Implementation

I. Runing an Obsidian program produces two things
Intermediate Code
A symbol table, (name -> (type, size)) mapping

2. Intermediate Code goes through liveness analysis

Outputs IC annotated with liveness information

3. Symbol table + annotated IC is used to build a memory
map
Outputs a memory map, (name -> adress) mapping

b

Outputs IC annotated with "number of threads needed info’

4. Memory mapped Code is generated from the output of
stage 3

Implementation

» Now CUDA C code is generated from the memory mapped
code.

Passed to CUDA C compiler

Taking advantage of whatever optimisations it performs.

__global static void generated(int *source0,char *gbase)
extern shared char sbase[] attribute ((aligned(4)));
const 1int tid = threadIdx.x;

const 1Int nO attribute ((unused)) = 10;

((int *) (gbase+0)) [tid] = (sourceO[((10 - 1) - tid)] + 1);

__syncthreads () ;

}

Conclusion

» Previous version of Obsidian showed that it is possible to
get good performance out of the generated code
» The version described here is more general

But performance needs to be improved

» A nice platform for experimenting with algorithms on the
GPU.

Compared to CUDA

Easier to experiment with different choices in
Where to place things in memory.

How much to compute per thread.

Retlections

» Working on this project has been a great learning
experiance.

However, we do not yet have a clear picture exactly of how to
write parallel programs for these kinds of processors.

Keep all the little processors busy

Use shared memory extensively

Large “fan outs” is not a problem (will use efficient broadcasting
capabilities)

Questions ?

References:

[1] : Fast Scan Algorithms on Graphics Processors Yuri Dotsenko Naga
K. Govindaraju Peter-Pike Sloan Charles Boyd John Manferdelli
Microsoft Corporation One Microsoft Way Redmond, WA 98052, USA
{yurido, nagag, ppsloan, chasb, jmanfer}@microsoft.com

Performance

Experiments performed on previous version of Obsidian

80

75
70
65
60
a5
50
45
40
35 1
30 1
25 1
20
15
10 4
t —E
0 4

biton- sortOET vsortlt vsortit2 vsordtHO bltnnlc
icCPU Sort CUDA

Seconds

