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Abstract
Computers today are becoming more and more parallel. General purpose processors
(CPUs) have multiple processing cores and Single Instruction Multiple Data (SIMD)
units for data-parallelism. Graphics processors (GPUs) bring massive parallelism
at the cost of being harder to program than CPUs. This thesis applies embedded
language methodology to data-parallel programming. Two embedded languages are
presented, Obsidian for general purpose GPU programming and EmbArBB for data-
parallel programming across platforms.

CPUs and GPUs get more parallel resources with each new generation. The ques-
tion of how to efficiently program these processors arises. We are after efficiency
both in programmer productivity and in application performance. Using embedded
languages allows us to experiment with what abstractions to present to the program-
mer at relatively little effort.

Obsidian is an embedded language for general purpose programming of GPUs.
We try to strike a balance between high level, productivity increasing abstractions
and low-level control needed for performance. The Obsidian programming model
mirrors the GPU architecture and the programmer is constrained into writing GPU-
friendly code. Hierarchy level polymorphic library functions are supplied to make
these constraints feel less obtrusive. Obsidian programs are compiled into CUDA C
code. This compilation is based on a simple and elegant monad reification technique.

In cases where the programmer is not interested in low-level details or wants
the program to run over a range of hardware, a higher level language can be used.
EmbArBB is a Haskell embedding or the Intel ArBB system. EmbArBB relies on the
ArBB system to generate code (via a Just-In-Time compiler) to a range of hardware.

EmbArBB embeds a preexisting library for data-parallelism into Haskell and
we obtain very good performance at little implementation effort. This performance
comes from the expertise and effort put into the ArBB system and that we get for
free. Embedding ArBB is a way to provide these benefits to the Haskell programmer
and a way to increase usefulness of an existing system by opening it up to a wider
audience. Obsidian is very different; it is not based on a set of high-level parallel
primitives. The Obsidian programmer can implement these primitives in different
ways and then select the best one. We have obtained very good performance in case
studies involving reductions. Obsidian programs are also more terse and composable,
compared to CUDA.

Keywords: Data-parallelism, Embedded languages, Functional Programming,
Graphics Processing Units
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Chapter 1

Embedded Languages for
Data-Parallel Programming

1.1 Introduction
This thesis applies embedded language methodology to data-parallel programming
of massively parallel hardware. An embedded language is a language that is im-
plemented as a library for some existing host language. In this case, the functional
programming language Haskell is used as host language.

Computers today are increasingly parallel. Each new generation of general pur-
pose processors (CPUs) and of graphics processors (GPUs) brings more parallelism.
The question of how to program these computers most efficiently, both from a pro-
ductivity and a performance point of view, arises. Explicit parallel programming is
hard and automatic means of parallelisation, while giving a sequential programming
model to the programmer, often misses the target when it comes to performance. The
book “Structured Parallel Programming” by Michael McCool et al argues the need
for explicit parallel programming models [MM12].

The embedded language approach to programming language implementation is
beneficial, since we are not entirely sure of how to program current and future
highly parallel computers. Implementing an embedded language allows us more
rapid prototyping of ideas. We can experiment with what abstractions to expose to
the programmer, without much effort. There are many other benefits of embedded
languages: making use of the host language’s library functions (if they are general
enough), the host language can be used as a powerful macro language for the em-
bedded language, providing a more levelled learning curve to programmers already
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familiar with the host language. For programmers who are already proficient in the
host language, learning an embedded language is more like picking up a new library.

This thesis focuses on data-parallelism, as opposed to task or control parallelism.
Data-parallelism is applicable where the input data can be divided into chunks and
operated upon independently. Data-parallelism is scalable; the potential for paral-
lelism increases with the problem size. Two different embedded languages for data-
parallel programming are presented in this thesis: Obsidian, for general purpose
computations on GPUs and EmbArBB for parallel programming across platforms,
such as CPUs, GPUs and other accelerators.

Graphics Processors trade programmer convenience for increased parallelism.
For example, where CPUs dedicate large portions of chip area to caches, branch
prediction and instruction level parallelism (ILP), GPUs put additional cores. This
comes at a price of increased programmer effort. GPUs have programmer managed
shared memories, conditionals are troublesome from a performance perspective and
memory access patterns can make or break the performance of an application. With
Obsidian, we try to find the right level of abstraction for programming GPUs. We try
to strike a balance between low-level control of details that influence performance
and high-level abstractions to increase productivity and make programs more terse.
The end goal with Obsidian is a language for writing high performance GPU pro-
grams that compare well to code written by CUDA [NVIb] (a C-dialect for GPU
programming) experts, provided that both programmers have similar GPU expertise.
The Obsidian programmer would however write programs in a more composable
manner. Obsidian programs are compiled into CUDA.

Obsidian is geared towards the programmer who is interested in GPU hardware.
Making good use of Obsidian requires that the programmer is willing to make an
effort to learn about GPUs and how to program them efficiently. However, another
case is a programmer who does not want to invest that effort but wants to write
a high-level parallel program and have it run reasonably well on different parallel
architectures. In this case, a language with even higher level of abstraction is prefer-
able. It then becomes the job of a more advanced compiler to turn that into code for
the targeted platforms. The EmbArBB language targets this programmer. EmbArBB
exposes a set of high-level operations on arrays, such as map, reduce and scan.
The programmer has no power over the parallel strategy that should be used to imple-
ment these operations but instead relies on a JIT-compiler (Just In Time-compiler).
EmbArBB is a Haskell embedding of Intel ArBB [NSL+11] that was released as an
embedded language in C++. EmbArBB relies entirely on the ArBB system for code
generation and optimisation.
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1.2 Obsidian: An embedded language for GPU kernel
implementation

In 2006, NVIDIA released their first Compute Unified Device Architecture (CUDA)
GPU. With CUDA, NVIDIA also made it a lot easier for programmers to use GPUs
for general purpose programming [NVIc]. A dialect of C, called CUDA C, was
released specifically to simplify the implementation of general purpose computations
on GPUs.

Before CUDA, programmers still tried (very ingeniously) to make use of GPUs
for non-graphics applications via the graphics API. The desired computation was
expressed in graphics terms and the result computed through an act of rendering. Of
course, since the available abstractions targeted the graphics domain, this added extra
burden on the programmer. CUDA was NVIDIA’s first response to this problem.
CUDA is a dialect of C, extended with a parallel programming model suitable for
GPUs.

Having a language specifically made for general purpose programming on the
GPU, such as CUDA, is a big step up from earlier. But CUDA still offers a very
low-level interface to programming the GPU, which is preferred in a situation where
the programmer needs to think about hardware specific details to get the best perfor-
mance. CUDA provides this, but at the price that it is hard to build upon, abstract and
reuse prior programming effort. This is where we are trying to go one step further
with Obsidian.

1.2.1 GPU hardware

Before going into programming of GPUs, it is important to have some background.
The GPU programming model exposed by CUDA very much mirrors the underlying
hardware. Some of the details that make GPU programming hard are more apparent
when looking at the underlying hardware.

A CUDA GPU is built around a single kind of processor (as opposed to the dif-
ferent kinds of processors found in earlier GPUs). The processors in the GPU (called
MPs, MultiProcessors) all contain a number of cores called SPs (Streaming Proces-
sors). Each MP also contains local memory, called shared memory since it can be
accessed by all of the SPs in that MP. The number of MPs varies over the available
GPUs; cheaper GPUs have as few as one MP, and as you go up in price the number
of MPs increases.

Each MP of the GPU can manage a large number of threads; on today’s GPUs
up to 2048 threads can run on a single MP. The GPU schedules threads in groups
of 32, called Warps, that are executed in lock-step (SIMD style execution). Threads
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are also divided into Blocks; the threads within a block can communicate using the
shared memory. The maximum block size is currently 1024 threads. Threads within
a warp can communicate via the shared memory without using any synchronisation
primitive. However, if communication takes place across warps synchronisation is
necessary. A barrier synchronisation mechanism exists to ensure that all threads
within a block have reached the same position in the code. Blocks are also grouped
into a grid that is the collection of blocks executing the same program.

1.2.2 GPU programming
The CUDA programming model reflects the hierarchical architecture of the GPU.
The programmer writes what are called kernels; in CUDA jargon, a kernel refers
to a sequential C program that is parameterised on a thread’s identity. The kernel
program is executed in parallel across all the threads of a block and many such blocks
of threads can execute in parallel on the available MPs. Kernels may use shared
memory that is local to a block; the programmer needs to decompose the algorithm
and data in such a way that communication will be local to the blocks.

The program below is a very simple example of a CUDA kernel that computes
elementwise sums.

__global__ void vecAdd(int32_t *i1, int32_t *i2, int32_t *r) {

unsigned int gid = blockIdx.x *
blockDim.x +
threadIdx.x;

r[gid] = i1[gid] + i2[gid];

}

The kernel takes two input arrays, i1 and i2; the result is stored in r. Note
how the kernel makes use of three variables, threadIdx.x, blockIdx.x and
gridDim.x. These variables identify a thread uniquely within a grid. Here they
are used to obtain an index into the provided arrays. The dimensions of the blocks
and of the grid are set by a controlling program upon launch of the kernel. This con-
trolling program is run by the CPU of the computer housing the GPU. The kernel is
launched using the following syntax:

vecAdd<<<1,32,0>>>(d_i1,d_i2,d_r);

This line of code launches the kernel on one block of 32 threads. The zero indicates
that the kernel uses no shared memory. If the kernel did use shared memory, the
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amount needed should have been specified there. Figure 1.1 shows the complete
sequence of commands for a minimal example using the kernel specified above.

In Obsidian, the same kernel (the local computation) is implemented as follows:

vecAdd :: Num a => SPull a -> SPull a -> SPull a
vecAdd = zipWith (+)

The vecAdd program takes two SPull input arrays and gives one as result. The
Obsidian vecAdd is more general than the CUDA version. From it we can generate
CUDA kernels for any element type that supports the (+) operation. In Haskell we
know that types that belong to the Num type class has a (+) operation.

There are some important differences between CUDA and Obsidian programs.
One is that with Obsidian we generate kernels for fixed size local computations. This
is to avoid doing out-of-bounds checks which would mean conditionals in the code.
Conditionals are problematic from a performance point of view. Another difference
is that in Obsidian the programmer specifies the entire computation, including how
it is mapped over the blocks of the GPU. This is done implicitly in CUDA, based
on the indexing arithmetic used in the kernel and the number of blocks and threads
provided at kernel launch. This means that the Obsidian programmer needs to write
a program that performs this mapping:

vecAddG :: Num a => DPull a -> DPull a -> DPush Grid a
vecAddG i1 i2 =

pConcat $
fmap push $
zipWith vecAdd

(splitUp 32 i1)
(splitUp 32 i2)

The vecAddG program specifies a computation on large arrays; the large in-
put arrays are split up into pieces that are operated upon by the local computation,
vecAdd, specified above. Each input array passed to this function must have length
a multiple of 32. Since the splitUp operation splits the arrays into chunks of 32
elements, the body of the generated kernel will be constructed specifically for this
size. zipWith is used to map the local computation onto each chunk of the input
arrays. The result is an array of arrays that is flattened with the pConcat function.
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int main(void) {

int32_t h_i1[32], h_i2[32], h_r[32];

int32_t *d_i1, *d_i2, *d_r;

for (int i = 0; i < 32; ++i) {
h_i1[i] = i;
h_i2[i] = 32 - i;

}

// Allocate device memory
cudaMalloc((void**)&d_i1,32*sizeof(int32_t));
cudaMalloc((void**)&d_i2,32*sizeof(int32_t));
cudaMalloc((void**)&d_r,32*sizeof(int32_t));

// Copy inputs to device
cudaMemcpy(d_i1,

h_i1,
32*sizeof(int32_t),
cudaMemcpyHostToDevice);

cudaMemcpy(d_i2,
h_i2,
32*sizeof(int32_t),
cudaMemcpyHostToDevice);

// Launch the kernel
vecAdd<<<1,32,0>>>(d_i1,d_i2,d_r);

// Copy result to host
cudaMemcpy(h_r,

d_r,
32*sizeof(int32_t),
cudaMemcpyDeviceToHost);

for (int i = 0; i < 32; ++i) {
printf("%d ",h_r[i]);

}

return 0;
}

Figure 1.1: Host code for launching a simple CUDA kernel on the GPU.
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The CUDA code below is generated from the vecAddG program:

extern "C" __global__ void vecAdd(int32_t* input0, uint32_t n0,
int32_t* input1, uint32_t n1,
int32_t* output2)

{
uint32_t tid = threadIdx.x;

if (blockIdx.x < min(n0 / 32U, n1 / 32U)) {
output2[blockIdx.x * 32U + tid] =

input0[blockIdx.x * 32U + tid] +
input1[blockIdx.x * 32U + tid];

}
}

There are some superficial differences between the code generated using Ob-
sidian and the handwritten example above. One such difference is that the index
computation is not shared. Obsidian relies on the CUDA compiler to discover such
sharing via a Common Subexpression Elimination (CSE) optimisation pass. Another
difference is that Obsidian has inserted a conditional that only executes the body for
certain blocks. Discussion of the causes for that conditional is postponed until sec-
tion 1.2.4. A real difference is that the kernel is generated for a fixed size; here there
is a constant (32) where in the handwritten code we used blockDim.x. If those
differences are set aside, the two kernels are identical. Figure 1.2 shows how the
vecAddG kernel can be launched from within Haskell, using Obsidian’s rudimen-
tary support for launching GPU computations.

An alternative way to implement vecAddG is to inline the local computation
directly. This makes the entire program look like this.

vecAddG :: Num a => DPull a -> DPull a -> DPush Grid a
vecAddG i1 i2 =

pConcat $
fmap push $
zipWith (zipWith (+))

(splitUp 32 i1)
(splitUp 32 i2)

The generated code looks exactly as before.
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performVecAdd =
withCUDA $
do

kern <- capture 32 (vecAddG :: DPull EInt32
-> DPull EInt32
-> DPush Grid EInt32)

useVector (V.fromList [0..32::Int32]) $ \i1 ->
useVector (V.fromList [0..32::Int32]) $ \i2 ->
allocaVector 32 $ \(o :: CUDAVector Int32) ->
do
fill o 0
o <== (1,kern) <> i1 <> i2

r <- peekCUDAVector o
lift $ putStrLn $ show r

Figure 1.2: Host code for launching a simple Obsidian kernel on the GPU.
capture compiles an Obsidian program into CUDA. At this point the types of the
Obsidian program need to be made concrete. The number, 32, used as an argument
to capture specifies that generated code should be specialised for 32 threads per
block.
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A CUDA kernel that uses shared memory takes the form:

__global__ void kernel(int32_t *i, int32_t *r) {

extern __shared__ int32_t sm[];

unsigned int tid = threadIdx.x;
unsigned int gid = blockIdx.x *

blockDim.x +
threadIdx.x;

sm[tid] = i[gid];
__syncthreads();

/* Compute on sm */

__syncthreads();
r[gid] = sm[tid];

}

A portion of the input array is stored into shared memory. A barrier synchronisation
is used to ensure that each thread within the block has stored its value into shared
memory (only necessary if threads will communicate across warp boundaries). After
computing on the data locally, it is written back into global memory. This kernel
sets up two aliases for thread identities. A thread’s global identity is called gid and
its local identity is called tid. The global ID is used to index into the large global
array; indexing into local shared memory is done using the local ID.

In Obsidian, local computations can also use shared memory. The Obsidian ar-
rays we have seen in the examples, Pull and Push arrays do not directly correspond
to actual data in memory. Pull and push arrays rather represent ways to compute ar-
rays. More information about these array representations is available in section 1.2.4.
The Obsidian programmer can store intermediate arrays in shared memory by using
a force operation.

The following kernel multiplies each element in an array by two and then adds
one:

kernel :: Num a => SPull a -> SPull a
kernel = fmap (+1) . fmap (*2)

This kernel computes its result without any storage of intermediate results; the code is
equivalent to fmap ((+1).(*2)). In the generated CUDA code below, it can be
seen that the (*2) and (+1) operations are applied without any intermediate storage.
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extern "C" __global__ void kernel(int32_t* input0, uint32_t n0,
int32_t* output1)

{
uint32_t tid = threadIdx.x;

if (blockIdx.x < n0 / 32U) {
output1[blockIdx.x * 32U + tid] =

input0[blockIdx.x * 32U + tid] * 2 + 1;
}

}

Storing an intermediate result between the two operations can be accomplished
by changing the kernel as follows.

kernelF :: (MemoryOps a, Num a)
=> SPull a -> BProgram (SPull a)

kernelF = liftM (fmap (+1)) . force . fmap (*2)

This change introduced some noise. The reason for this is that Obsidian pro-
grams that use memory are monadic. The BProgram in the result type is a monad.
Another difference is that we need to be able to write the array elements to memory;
in Obsidian this means that the element type must be in the MemoryOps class.

The code below is generated using the kernelF program:

extern "C" __global__ void kernel(int32_t* input0, uint32_t n0,
int32_t* output1)

{
extern __shared__ uint8_t sbase[];
uint32_t tid = threadIdx.x;

if (blockIdx.x < n0 / 32U) {
((int32_t*) sbase)[tid] =

input0[blockIdx.x * 32U + tid] * 2;
__syncthreads();
output1[blockIdx.x * 32U + tid] =

((int32_t*) sbase)[tid] + 1;
}

}

This code uses a shared memory array called sbase. There is also a call to
__syncthreads to ensure that all the writes have completed before proceeding.
In this case the synchronisation is not really necessary since all threads belong to the
same warp. There is an unsafeforce operation that naively removes synchroni-
sations if the array being forced is short enough. More advanced analysis could also
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be performed to remove synchronisations whenever communication is entirely warp
local. We do not apply that optimisation, but work on warp level computations is in
progress and would put this ability in the hands of the programmer.

1.2.3 Writing efficient GPU Kernels

Writing efficient GPU kernels is hard. There are many details that the CUDA pro-
grammer must be aware of in order to make optimal use of the GPU. The NVIDIA
“CUDA C Best Practices Guide” [NVIa], is a good source to learn more about these
details. Here is a list, with explanations of some of the practices that the guide deems
most important. The list also contains information about how these best practices
influence our work on Obsidian.

• Minimise data transfers between host and device: The bandwidth between
device memory and GPU is much higher than the bandwidth between host
memory and the GPU device via the PCIe bus. This means that, first of all,
one must evaluate if the computation to be performed is significant enough to
warrant a transfer to the GPU. If the computation is not arithmetic intensive,
it may be better to do the work on the CPU. However, if the data is already in
device memory and the operation that is about to be performed on it is more
efficiently handled by the CPU, it may still be better to let the GPU do the
work. In other words, compute near the data unless transferring it pays off.

Data transfers between the host memory and device (GPU) memory is out of
Obsidian’s scope. If Obsidian is used to generate kernels for a computation, the
programmer has already decided that a GPU should be used. However, even
after making the decision to use the GPU the programmer may need to consider
how to transfer the data. In some cases it is possible to overlap computation on
the GPU and data transfer. These kinds of optimisations are considered when
writing the C program that launches the CUDA kernels. Obsidian does have
rudimentary support for launching kernels from within Haskell but currently
we consider this mostly a tool for quickly being able to run a kernel and see
what it does, not as a means to implement applications. This part of Obsidian
is future work.

• Ensure that global memory accesses are coalesced: Certain access patterns
into GPU device memory can be coalesced (combined into few memory trans-
actions). Unfortunately what these access patterns are varies somewhat de-
pending on the GPU. For a typical model of GPU, the rule is that concurrent
memory accesses (by threads within a warp) will be coalesced to as many
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transactions as cache lines touched (128 Byte l1 cache lines). This means that
strided accesses from within a warp are not favoured.

Inputs to an Obsidian program are pull arrays. Pull arrays can be arbitrarily
permuted; the permutation used will decide the access pattern. In section 1.2.4,
there is more information about pull arrays. If global memory accesses can
be coalesced or not partly also depends on the algorithm being implemented.
The next paragraph suggests a trick for coalescing memory accesses, in some
cases, even if the algorithm is unsuitable. Then it becomes a trade between
bad memory access pattern and using more shared memory.

• Minimise use of global memory: Accessing global device memory can take
as many as 400 to 600 clock cycles if the data is not cached, this is 10 - 20
times as many cycles as an access to shared memory. The programmer should
use shared memory as much as possible to avoid redundant loading from global
memory. Shared memory can also be used to coalesce reads from global mem-
ory. Shared memory is a limited resource in the MP, so if a kernel uses very
much shared memory, fewer such blocks can be active on the MP.

Intermediate arrays are stored into shared memory when the Obsidian pro-
grammer uses the force function.

• Use a multiple of 32 threads per block: Groups of 32 threads, warps, are
the scheduled unit on a GPU. If a warp accesses memory (and will be waiting
for it arrive during 600 cycles) it will be swapped out and another warp will
take its place. This means that the number of available warps decides how well
memory latency can be hidden. A block that is not a multiple of 32 leads to
wasting GPU resources; some processing elements will stand idle during the
execution of the incomplete warps.

Obsidian requires regularity even more than CUDA does. Since we focus on
generating high performance kernels, we rule out generation of kernels that
work on different sizes (per block). The choice of how many threads to use
per block is in the hands of the Obsidian programmer. The method for making
that choice has changed over time. Earlier, the number of threads needed by
a kernel was decided by the size of the arrays it computed. This has recently
changed and is now set by a parameter passed to the code generation process.

• Avoid different execution paths within a block: Any branching instruction
that causes the execution to branch into different code (in CUDA jargon called
a diverging branch) within a warp will affect performance. When the execution
paths within a warp diverge, the computation is serialised.
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Sometimes divergent code cannot be avoided. However, it is important not to
have threads diverge unnecessarily. When using pull arrays alone, this was
often a problem; with the addition of push arrays, the situation improved. Us-
ing push arrays, some divergent computations can be explicitly split up into
phases, each phase with all threads following the same execution path. This
means that fewer threads are required to do the same work. Push arrays are
explained in more detail in section 1.2.4.

• Do not use __synchthreads() in diverging code: Extreme care must
be taken when synchronising within any conditionally executed code; every
thread must reach this barrier. Failing to ensure this will likely lead to the
kernel producing incorrect results. Note that this is a major limitation to the
composability of CUDA functions. Wheather or not it is safe to call some
function in a certain place in your code can be decided only by inspecting that
function’s implementation.

In Obsidian, it is impossible for a barrier synchronisation to appear within di-
verging conditional code. Conditionals can be introduced either by an
ifThenElse function at the element level or by a Cond statement that is
an operation in the Program monad; we have seen an example of the pro-
gram monad in section 1.2.2. The Program monad is parameterised on the
GPU hierarchy level. There are thread programs (TProgram), block pro-
grams (BProgram) and grid programs (GProgram). the Cond conditional
chooses between two thread programs while a synchronisation can only appear
in an Obsidian block program. More information about programs and the GPU
hierarchy is available in section 1.2.4.

The list above provides some very general guidelines on what to think about when
writing GPU kernels. The lesson is that fast memory near the processing element
should be preferred over slow memory far away. Favouring fast memory demands
the effort of decomposing computation and data in a way that makes this possible.

1.2.4 Obsidian Implementation
Obsidian is implemented as an embedded language using Haskell as host. Obsid-
ian is a compiled embedded language; a very good paper that is highly relevant to
our approach is “Compiling Embedded Languages” by Conal Elliott et al [EFdM03].
This paper describes how to embed a compiler backend and generate efficient code in
some target language. One key aspect of this approach is that the embedded language
is a library of functions that create and compose Abstract Syntax Trees (ASTs). Ob-
sidian (chapter 3) as well as EmbArBB (chapter 4) are implemented in a similar way.



14
CHAPTER 1. EMBEDDED LANGUAGES FOR DATA-PARALLEL

PROGRAMMING

An embedding that builds ASTs is called a deep embedding. Shallow embeddings,
on the other hand, do not build ASTs. In “Combining Deep and Shallow Embedding
for EDSL” Josef Svenningsson and Emil Axelsson combine the two methods, shal-
low and deep, in order to simplify the AST data type (fewer constructors) and make
more extensible embedded languages [SA13]. Obsidian also uses a combination of
shallow and deep embeddings.

The embedded language approach has become popular to use as a way of raising
the level of abstraction in fields where the default is to use low-level languages. For
example, Lava and Wired [KC07, ACS05] raise the level of abstraction in the fields
of hardware design and verification and Feldspar does the same in the area of digital
signal processing [ACD+10]. For GPU programming, there are numerous embedded
approaches using various host languages. Two languages for GPU programming em-
bedded in Haskell are Accelerate and Nikola [CKL+11, MM10]. And there is Intel
ArBB, embedded in C++, with the goal of being parallel across platforms [NSL+11].
Related work and information about the tools, libraries and languages that make the
wider context surrounding Obsidian can be found in section 1.4.

Deep embedding: The Program data type

Obsidian uses a deeply embedded Program data type that represents GPU Kernels.
A CUDA GPU has a hierarchy of parallel resources. At the bottom there are threads,
executing sequential programs. There are groups of threads (of 32) called Warps
that execute in lock-step. Warps are the scheduled unit of work on a GPU. There
are Blocks of threads, a set of threads that run as a group and share local (shared)
memory. And lastly there is a Grid of blocks that specifies the total number of threads
involved in a computation (Number_of_Blocks * Number_of_Threads). The deeply
embedded program data type of Obsidian models this hierarchy by parameterising
programs on a hierarchy level type parameter (the t parameter below).

data Program t a where

The t parameter can be either Thread, Warp, Block or Grid. These types
are related to each other via a Step type constructor that represents going upward
one step in the hierarchy.

data Step a -- A step in the hierarchy
data Zero

The Thread type is level Zero (type Thread = Zero). Then Block is
Step Thread and Grid is Step Block. Currently Warp is not included in the
hierarchy, leading to warp programming being a special case. One benefit a warp
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has is that threads can communicate via shared memory without using synchroni-
sation primitives. There is no programmer support for warp level programming in
CUDA (as there is for block level programs). The programmer needs to take care to
ensure that the communication patterns are within a warp and is then free to remove
synchronisations. If warps were to be put in the program level hierarchy of Obsid-
ian, its place would be between the thread and block level. This would force the
programmer to go via warps when putting together a block computation even if the
communication pattern is not suited for that, leading to inconvenience with no gain.

As an example of how the hierarchy level parameter is used, I show the ForAll
constructor from the Program data type. This constructor represents parallelism
either over threads or blocks.

ForAll :: EWord32
-> (EWord32 -> Program t ())
-> Program (Step t) ()

ForAll takes a number of parallel iterations, and a body represented by a func-
tion from an index to a program. The body is a Program at some level t while the
resulting program is a step above. This means that a thread program can be turned
into a block program by using ForAll, or that a block program can be turned into
a grid program.

Information about the Program data type can be found in paper F, A High-Level
Embedded Language for Low-Level GPU Kernel Programming, in section 3.5.

Scalars

Scalars and operations on scalars are represented by an expression data type
(Exp a) in Obsidian. This is another example of a deep embedding; the expression
data type contains constructors for literal values, arithmetic operations, and condi-
tionals.

Haskell’s type class system allows us to overload arithmetic operations such as
(+), (-) and (*) by making expressions an instance of Num. This allows the
Obsidian arithmetic expressions to look exactly like corresponding native Haskell
arithmetic.

The approach taken to embed the scalar language is very similar to what is de-
scribed in “Compiling Embedded Languages” [EFdM03]; but we use a Generalised
Algebraic Datatype (GADT) to obtain typed expressions. An alternative to using a
GADT is to use phantom types, which earlier versions of Obsidian did (section 3.1).
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Arrays

Obsidian has two array representations. These array representations are implemented
as shallow embeddings on top of the expression and program data types. This means
that these arrays will disappear during Haskell evaluation of the Obsidian program.

Pull arrays: Pull arrays have been part of Obsidian from the very beginning [Sve08]
but called either Array or just Arr. A pull array represents an array as an indexing
function; given an index it provides an element:

data Pull s a = Pull {pullLen :: s,
pullFun :: EWord32 -> a}

Pull arrays are parameterised on both element (a) and length (s) type. The length
parameter is used to be able to represent arrays with static (known at Haskell run-
time) or dynamic (length represented by an expression, an unknown length). When
creating block level computations, we want to know the exact lengths in order to
avoid generating code riddled with conditionals concerning array lengths. In CUDA,
it is possible to write kernels that are not specialised for a certain size. This is ac-
complished by adding bounds checks. Since conditionals are problematic from a
performance point of view, fixed size kernels are recommended when performance
is crucial. In Obsidian, we have chosen to disallow implementation of kernels that
operate on different sizes locally. Dynamic lengths are used for grid level computa-
tions; this allows a local computation of a fixed size to be run in parallel over arrays
a multiple of the size that the local computation handles. In generated code, this is
currently visible as a conditional on blockIdx.x. However, this is still considered
work in progress; the conditional is only really necessary for Obsidian kernels that
have more than one output array and the outputs are of different length.

One benefit of pull arrays is that they give fusion of all operations on them for
free. For example, map f is implemented on pull arrays by composing f with the
indexing function:

map f (Pull n ixf) = Pull n (f . ixf)

Now, we see that map f . map g is the same as map (f . g) since both
result in f and g becoming composed onto the indexing function. No intermediate
array is built in memory.

Another benefit of pull arrays is that they are parallel. Simply put, early Obsidian
was pull arrays in addition to a way to compute the array and store its elements
to memory (called sync in early versions of Obsidian and later force). A very
direct way to compile a pull array to a GPU is to launch as many threads as there
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are elements in the array and apply the indexing function to the thread id. Now each
thread will have computed an element of the array and can store that to memory.

Push arrays: Push arrays were added to Obsidian as a complement to pull arrays.
Pull arrays are good because they are so simple to understand and easy to paral-
lelise. However, certain operations on pull arrays yield code that is not suitable for
GPU execution. Concatenation and interleaving of pull arrays results in conditionals
in the indexing function. The interleaving case, which is worst, leads to diverging
branching in every warp. If branches diverge, the GPU turns the processing elements
taking one path off and allow the others to progress; then turn to the other branch.
The computation of the branches is serialised and compute resources are wasted.

Push arrays, like pull arrays, are functions. A Push array is a higher order func-
tion, taking a function from value and index to a thread program and giving as result
a program at some level in the hierarchy. The function passed to the push array
function we call a write-function. Below is the definition of push arrays that we use
in Obsidian. Push arrays are parameterised on element type (a), size type (s) and
program hierarchy level (p).

data Push p s a =
Push s ((a -> EWord32 -> TProgram ()) -> Program p ())

When working with pull arrays, the consumer of such an array decides how to
iterate over the array and what elements to compute. This is done by applying the
push array function to those indices that are interesting to the consumer. Push arrays
work in the opposite way. The Push array (the result program) contains the iteration
schema; the consumer of the push only decides what write function to supply. The
iteration schema used is decided upon when creating a push array. The code below
is an example of how to create a push array from a pull array.

convertToPush :: Pull Word32 e
-> Push Block Word32 e

convertToPush (Pull n ixf) =
Push n $ \wf ->

ForAll (fromIntegral n) $ \i -> wf (ixf i) i

The function above takes a pull array and creates a push array with a parallel
iteration schema over threads within a block. There are other iteration schemas to
chose from such as sequential, combinations of sequential and parallel across both
threads and blocks (two level parallelism).

Push arrays give many of the same benefits as pull arrays. Using push arrays, we
also get fusion of operations as default. The implementation of map (shown below)
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illustrates how mapping a function f over a push array results in an application of f
in the write-function.

map f (Push s p) =
Push s $ \wf -> p (\e ix -> wf (f e) ix)

Compilation to CUDA

When compiling Obsidian programs to CUDA, we only need to be concerned with
the Program datatype. Given the hierarchy level type parameters to the program
datatype, we know that the AST can be quite directly translated to CUDA. We know
that there will be at most one level of nestedness in the parallelism (several blocks,
each of several threads). This means that we do not need to do any transformations
on the AST before generating CUDA code. Paper F (section 3.5) contains technical
details of the compilation process.

1.2.5 Results
We have implemented basic algorithms such as sorting, merging, fractal generation,
reductions and parallel prefix (scans). Often we have managed to get very good
performance, close to that of hand optimised CUDA code. GPU execution of scan
operations is something that has been worked on extensively in the GPGPU commu-
nity and very efficient implementations exist [MG09, HS07, BOA09, SHG08]. In
Paper F (section 3.5), we only study scan kernels (scan of small arrays) and measure
their speed relative to each other. Compared to a scan kernel supplied with the CUDA
API, our fastest kernel is slightly more than three times slower. Performance needs
to be improved at the kernel level before we attempt composing them into large scan
operations. We hope to improve this situation with the addition of the warp level
abstractions in Obsidian (this is future work, section 1.5).

Paper F (section 3.5) tells a story about how to implement and tune a reduction
kernel in Obsidian. Seven reduction kernels are implemented, the first very simple
and naive. Each following kernel tweaks some aspect of the previous one. Apply-
ing these changes is pleasingly simple using Obsidian; some of these changes would
mean a major rewrite in CUDA. The final kernel is almost 5 times as fast as the
first, and reaches a throughput of 140GB/s on a GPU with 192GB/s memory band-
width. The speed of any kernel will always be limited by how fast the data can
be pushed through the GPU (see reference [MG09] for an in depth discussion of
kernel performance); this performance is very satisfactory. In Paper F, a large re-
duction algorithm based on this kernel is implemented that runs slightly faster than
Accelerate’s fold skeleton. Even being just nearly as fast as Accelerate would in this
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case have been fine, since the fold skeleton is hand-tuned CUDA code. With this
reduction case study, we have pushed Obsidian as far as possible with the current
abstractions. However, it is possible that with more work on the warp level abstrac-
tions, this could be improved further. Our reduction case study was based on lecture
slides from NVIDIA [Har].

In paper E (section 3.4), we implement counting sort and occurrence sort using
Obsidian. We use very low-level features of Obsidian and end up producing code
that performs very well.

Paper D (section 3.3) introduces push arrays and uses them in the implementation
of sorting networks, with quite good results. With push arrays, we were able to
experiment with more detailed decompositions (what thread computes what value)
of the algorithms.

1.3 Embedding Intel Array Building Blocks
Intel ArBB [NSL+11] is a system for high-level data-parallel programming with the
ability to generate code for a variety of different hardware configurations. It is im-
plemented as an embedded language in C++. One motivation for ArBB that is men-
tioned in [NSL+11] is that while high-performance computing specialists are highly
competent at implementing kernels using low-level programming techniques, main-
stream developers are not. ArBB offers a more composable way to write programs
that make use of core and vector (SIMD) parallelism and doing this while using a
familiar language, C++.

One of the greatest strengths of ArBB, as I see it, is that it also comes with a
low-level C interface. The main purpose of this C interface is to make it easier to use
the ArBB system from other languages. Many languages have foreign function inter-
faces that are geared towards C. This gives ArBB a level of language independence
on top of its cross platform abilities.

ArBB is based on a set of parallel primitives (or structures) on dense one, two
and three dimensional vectors and nested vectors:

• Reductions: add_reduce, mul_reduce, max_reduce ...

• Scans: add_scan, mul_scan, max_scan ...

• Sorting: sort
• Permutations: gather, scatter, reverse ...

• Sequential loops: _for, _while

• Map, zipWith, stencil: are all supported via a single primitive called map.

These operations (and many more, there are about 120 operations in total) can be
used by the programmer when writing programs using ArBB. Note that there are
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sequential looping constructs with special names, _for and _while. ArBB is a
deeply embedded language and calling the ArBB functions does not actually execute
them, it just adds a node to some internal representation. Therefore, the use of normal
C++ for loops leads to unrolled ArBB programs and a special _for loop is needed
to get a loop in the generated program. This is exactly the way these things work in
Haskell embedded languages, but it may be even more surprising to a C++ program-
mer. Before an ArBB function can be computed, it needs to be captured. For this,
ArBB has a call function that is used to run functions using ArBB functionality.
The first time call is used on a function pointer, that function is executed and the
ArBB functions used in it build an AST (we say the function has been captured). The
AST is then compiled and specialised for the hardware available. Any subsequent
calls of a function using ArBB functionality do not lead to a recompilation; as the
first call caches this compiled code.

The first step of our work with embedding Intel ArBB functionality was to imple-
ment very direct and low-level bindings to the C interface. This provides a Haskell
function (in the IO Monad) for each of the functions in the ArBB C interface. More
details and results of this work can be found in paper G in section 4.1.

1.3.1 EmbArBB: Embedding ArBB in Haskell

The ArBB Haskell bindings provide a very rudimentary interface to ArBB func-
tionality and are not useful for application implementation. We need a higher-level
interface to ArBB to offer to the Haskell programmer. Our first attempt was to im-
plement an Accelerate backend using the ArBB bindings. However, this had some
hard problems to solve. Accelerate is a richer language and there was an API mis-
match between Accelerate and ArBB. These problems are mentioned in paper G,
section 4.1. As a way to offer ArBB functionality to the Haskell programmer in a
way that is useful and simpler to implement, we started working on EmbArBB.

EmbArBB improves the interfacing with Haskell by implementing a deeply em-
bedded language. Now, programs in EmbArBB create ASTs. These ASTs are com-
piled via the ArBB bindings, creating function objects that can then be run.

Dense and nested arrays

ArBB supports one, two and three dimensional arrays, called dense vectors. In
EmbArBB, we represent these with a data type, DVector, parameterised by dimen-
sionality and element type. The dimension parameter can be either Dim1, Dim2 or
Dim3. There are also nested vectors, in EmbArBB called NVector, parameterised
on element type.
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Operations on arrays

EmbArBB provides many of the ArBB operations on vectors via a shape-polymorphic
interface. For example, a reduction operation can take a two dimensional vector and
reduce all rows or columns and provide a one dimensional result. It can also take a
one dimensional vector and return a single value (zero dimensional vector).

addReduce :: Num a
=> Exp USize
-> Exp (DVector (t:.Int) a)
-> Exp (DVector t a)

The addReduce function takes an input vector that is at least one dimensional
(t:.Int) and returns a vector that has one less dimension (t).

Deep embedding

EmbArBB is a traditional deep embedding; there is an AST data type with construc-
tors representing each ArBB language feature. It is true that a deep embedding of
ArBB leads to duplication of effort. The low-level operations exported by the ArBB
C interface already construct an AST within the ArBB system. One possible bene-
fit of the deep embedding is that it buys independence from the ArBB backend. It
is possible to compile the AST generated on the Haskell side to some other target
language.

When compiling EmbArBB to ArBB, a sharing detection pass is performed. This
pass detects sharing in the AST using the method of A. Gill [Gil09]. One benefit of
this pass is that it reduces the number of calls into the ArBB C library. The efficiency
of code generated is probably not affected, since ArBB would discover that sharing
in a Common Subexpression Elimination (CSE) pass. Another potential benefit is
that sharing detection on the Haskell side results in a simpler AST being built on
the ArBB side, potentially making the job for the ArBB optimisation passes simpler.
What effects these operations truly had on performance has not been investigated.
Actually, applying a sharing detection technique was one of my personal motivations
for working on EmbArBB. In Obsidian, we have not seen the need for this technique.
In Obsidian, sharing is in the hands of the programmer, via the force operation. On
a GPU, communication is more expensive than computation, so whether to share a
computation or not becomes a tool for the programmer to use.

One benefit of a deep embedding is that transformations can be performed on the
AST. Applying any optimisations in EmbArBB would very likely duplicate effort
already put into ArBB. Therefore, we apply no further transformations after sharing
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detection. However, if EmbArBB would be used to generate code in some other
target language a set of optimisations would be needed.

Evaluation

In paper H, section 4.2, we benchmark EmbArBB against ArBB in C++ and the
Haskell Repa library. EmbArBB compares favourably to Repa and is often a lot
faster. The ArBB C++ performance is not distinguishable from EmbArBB’s, indicat-
ing that our Haskell embedding adds no extra overhead. Of course, this is expected,
since once the ArBB system has generated the code, that code is identical no matter
if the AST was built via Haskell or C++ calls. A comparison of how well EmbArBB
and C++ compares in regards to the time it actually takes to go through the process of
making those ArBB C API calls has not been performed. However, if the generated
code is used many times, ArBB’s caching of generated code means that the initial
code generation cost can be amortised.

1.3.2 Current status of ArBB and EmbArBB

Since our work with ArBB, Intel has unfortunately retired the ArBB system. This
leaves EmbArBB without a functioning code generating backend. This makes the
choice of a deep embedding (in hindsight) the correct one. EmbArBB could be
resurrected by implementing a new code generating backend. However, a complete
reimplementation of the ArBB API would be a massive undertaking.

1.4 Related work

1.4.1 Languages for data-parallel programming

In figure 1.3, our work is placed in relation to other languages, embedded languages
and libraries for parallel programming. The languages and libraries considered are
data-parallel; languages for control parallelism or distributed message passing sys-
tems are not considered. The systems are roughly divided into three groups, based
on their level of abstraction. There are low-level languages; here I place languages
that are imperative and C-like. In the middle, layer I place languages that have higher
level abstractions and are more easily composable. at the highest level, I place lan-
guages that completely abstract away from details of the hardware they run on. The
division is not free from personal bias and the placement of languages in boxes was
not always easy.
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The figure also divides the languages according to what hardware they support.
There are CPU specific languages, GPU specific languages and languages that sup-
port or aspire to support CPU,GPU and accelerator (Larrabee, Xeon Phi) execution.

With Obsidian, we try to target the sparsely occupied area of mid-level GPU
programming. With CUDA [NVIc] and OpenCL [TKG], the programmer has full
control of how to divide the computation amongst threads and blocks. Using Ac-
celerate [CKL+11], Nikola [MM10] and Thrust [NVId], the programmer uses high-
level patterns, without direct insight into how the application is mapped onto the
threads and blocks of the GPU. Using Obsidian, we want to bridge that gap by both
being more composable than CUDA and giving the programmer control of what the
computation will look like on the GPU. This is done by allowing the programmer
to specify and compose thread-level and block-level code. Recently, the CUB li-
brary arrived that is built on a similar idea, that GPU programmers need to have
block/thread level control to get maximum performance, while maintaining a higher
level and more Thrust-like programmer interface [Mer]. Before CUB, and as far as I
am aware, we were alone at targeting this level.

An in depth comparison of Obsidian and Accelerate is hard to perform. The rea-
son for this is that Obsidian is a language for kernels, while Accelerate is a language
for applications. Any larger GPU application consists of a number of kernels that
are cooperating. Obsidian only has very basic support for launching and coordinat-
ing kernels for such applications from within Haskell, and Accelerate is limited in
specifying new specialised kernels.

The ArBB and EmbArBB systems also provide a set of parallel primitives that
the programmer composes to build his application. I place ArBB and EmbArBB in
a box slightly lower than Accelerate, since while ArBB/EmbArBB also have built
in reduction primitives, just like Accelerate, they are not general primitives. Where
Accelerate has a single higher order reduction operation, ArBB/EmbArBB has
reduce_add, reduce_mul and so on.

Microsoft Accelerator [TPO06] is a language embedded in C#. Accelerator has
data-parallel arrays and a set of aggregate operations (operations on entire arrays).
The operations on data-parallel arrays are JIT-compiled to GPU code. Accelerator
can also compile to multithreaded CPU code and make use of SIMD units of modern
CPUs [Mic]; this makes the Accelerator system related to ArBB.

There are many embedded languages implemented in Python that make use of
GPUs to improve performance. One example is Copperhead [CGK11]. Copperhead
supports flat and nested data-parallelism via primitives such as map and reduce.

Repa (Regular Shape-polymorphic Arrays) [KCL+10] is a Haskell library for
data-parallel programming. Repa uses the same array representation as Obsidian, in
Repa called a delayed array, which is a function from index to element. However,
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Figure 1.3: Placing our work in the landscape of languages and libraries for parallel
general purpose programming of CPUs, GPUs or both.



25

in Repa arrays have shape; they can be of any dimensionality and there are shape-
polymorphic functions on these. For example, map can be applied to an array of any
shape.

Meta-Repa [AS13] is a reimplementation of the Repa library using deep embed-
ded language techniques. Meta-Repa programs build ASTs that are then compiled
(using template Haskell) to Haskell code that uses low-level parts of the Repa library
for its parallelism. The Meta-Repa approach to implementing the Repa library gives
inlining of operations for free, where Repa programs need to be annotated with prag-
mas to ensure inlining. On the other hand, in Meta-Repa the programmer needs to
explicitly state when something should not be inlined (using a force primitive).
This is related to our work on EmbArBB that also uses an existing library (ArBB)
for its parallelism. In reference [KN13], a case is made for this style of embedding
preexisting DSLs.

Data-Parallel Haskell [JLKC08] and Nesl [Ble96] are languages for nested data-
parallelism. Both run on CPUs, but there is also work towards a GPU version of
Nesl [BR12].

Delite [BSL+11] is an infrastructure for implementation of domain specific em-
bedded languages. There is an extensible internal representation (IR,AST); the pro-
grammer extends some base IR with domain specific constructs. The Delite system
has been used to implement domain specific embedded languages for machine learn-
ing, rendering, physics and other domains. Delite, being a framework and the lan-
guages implemented using it very domains specific, was impossible to place in the
matrix (Figure 1.3).

1.4.2 Embedded domain specific languages

Feldspar is an embedded language for digital signal processing [ACS+11]. Apart
from using the syntactic library [Axe12], it is quite similar to Obsidian. There is a
deeply embedded core language (called Core) and vectors as a shallow embedding
on top of that, just like in Obsidian.

When we first started working on Obsidian, we used Lava [BCSS98] as inspira-
tion. We wanted to mimic the Lava programming style but generate GPU code. At
first this worked quite well and most Obsidian programs superficially looked quite
like Lava programs. We have diverged from this aspiration since realising that GPUs
are quite a different story and performance requires more control of GPU architecture
specifics.
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1.4.3 Compiling Embedded Languages

In paper A (section 2.1), we describe our method for compiling monadic embedded
languages. This work is closely related to a method described in “The Constrained
Monad Problem” by Sculthorpe and Gill [SBGG13]. In that paper, they solve a
more general problem than just compilation, but our method is nice because it is
easy to understand and solves a single problem and does it well. In “Generic monad
constructs”, Persson et al also solve the problem of compiling monads using a con-
tinuation monad.

“Compiling Embedded Languages” by Elliott and Finne has been a constant
source of information and something we have referred to in almost all our work.
This is, in my opinion, the paper to turn to for anyone starting out with compiled
embedded languages.

1.5 Future work
Obsidian is a language for GPU kernel implementation, not complete applications.
It is not as well integrated into Haskell as for example Accelerate. There are ways
to execute Obsidian kernels from within Haskell (we have seen an example of this
in section 1.2.2); the recommended work flow, however, is to generate the CUDA as
text and write the host code by hand. This can be seen as both a shortcoming and a
feature. It is hard to integrate Accelerate programs in larger applications written in
other languages; when using Obsidian a kernel is generated and can be used as part
of for example a library.

Obsidian is also quite a low-level language. The programmer needs to know GPU
details and is allowed to write programs at a level almost as low as CUDA, if it is
desired. Paper E (section 3.4) contains examples of programming at this low level.
One potential use of Obsidian could be as the code generating backend of high-level
and very domain specific embedded languages. This could be a niche for Obsidian.

Obsidian constrains the programmer into writing programs that we can easily
compile to CUDA. This is done by modelling the GPU programming in types at-
tached to programs. A currently ongoing master’s project is investigating what ef-
fects removing these types have. It is clear that if the programmer is not constrained
to writing flat (or very limited nested) programs, transformations are needed on the
AST before generating CUDA code.

Obsidian’s support for warp level computations is work in progress. Currently,
warp level computations are not as well integrated into the hierarchy as the block,
thread and grid levels are. The warp abstractions offered also require more work in
the code generating backend than those that correspond directly to CUDA concepts.
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The problem is that CUDA does not have a warp abstraction. Warps needs to be
better integrated with the rest of Obsidian and the code generation required for warps
needs more testing before being trustworthy and useful. When operational, warp
level abstractions will help the programmer make better use of the GPU.

1.6 Discussion

This thesis contains two approaches to embedding a language for data-parallel pro-
gramming in Haskell. EmbArBB embeds a preexisting library for data-parallelism
in Haskell and, at little effort from us, very good performance is gained. The per-
formance of EmbArBB is entirely due to all the optimisation expertise and effort
that was invested in the ArBB system. We get all that expertise for free. What Em-
bArBB provides is a way for Haskellers to benefit from the ArBB system. ArBB and
EmbArBB are based on a set of parallel primitives for the programmer to use and
compose. Obsidian takes a different approach. Built in primitives are very few and
very low level, such as sequential and parallel for loops. On top of the low-level ca-
pabilities, a library of high-level primitives can be built. The key is that we want the
programmer to be able to specify how to implement these higher level abstractions.

Looking at the related work, we see that almost all high level GPU programming
languages provide abstractions of parallel primitives, aggregate operations, maps,
folds and reductions, giving justification to our investigation of GPU programming
without these. We believe that the GPU architecture is still volatile enough that there
is no “the right” way of implementing these primitives. As of today, the programmer
still needs to explore the design space and find a solution that performs well on a
particular GPU.

Performance of Obsidian kernels is often good and the Obsidian code that they
are generated from is often shorter than corresponding CUDA programs. Obsidian
programs differ from CUDA programs by describing whole programs. A CUDA
programmer needs to take a leap from the single threaded program parameterised
on thread ID, to what actually will happen when this program is run by hundreds
or thousands of threads at once. The extensive indexing arithmetic often present in
CUDA programs can make this leap a hard one. Similar programs in Obsidian could
use operations on whole arrays such as map or explicitly bounded parallel loops.

Push arrays were invented by Koen Claessen and first implemented in Obsidian
to provide more control over where computation takes place (which thread computes
which element). Push arrays has since been experimented on by others and show up
in Nikola [Mai] and Feldspar [APS]. Push arrays appear in StreamHS [KN13] and
in [Els] as part of a multi-dimensional array calculus in Standard ML.
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2.1 Paper A:
Simple and Compositional Reification of Monadic
Embedded Languages

Josef Svenningsson, Bo Joel Svensson

Abstract

When writing embedded domain specific languages in Haskell, it is often convenient
to be able to make an instance of the Monad class to take advantage of the do-
notation and the extensive monad libraries. Commonly it is desirable to compile
such languages rather than just interpret them. This introduces the problem of monad
reification, i.e. observing the structure of the monadic computation. We present a
solution to the monad reification problem and illustrate it with a small robot control
language. Monad reification is not new but the novelty of our approach is in its
directness, simplicity and compositionality.

2.1.1 Introduction

Benny is a computer science student working in a project involving programming
robots in a low-level imperative language. However, Benny has a budding interest in
functional programming using Haskell and has read “The Haskell school of expres-
sion” [Hud99]. He gets the idea to implement a language for robot control embedded
in Haskell. Benny realises that the capabilities of the robot hardware are very simi-
lar to those of the robots that Hudak evaluates graphically in a grid world. There is
however a very important difference; the embedded language needs to be compiled
into some form that is understood by the robot.

Guided by the capabilities of the target robot, Benny designs an API for robot
programming. The robot can perform operations such as move that steps the robot
forward and turn left and right. The robot also has the capability to execute program
loops and conditionals and it has a forward facing sensor with which it can query
the world.
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The API that Benny designs is simple:

move :: Program ()
turnLeft :: Program ()
turnRight :: Program ()
sensor :: Program Bool
cond :: Program Bool

-> Program ()
-> Program ()
-> Program ()

while :: Program Bool
-> Program ()
-> Program ()

Now, Benny wants to express robot programs using the Haskell do notation. The
motivation behind this is the imperative look and feel of the operations he identified
and the potential to use all the control structures in the Control.Monad library. For
this, a Monad instance is needed.

To be able to create a first-order representation of a computation described using
monads, Benny needs to solve the problem of reifying monads. This is the story of
how Benny came up with a particularly simple solution to this problem.

Example programs

Benny is quite happy with his language design and decides to write some programs
to try it out.

The first program is called sMove, which implements a safe move operation.
This operation can be executed by the robot even though it is facing an obstacle,
without risk of harming robot or obstacle.

sMove :: Program ()
sMove = cond sensor turnRight move

The second program moves the robot forward until it stands directly in front of
an obstacle such as a wall.

moveToWall :: Program ()
moveToWall = while ((liftM not) sensor) move

Based on these examples, Benny is quite satisfied with the design of his language
and turns to implementing it.
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Implementation and data structures

Enthused by the prospect of compiling these programs to the target language and
seeing some robot action, Benny goes to work on the data structures.

Since the language is going to be compiled, Benny realises that the booleans in
his language cannot be regular Haskell booleans. The booleans needs to be replaced
by boolean typed expressions.

type Name = String

data BoolE = Lit Bool
| Var Name
| (:||:) BoolE BoolE
| (:&&:) BoolE BoolE
| Not BoolE

Following this, the operations that should go into the Program data type feel
straightforward.

data Program a where
Move :: Program ()
TurnLeft :: Program ()
TurnRight :: Program ()
Sensor :: Program BoolE
Cond :: Program BoolE

-> Program ()
-> Program ()
-> Program ()

While :: Program BoolE
-> Program ()
-> Program ()

Benny continues by naively adding constructors for Return and Bind to the
Program data type.

data Program a where
...
Return :: a -> Program a
Bind :: Program a

-> (a -> Program b)
-> Program b
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Then he writes down the Monad instance.

instance Monad Program where
return = Return
(>>=) = Bind

Proud of his accomplishments, Benny sends his Haskell module in an email to
Prof. Björn. Benny knows that Björn is teaching an introductory Haskell course and
should be able to provide feedback.

Problem statement

Meanwhile in Professor Björn’s Office

Prof. Björn notices an email from Benny in his inbox and opens it.

Dear Professor Björn

I am CS student working in a robot control project. Usually, we program
our robots in C but I have developed an interest in Haskell programming
and thought it’d be natural to try implementing an EDSL. I know you teach
an FP course and thought I would ask for your input. Attached to this mail
is a file containing an outline of the data types I want to use. Does this look
sensible to you?

Thank you
Benny

Prof. Björn opens the attachment and takes a look at the data type. He particularly
notices the constructors Return and Bind and the Monad instance. He shakes his
head at Benny’s naiveté and writes an email back:
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Hello Benny

I’m afraid your implementation of the monadic primitives can never
work. The constructor Return can take any arbitrary value that has
nothing to do with the language you’re designing. These values may be
strings, binary trees or higher-order functions from zygomorphisms to
histomorphisms. The same problem goes for Bind; it has to be able to
handle arbitrary values. It cannot possibly work! This is a very difficult
problem and such a naive solution is bound to fail.

Prof. Björn
Dept. of Computer Science and Engineering
Chalmers University of Technology

While waiting for feedback from Björn, Benny has carried on trying to implement a
compiler for his language.

When Björn’s email does arrive, Benny is confused. He feels he has already man-
aged to compile the Program data type into a representation closer to that which is
executed by the robot hardware.

He writes an apprehensive email back to Prof. Björn.

Hello Prof. Björn

Thanks for your feedback. But I think it does work! Attached to this
email you find a file containing my attempt at compiling the Program data
type into a representation closer to that which is executed by our robots.

I have also attached two example programs that you can compile and then
run in the graphical simulator (see figure 2.1)

Benny

2.1.2 Compilation of the monadic robot EDSL
Björn receives Benny’s latest email
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spiralIn :: Int -> Program ()
spiralIn 0 = return ()
spiralIn n = do
replicateM_ 2 $ do

replicateM_ n move
turnLeft

spiralIn (n-1)

followWall :: Program ()
followWall =
while (return true) $

cond checkLeft sMove $
do turnLeft

move

checkLeft :: Program BoolE
checkLeft = do
TurnLeft
s <- Sensor
TurnRight
return s

Figure 2.1: The spiralIn and followWall programs sent from Benny to Björn
in an email
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newNameSupply :: NameSupply
split2 :: NameSupply ->

(NameSupply,NameSupply)
split3 :: NameSupply ->

(NameSupply,NameSupply,NameSupply)
supplyValue :: NameSupply -> Int

Figure 2.2: The interface of the splittable name supply used in the implementation
of the compile functions

Björn looks through the Compiler module and finds a data type describing a first-
order representation of the robot language.

data Prg = PMove
| PTurnRight
| PTurnLeft
| PSensor Name
| PCond BoolE Prg Prg
| PWhile Name Prg Prg
| PSeq Prg Prg
| PSkip
| PAssign Name BoolE

From the Prg data type, Björn presumes that the PSeq constructor will be the
result of compiling Bind and that PSensor binds a variable which can be used in
PAssign and PWhile. The conclusion is that the representation looks sensible,
but he is very interested in seeing the Program a -> Prg transformation. The
compile function assumes a splittable name supply with the interface described in
figure 2.2.

runCompile :: Program a -> Prg
runCompile prg = snd $ compile s prg

where
s = newNameSupply

compile :: NameSupply -> Program a -> (a, Prg)
compile s Move = ((),PMove)
compile s TurnRight = ((),PTurnRight)
compile s TurnLeft = ((),PTurnLeft)
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compile s Sensor = (Var nom,PSensor nom)
where

v = supplyValue s
nom = "v" ++ show v

compile s (Cond b p1 p2) =
((),bp ‘PSeq‘ PCond b’ p1’ p2’)

where
(s1,s2,s3) = split3 s
(b’,bp) = compile s1 b
(a1,p1’) = compile s2 p1
(a2,p2’) = compile s3 p2

compile s (While wp prg) = ((),PWhile nom nwp prg’)
where

(s1,s2,s3) = split3 s
(b,wp’) = compile s1 wp
(c,prg’) = compile s2 prg
nom = "v" ++ (show $ supplyValue s3)
nwp = (wp’ ‘PSeq‘ PAssign nom b)

compile s (Return a) = (a,PSkip)
compile s (Bind pa f) = (b, prg1 ‘PSeq‘ prg2)
where

(s1,s2) = split2 s
(a,prg1) = compile s1 pa
(b,prg2) = compile s2 (f a)

Björn studies the code in disbelief, saves the module and tries it out on some
examples. The code does indeed seem to work and Björn’s disbelief is replaced with
enthusiasm; this appears to be a simple and convenient way to reify monads.

Björn sends an email to Benny, inviting him to a meeting.

2.1.3 Meeting in Björn’s office
BJÖRN: Hello, come in.
BENNY: Thanks.
BJÖRN: So, about this robot language! You gave me a bit of a surprise there.

I was entirely sure that what you did was impossible.
BENNY: Oh, But I just did the first thing that came to mind. There was no

deep thought behind it.
BJÖRN: The problem is [Björn approaches his whiteboard] when you try to reify the

bind constructor of your representation.

Bind :: Program a -> (a -> Program b) -> Program b
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BJÖRN: You need to come up with an element of type a to pass to the func-
tion.

BENNY: I didn’t realise it was problem.
BJÖRN: But it is! Your solution is that you are careful about the return types

of all operations in your language. They are either of unit type or some
type which can be guaranteed to be reified. [Björn scribbles on his whiteboard]

Move :: Program ()

Sensor :: Program BoolE

BJÖRN: This is different from how such constructs are normally implemented.
If I had implemented the language I would have given Sensor the type
Program Bool so that I could write an evaluator of type Program
a -> a, or perhaps Program a -> M a. But then adding a monad
to the language and reifying it becomes much harder.

BENNY: Yes, now that you mention it, I have seen that style used for defining
DSLs.

BJÖRN: Having constructors like Sensor return BoolE instead of Bool is
a crucial part of why your method works. It allows the compile func-
tion to be written in such a way that it can generate the return values
statically and pass them as arguments to Bind. In a sense you’re doing
evaluation at the same time as compilation. There’s just enough evalua-
tion to remove the monadic constructs. It’s a very neat trick!

BENNY: Thank you.
BJÖRN: Another way to think about your trick is that you are using a writer

monad to evaluate your language and produce the first-order syntax tree
as a side effect. Then you could have used a state monad transformer on
top of that for the fresh name supply. But that’s a stylistic choice.

BENNY: You seem to be making a big deal out of this. I just did what I thought
was the most straightforward thing to do.

Related work

BJÖRN: Others have solved this problem before but I have never seen a so-
lution as simple as yours and was quite surprised that it works. For
example, in this paper [Björn shows Benny the paper [PAS12]], the authors use
a continuation monad to be able to reify the monadic constructs of their
language. If they were to implement your robot language they would
use the same Program data type as you do. However, they would not
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expose that to the user of the language. Instead they would create a type
like this:

data P a =
P (forall r. ((a -> Program r) -> Program r))

BJÖRN: The type P is a continuation monad so the monad instance comes
naturally. Operations on P are defined using Bind like this:

while :: P BoolE -> P () -> P ()
while c b =
P (\k -> While (runP c) (runP b) ‘Bind‘ k)

cond :: BoolE -> P () -> P () -> P ()
cond b t e =
P (\k -> Cond b (runP t) (runP e) ‘Bind‘ k)

runP :: P a -> Program a
runP (P f) = f (\a -> Return a)

BENNY: I see. Continuations are quite magical to me. I could never have
come up with that technique. How do they deal with transforming higher-
order programs to first-order programs?

BJÖRN: That’s a good question. The transformation to first order programs
is dealt with by a library called Syntactic. It is described in a separate
paper [Björn pulls out the paper [Axe12] from a pile of papers]. It’s hard to do
an apples to apples comparison between Syntactic and your technique.
Syntactic solves a much bigger problem than what you’re doing so it is
naturally more complicated.

BENNY: Ok.
BJÖRN: There are also the papers [FG12, SBGG13] which solves the prob-

lem in a manner that is more similar to yours. They also have explicit
constructors Bind and Return but give them a slightly different type
which guarantees that all applications of Bind are normalised, so that
all Binds are right-associated. Unexpectedly, this allows them to make
instances of the Monad class but at the same time constrain the argu-
ments of Bind. Their technique is more complicated than yours, but
just as with the case of Syntactic, they solve a more general problem.
However, there is one particular thing I like about your technique.

BENNY: What is that?
BJÖRN: Your technique is compositional.
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Compositionality

BENNY: What does it mean that my technique is compositional?
BJÖRN: The compile function is compositional because there is one case for

each constructor and each case deals with exactly one constructor. In
particular, the constructors Return and Bind are handled completely
separately from all other language constructs.

BENNY: And that is good ?
BJÖRN: Absolutely! Compositional definitions are nice because they imply

that there is no weird semantical interaction between the constructs as
they are defined independently. But it also means that it should be possi-
ble to factor out the constructors Return and Bind into a data type of
their own. Then, it could be combined with other data types using tech-
niques like Data Types á la Carte [Swi08] or CompData [BH12]. This
way, a language can be designed piece by piece.You can then select the
set of pieces required for a particular task or that suits a particular brand
of robots.

BENNY: Oh! Interesting.

The Monad laws

BJÖRN: There is still one problem with your method though.
BENNY: What’s that?
BJÖRN: When we make instances of the monad class we expect certain laws

to hold. [Björn writes the laws on his whiteboard]

m >>= return = m
return a >>= f = f a
(m >>= f) >>= g = m >>= \a -> f a >>= g

BJÖRN: These laws clearly don’t hold for your instance. Take the first law
for instance. The left hand side will have extra Bind and Return
constructors compared to the right hand side.

BENNY: Hmmm. I hadn’t really thought about that. But adding an extra
return at the end of a computation shouldn’t make a difference in my
implementation.

BJÖRN: So, you’re saying that your implementation actually obeys the first
monad law?

BENNY: Well, at least when I run my programs I will never see any difference
between the left hand side and the right hand side.
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BJÖRN: Aha, so what you’re saying is that if we compare the semantics of
programs rather than comparing the programs themselves then we get
some useful laws. [Björn scribbles some new laws on the whiteboard]

eval (m >>= return) = eval m
eval (return a >>= f) = eval (f a)
eval ((m >>= f) >>= g) = eval (m >>= \a -> f a >>= g)

BJÖRN: These laws are morally the same as the monad laws, especially if
we don’t let the user of the robot language ever compare terms in the
language.

BENNY: Yes, that captures my intuition very well.
BJÖRN: Ok, good. Can you prove these equations?
BENNY: No, I don’t have any experience proving programs correct.
BJÖRN: Well, it shouldn’t be that difficult. Let me see what I can come up

with.
[Björn scribbles frenetically on a piece of paper for a couple of minutes.]
Aha! Your technique is quite general. It can reify monads into any kind
of structure which is a monoid. Return translates into the monoid unit
and bind translates into the monoid operation.
For example, in your compilation function it is important that the seman-
tics of PSkip is the identity of the semantics of PSeq and that PSeq is
associative.

BENNY: Ok, that sounds good. I take that as meaning the method is quite
general?

BJÖRN: Yes, requiring a monoid is a very mild restriction.
Look at the time! This was interesting, I got quite carried away. We
must round off but please get back to me if you make any more progress
on your robot language.

BENNY: Thanks very much for your time. Bye!
BJÖRN: Thank you.

2.1.4 Composing reifiable monadic languages
At Benny’s computer

Benny was really intrigued by the idea of compositionally building embedded
languages and after having read the papers Björn showed him he decides to try his
own approach to the problem.
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data (e1 :+: e2) x a
= InjL (e1 x a) | InjR (e2 x a)

infixr :+:

class sub :<: sup where
inj :: sub x a -> sup x a

instance f :<: f where
inj = id

instance (f :<: (f :+: g)) where
inj = InjL

instance (f :<: h) => (f :<: (g :+: h)) where
inj = InjR . inj

Figure 2.3: Data types from CompData for composing languages.

Inspired by CompData he starts out by adding the code in figure 2.3 to his file.
The data type :+: is used for composing languages, and the :<: typeclass pro-
vides coercions so that the programmer doesn’t have to worry about using the right
sequence of the InjL and InjR constructors to inject terms into the composed lan-
guage.

Benny then starts to add data types for the different language constructs in his
robotic language. The different operations for the robot are pleasingly easy to add.

data MoveOp x a where
Move :: MoveOp x ()

data TurnOp x a where
TurnLeft :: TurnOp x ()
TurnRight :: TurnOp x ()

data SensorOp x a where
Sensor :: SensorOp x BoolE

data CondOp x a where
Cond :: x BoolE -> x () -> x () -> CondOp x ()

data WhileOp x a where
While :: x BoolE -> x () -> WhileOp x ()
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In order to test out these definitions, Benny next turns to implementing a com-
piler. He realises that the compiler now needs to be implemented as a class with one
instance per compilable sub-language.

runCompile :: Compile f => f a -> Prg
runCompile prg = snd $ compile s prg
where s = newNameSupply

class Compile f where
compile :: NameSupply -> f a -> (a, Prg)

instance Compile (MoveOp x) where
compile _ Move = ((), PMove)

instance Compile (TurnOp x) where
compile _ TurnLeft = ((), PTurnLeft)
compile _ TurnRight = ((), PTurnRight)

instance Compile (SensorOp x) where
compile s Sensor = (Var nom, PSensor nom)

where v = supplyValue s
nom = "v" ++ show v

instance Compile x => Compile (CondOp x) where
compile s (Cond b p1 p2) =

((),bp ‘PSeq‘ PCond b’ p1’ p2’)
where (s1,s2,s3) = split3 s

(b’,bp) = compile s1 b
(a1,p1’) = compile s2 p1
(a2,p2’) = compile s3 p2

instance Compile x => Compile (WhileOp x) where
compile s (While wp p) = ((),PWhile nom nwp p’)

where (s1,s2,s3) = split3 s
(b,wp’) = compile s1 wp
(c,p’) = compile s2 p
nom = "v" ++ (show $ supplyValue s3)
nwp = wp’ ‘PSeq‘ PAssign nom b

instance (Compile (e1 f), Compile (e2 f))
=> Compile ((e1 :+: e2) f) where
compile s (InjL a) = compile s a
compile s (InjR a) = compile s a
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But when Benny tries to add the monadic operations he finds that they are quite
resistant to a compositional treatment. After much struggle he comes up with the
following data type definition:

data Mops f x a where
Oper :: f x a -> Mops f x a
Return :: a -> Mops f x a
Bind :: x a -> (a -> x b) -> Mops f x b

The recursion is provided by another data type that Benny calls MonadExp.

data MonadExp f a = In (Mops f (MonadExp f) a)

Benny thinks of the MonadExp data type as a representation of a monadic lan-
guage parameterised over operations Oper that are constructed using the construc-
tors of some type f. The monad instance for this data type is only slightly more
complicated compared to the earlier, non-compositional setting.

instance Monad (MonadExp f) where
return = In . Return
(>>=) a f = In (Bind a f)

Benny can now write the type of his robotic language, built from independent
pieces. It is noteworthy that the monadic expressions have to be added on top of all
the other language constructs.

type Robot = MonadExp (MoveOp :+: TurnOp :+:
CondOp :+: WhileOp :+:
SensorOp)

Given the definition of his language Benny can now write an injection function
which helps writing smart constructors for all the different robot operations.

inject :: (sub :<: f)
=> sub (MonadExp f) a
-> MonadExp f a

inject a = In $ Oper $ inj $ a

move :: (MoveOp :<: f) => MonadExp f ()
move = inject Move

turnL :: (TurnOp :<: f) => MonadExp f ()
turnL = inject TurnLeft
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turnR :: (TurnOp :<: f) => MonadExp f ()
turnR = inject TurnRight

sensor :: (SensorOp :<: f) => MonadExp f BoolE
sensor = inject Sensor

cond :: (CondOp :<: f)
=> MonadExp f BoolE
-> MonadExp f () -> MonadExp f () -> MonadExp f ()

cond b p1 p2 = inject $ Cond b p1 p2

while :: (WhileOp :<: f)
=> MonadExp f BoolE
-> MonadExp f () -> MonadExp f ()

while pb p = inject $ While pb p

Things are starting to fall into place. The only remaining bit is to complete the
compiler for monadic expressions.

instance (Compile x, Compile (f x))
=> Compile (Mops f x) where
compile s (Oper o) = compile s o
compile s (Return a) = (a,PSkip)
compile s (Bind m f) = (b,prg1 ‘PSeq‘ prg2)
where (s1,s2) = split2 s

(a,prg1) = compile s1 m
(b,prg2) = compile s2 (f a)

instance (Compile (f (MonadExp f)))
=> Compile (MonadExp f) where
compile s (In a) = compile s a

Now, Benny has all the functions he needs to compile a simple example program.

test1 :: Robot ()
test1 = do

move
turnL
move
turnL
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Compiling the program above gives the expected result.

PSeq PMove (PSeq PTurnLeft (PSeq PMove PTurnLeft))

Benny decides to contact Björn again to show him what he has done.

Dear Prof. Björn

I have attached a file which demonstrates that the monadic constructs
can be factored out and compiled separately, just as you suggested.

Thanks
Benny

Benny,

Fascinating! You’ve managed to factor out the monadic operations so that
they can be compiled once and for all. Users of your library don’t have to
be concerned at all with the semantics of bind and return. Very nice!

I note that the data type for monadic operations cannot be composed as
freely as the other operations, but instead has to be applied separately as a
final step. Your solution is very similar to how variable binding is handled
in the Syntactic library [Axe].

Prof. Björn
Dept. of Computer Science and Engineering
Chalmers University of Technology

2.1.5 Epilogue

This paper shows a simple method of implementing monadic EDSLs. It shows a
naïve approach to the monad reification problem which has the additional benefit of
being compositional. In section 2.1.4, the language is reimplemented in an extensible
way and the compile function is shown explicitly to be compositional by treating sub
parts of the language separately.
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The example language used throughout the story is small and quite limited. But
the technique presented in this paper does scale up to larger languages and more com-
plicated language constructs. It is currently used in the implementation of Obsidian,
an EDSL for general purpose GPU programming [CSS12]. Obsidian has language
constructs which are considerably more advanced than the robot language is this pa-
per. One example is the sequential for-loop which is higher-order (the type parameter
t is not relevant to the current discussion):

SeqFor :: EWord32 -> (EWord32 -> Program t ())
-> Program t ()

There does, however, seem to be restrictions on what kind of language constructs
the reification technique presented in this paper can deal with. For instance, the
functions from the MonadPlus class has resisted our attempts at adding them to an
EDSL in the same way as we’ve added Return and Bind. The exact limits of the
expressiveness of our method is currently unknown to us.
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3.1 Paper B:
Obsidian: A Domain Specific Embedded Language
for Parallel Programming of Graphics Processors

Bo Joel Svensson, Mary Sheeran, Koen Claessen

Abstract

We present a domain specific language, embedded in Haskell, for general purpose
parallel programming on GPUs. Our intention is to explore the use of connection
patterns in parallel programming. We briefly present our earlier work on hardware
generation, and outline the current state of GPU architectures and programming mod-
els. Finally, we present the current status of the Obsidian project, which aims to make
GPU programming easier, without relinquishing detailed control of GPU resources.
Both a programming example and some details of the implementation are presented.
This is a report on work in progress.

3.1.1 Introduction

There is a pressing need for new and better ways to program parallel machines.
Graphics Processing Units (GPUs) are one kind of such parallel machines that pro-
vide a lot of computing power. Modern GPUs have become extremely interesting for
general purpose programming, i.e. computing functions that have little or nothing to
do with graphics programming.

We aim to develop high-level methods and tools, based on functional program-
ming, for low-level general purpose programming of GPUs. The methods are high-
level because we are making use of common powerful programming abstractions in
functional programming, such as higher-order functions and polymorphism. At the
same time, we still want to provide control to the programmer on important low-level
details such as how much parallelism is introduced, and memory layout. (These aims
are in contrast to other approaches to GPU programming, where the programmer ex-
presses the intent in a high-level language, and then lets a smart compiler try to do
its best.)

Based on our earlier work on structural hardware design, we plan to investigate
whether or not a structure-oriented programming style can be used in programming
modern GPUs. We are developing Obsidian, a domain specific language embedded
in Haskell. The aim is to make extensive use of higher order functions capturing
connection patterns, and from these compact descriptions to generate code to run
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on the GPUs. Our hardware-oriented view of programming also leads us to inves-
tigate the use of algorithmic ideas from the hardware design community in parallel
programming.

In the rest of the paper, we first briefly review our earlier work on hardware de-
scription languages (Sect. 3.1.2), and introduce the GPU architecture we are working
with (Sect. 3.1.3). After that, we describe the current status of the language Obsidian,
and show examples (Sect. 3.1.4) and experimental results (Sect. 3.1.5). Obsidian is
currently very much work in progress; we discuss motivations and current shortcom-
ings (Sect. 3.1.6) and future directions (Sect. 3.1.7).

3.1.2 Connection patterns for hardware design and parallel pro-
gramming

Connection patterns that capture common ways to connect sub-circuits into larger
structures have been central to our research on functional and relational languages
for hardware design. Inspired by Backus’ FP language, Sheeran’s early work on
µFP made use of combining forms with geometric interpretations [She84]. This
approach to capturing circuit regularity was also influenced by contact with designers
of regular array circuits in industry – see reference [She05] for an overview of this
and much other work on functional programming and hardware design.

Later work on (our) Ruby considered the use of binary relations, rather than
functions in specifying hardware [JS90]. Lava builds upon these ideas, but also
gains much in expressiveness and flexibility by being embedded in Haskell [BCSS98,
Cla01]. The user writes what look like circuit descriptions, but are in fact circuit gen-
erators. Commonly used connection patterns are captured by higher order functions.

For example, an important pattern is parallel prefix or scan. Given inputs
[x0, x1 . . . xn−1], the prefix problem is to compute each x0 ◦ x1 ◦ . . . ◦ xj for 0 ≤
j < n, for ◦ an associative, but not necessarily commutative, operator. For example,
the prefix sum of [1..10] is [1,3,6,10,15,21,28,36,45,55]. There is
an obvious sequential solution, but in circuit design one is often aiming for a cir-
cuit that exploits parallelism, and so is faster (but also larger). In a construction
attributed to Sklansky, one can perform the prefix calculation by first, recursively,
performing the prefix calculation on each half of the input, and then combining (via
the operator) the last output of the first of these recursive calls with each of the out-
puts of the second. For instance, to calculate the prefix sum of [1..10], one can
compute the prefix sums of [1..5] and [6..10], giving [1,3,6,10,15] and
[6,13,21,30,40], respectively. The final step is to add the last element of the
output of the first recursive call (15) to each element of the output of the second.

To express the construction in Lava, we make use of two connection patterns.
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two :: ([a] -> [b]) -> [a] -> [b] applies its component to the top
and bottom halves of the input list, concatenating the two sub-lists that result from
these applications. Thus, two (sklansky plus) applied to [1..10] gives
[1,3,6, 10,15,6,13,21,30,40]. Left-to-right serial composition has type
(a -> b) -> (b -> c) -> a -> c and is written as infix ->-. The de-
scription of the construction mixes the use of connection patterns, giving a form of
reuse, with the naming of “wires”.

sklansky :: ((t, t) -> t) -> [t] -> [t]
sklansky op [a] = [a]
sklansky op as = (two (sklansky op) ->- sfan) as

where
sfan as = a1s ++ a2s’

where
(a1s,a2s) = splitAt ((length as + 1) ‘div‘ 2) as
a2s’ = [op(last a1s,a) | a <- a2s]

*Main> simulate (sklansky plus) [1..10]
[1,3,6,10,15,21,28,36,45,55]

Lava supports simulation, formal verification and netlist generation from defini-
tions like this. Circuit descriptions are run (in fact symbolically evaluated) in order
to produce an intermediate representation, which is in turn written out in various for-
mats (for fixed size instances). So this is an example of staged programming [Tah04].

The Sklansky construction is one way to implement parallel prefix, and there are
many others, see for instance Hinze’s excellent survey [Hin04]. Those who develop
prefix algorithms suitable for hardware implementation use a standard notation to
represent the resulting networks. Data flows from top to bottom and the least sig-
nificant input is at top left. Black dots represent operators. For example, Figure 3.1
shows the recursive Sklansky construction for 32 inputs.

In this work, we plan to investigate the use of connection patterns, and more
generally an emphasis on structure, in parallel programming. We have chosen to
target GPUs partly because of available expertise among our colleagues at Chalmers,
and partly because reading papers about General Purpose GPU (GPGPU) program-
ming gave us a sense of déjà vu. Programs are illustrated graphically, and bear a
remarkable resemblance to circuit modules that we have generated in the past using
Lava. We see an opportunity here, as there is an extensive literature, going back to
the 1960s, about implementing algorithms on silicon that may provide clues about
implementing algorithms on GPUs. This literature does not seem to have yet been
scrutinised by the Data Parallel Programming or GPGPU communities. This is pos-
sibly because GPUs are moving closer to simply being data parallel machines, and
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Figure 3.1: The Sklansky construction for 32 inputs. It recursively computes the
parallel prefix for each half of the inputs (corresponding to the use of two in the
definition) and then combines the last output of the lower (left) half with each of the
outputs of the upper (right) half. The dotted box outlines the recursive call on the
lower half of the inputs.

so work on library functions has taken inspiration from earlier work on Data Par-
allel Programming, such as Blelloch’s NESL [Ble96]. But some of the restrictions
from the early data parallel machines no longer hold today; for instance broadcasting
a value to many processors was expensive in the past, but is much easier to do on
modern GPUs. So a construction like Sklansky, which requires such broadcasting,
should now be reconsidered, and indeed we have found it to give good results in our
initial experiments (writing directly in CUDA). In general, it makes sense to spread
the net beyond the standard data parallel programming literature when looking for
inspiration in parallel algorithm design. We plan to explore the use of “old” circuit
design ideas in programming library functions for GPUs.

Below, we briefly review modern GPUs and a standard programming model.

3.1.3 Graphics Processing Units, accessible high performance par-
allel computing

In the development of microprocessors, the addition of new cores is now the way
forward, rather than the improvement of single thread performance. Graphics pro-
cessing units (GPUs) have moved from being specialised graphics engines to being
suitable to tackle applications with high computational demands. For a recent sur-
vey of the hardware, programming methods and tools, and successful applications,
the reader is referred to [OHL+08]. Figure 3.2, taken from that paper, and due to
NVIDIA, shows the architecture of a modern GPU from NVIDIA. It contains 16
multiprocessors, grouped in pairs that share a texture fetch unit (TF in the figure).
The texture fetch unit is of little importance when using the GPU for general pur-
pose computations. Each multiprocessor has 8 stream processors (marked SP in the
figure). These stream processors has access to 16kB of shared memory.

See reference [OHL+08] for information about the very similar AMD GPU ar-



61

chitecture. We have used the NVIDIA architecture, but developments are similar at
AMD. Intel’s Larrabee processor points to a future in which each individual core is
considerably more powerful than in today’s GPUs [SCS+08].

The question of how to program powerful data-parallel processors is likely to
continue to be an interesting one. Unlike for current multicore machines, the ques-
tion here is how to keep a large number of small processors productively occupied.
NVIDIA’s solution has been to develop the architecture and the programming model
in parallel. The result is called CUDA – an extension of C designed to allow de-
velopers to exploit the power of GPUs. Reference [Lue08] gives a very brief but
illuminating introduction to CUDA for potential new users. The idea is that the user
writes small blocks of straightforward C code, which should then run in thousands
or millions of threads. We borrow the example from the above introduction. To add
two N ×N matrices on a CPU, using C, one would write something like

// add 2 matrices on the CPU:
void addMatrix(float *a, float *b, float *c, int N)
{

int i, j, index;
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {

index = i + j * N;
c[index]=a[index] + b[index];

}
}

}

In CUDA, one writes a similar C function, called a kernel, to compute one element
of the matrix. Then, the kernel is invoked as many times as the matrix has elements,
resulting in many threads, which can be run in parallel. A predefined structure called
threadIdx is used to label each of these many threads, and can be referred to in
the kernel.
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Figure 3.2: The NVIDIA 8800GTX GPU architecture, with 8 pairs of multiproces-
sors. Diagram courtesy of NVIDIA.

// add 2 matrices on the GPU (simplified)
__global__ void addMatrix(float *a,float *b, float *c, int N)
{
int i= threadIdx.x;
int j= threadIdx.y;
int index= i + j * N;
c[index]= a[index] + b[index];

}

void main()
{
// run addMatrix in 1 block of NxN threads:
dim3 blocksize(N, N),
addMatrix<<<1, blocksize>>>(a, b, c, N);

}

Here, a two dimensional thread block of size N ×N is created.
CUDA uses barrier synchronisation and shared memory for introducing commu-

nication between threads. Contents of shared memory (16kB per multiprocessor in
the architecture shown in Figure 3.2) is visible to all threads in a thread block. It
is very much faster to access this shared memory than to access the global device
memory. We shall see later that Obsidian provides users with both shared and global
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arrays, giving the user control over where data is to be stored.
Since many threads are now writing and reading from the same shared mem-

ory, it is necessary to have a mechanism that enables the necessary synchronisa-
tion between threads. CUDA provides a barrier synchronisation mechanism called
__syncthreads(). Only when all threads in a block have reached this barrier
can any of them proceed. This allows the programmer to ensure safe access to the
shared memory for the many threads in a thread block.

Now, a grid is a collection of thread blocks. Each thread block runs on a single
multiprocessor, and the CUDA system can schedule these individual blocks in order
to maximise the use of GPU resources. A complete program then consists not only
of the kernel definitions, but also of code, to be run on the CPU, to launch a kernel on
the GPU, examine the results and possibly launch new kernels. In this paper, we will
not go into details about how kernels are coordinated, but will concentrate on how
to write individual kernels, as this is the part of Obsidian that is most developed. In
Obsidian, we write code that looks like the Lava descriptions in section 3.1.2, and we
generate CUDA code like that shown above. This is a considerably more complex
process than the generation of netlists in Lava.

3.1.4 Obsidian: a domain specific embedded language for GPU
programming

To introduce Obsidian, we consider the implementation of a parallel prefix kernel.
The implementation bears a close resemblance to the Lava implementation from sec-
tion 3.1.2:

sklansky :: (Choice a, Syncable (Arr s a)) =>
(a -> a -> a) -> Arr s a -> W (Arr s a)

sklansky op arr
| len arr == 1 = return arr
| otherwise = (two (sklansky op) ->- sfan ->- sync) arr
where sfan arr = do

(a1,a2) <- halve arr
let m = len a1

c = a1 ! (fromInt (m-1))
a2’ <- fun (op c) a2
conc (a1,a2’)

The most notable differences between the two implementations are that Obsidian
functions are monadic and that a datatype Arr is used where Haskell lists are used
in Lava. The pattern matching on the list used in Lava is here replaced by guards.
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The function len :: Arr s a -> Int gives the length of the array. These
differences lead to a slightly different programming style.

The Obsidian version of the sklansky function implements the sought recur-
sive parallel prefix algorithm, but it contains no information about where in the mem-
ory hierarchy the intermediate results are to be held. The following program uses
sklansky from above but turns it into a concrete kernel that computes all the par-
tial sums of an array of integers:

scan_add_kernel :: GArr IntE -> W (GArr IntE)
scan_add_kernel = cache ->- sklansky (+) ->- wb ->- sync

The function cache specifies that if the array is stored it should be stored in the
on-chip shared memory. Actually storing an array is done using the sync function,
which functionally is the identity function, but has the extra effect of synchronising
all processes after writing their data in shared memory, such that they can exchange
intermediate results. Using sync here allows for computations or transformations
to be performed on the data as it is being read in from global device memory. In
the scan_add_kernel above this means that the first sklansky stage will be
computed with global data as input, putting its result into shared memory. A kernel
computing the same thing but using the memory differently can be implemented like
this:

scan_add_kernel2 :: GArr IntE -> W (GArr IntE)
scan_add_kernel2 = cache ->- sync ->- sklansky (+) ->-

wb ->- sync

Here the array is first stored into shared memory. The sklansky stages are then
computed entirely in shared memory. The write-back function, wb, works in a very
similar way but specifies that the array should be moved back into the global memory.

Now, scan_add_kernel can be launched on the GPU from within a GHCI
session using a function called execute:

execute :: ExecMode
-> (GArr (Exp a) -> W (GArr (Exp b))
-> [Exp a] -> IO [Exp b]

Here ExecMode can be either GPU for launching the kernel on the GPU or EMU for
running it in emulation mode on the system’s CPU. Below is the result1 of launching
the scan kernel on example input:

*Main> execute GPU scan_add_kernel [1..256]
[0,1,3,6,10,15, ... ,32131,32385,32640]

1The output has been shortened to fit on a line.
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Beyond the combinators described so far, we have experimented with combina-
tors and permutations needed for certain iterative sorting networks. Amongst these
are evens that applies a function to each pair of elements of an array. Together with
rep that repeats a computation a given number of times and a permutation called
riffle a shuffle exchange network can be defined:

shex n f = rep n (riffle ->- evens f ->- sync)

The shuffle exchange network can be used to implement a merger useful in
sorters.

Implementation

As seen in the examples, an Obsidian program is built from functions between arrays.
These arrays are of type Arr s a. There are also type synonyms GArr and SArr
implemented as follows:

data Arr s a = Arr (IxExp -> a, Int)
type GArr a = Arr Global a
type SArr a = Arr Shared a

In Obsidian an array is represented by a function from indices to values and an integer
giving the length of the array.

In most cases the a in Arr s a will be of an expression type:

data DExp = LitInt Int
| LitBool Bool
| LitFloat Float
| BinOp Op2 DExp DExp
| UnOp Op1 DExp
| If DExp DExp DExp
| Variable Name
| Index DExp DExp

deriving(Eq,Show)

The above expressions are dynamic in the sense that they can be used to represent
values of Int, Float and Bool type. This follows the approach from Compiling
Embedded Languages [EFdM03]. However, to obtain a typed environment in which
to operate, phantom types are used.
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type Exp a = E DExp

type IntE = Exp Int
type FloatE = Exp Float
type BoolE = Exp Bool
type IxExp = IntE

As an example consider the program:

add_one :: GArr IntE -> W (GArr IntE)
add_one = fun (+1) ->- sync

This program adds 1 to each element of an array of integers. The function fun has
type (a -> b) -> Arr s a -> Arr s b. fun performs for arrays what
map does for lists. The sync function used in the example has the effect that the
array being synced upon is written to memory. At this point the type of the array
determines where in memory it is stored. An array of type SArr will end up in the
shared memory (which is currently 16KB per multi-processor). In this version of
Obsidian it is up to the programmer to make sure that the array fits in the memory.
An array of type GArr ends up in the global device memory, roughly a gigabyte
on current graphics cards. Using sync can have performance implications since it
facilitates sharing of computed values.

To generate CUDA code from the Obsidian program add_one, it is applied to a
symbolic array of a given concrete length (in this example 256 elements):

input :: GArr IntE
input = mkArray (\ix -> (index (variable "input") ix)) 256

Applying fun (+1) to this input array results in an array with the following
indexing function:

(\ix -> (E (BinOp Add (Index (Variable "input") ix)
(LitInt 1))))

At the code generation phase this function is evaluated using a variable repre-
senting a thread Id. The result is an expression looking as follows:

E (BinOp Add (Index (Variable "input") (Variable "tid"))
(LitInt 1))

This expression is a direct description of what is to be computed.
Importantly, the basic library functions can be implemented using the Arr s a

type and thus be applicable both to shared and global arrays. The library function
rev that reverses an array is shown as an example of this:
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rev :: Arr s a -> W (Arr s a)
rev arr = let n = len arr

in return $ mkArray (\ix -> arr ! ((n - 1) - ix)) n

The function rev uses mkArray to create an array whose indexing function re-
verses the order of the elements of the given array arr. The Obsidian program rev
−>− sync corresponds2 to the following lines of C code:

arrx[ThreadIdx.x] = arry[n - 1 - ThreadIdx.x];
__syncthreads();

When an Obsidian function, such as the scan_add_kernel from the previous
section, is run, two data structures are accumulated into a monad called W. The first
is intermediate code IC and the second a symbol table. The W monad is a writer
monad extended with some extra functionality for generating identifier names and to
maintain the symbol table. You can think of the W monad as:

type W a = WriterT (IxExp -> IC) (State (SymbolTable,Int)) a

The IC used here is just a list of statements, (less important statements have been
removed to save space (...)). The IC contains a subset of CUDA. In this version
of Obsidian not much more than the Synchronize and assignment statements of
CUDA are used.

data Statement = Synchronize
| DExp ::= DExp
-- used later in code generation
| IfThenElse BoolE [Statement] [Statement]
deriving (Show,Eq)

type IC = [Statement]

The symbol table is a mapping from names to types and sizes:

type SymbolTable = Map Name (Type,Int)

Information needs to be stored into the SymbolTable whenever new intermediate
arrays are created. We have chosen to put this power in the hands of the programmer
using the sync function. The sync function is overloaded for a number of different
array types:

2in the real IC arrx and arry are replaced by identifiers generated in theW monad



68 CHAPTER 3. GPU PROGRAMMING PAPERS

class Syncable a where
sync :: a -> W a
commit :: a -> W a

The types of the sync and the related commit function are shown in the class
declaration above. To illustrate what sync does, one instance of its implementation
is shown:

instance TypeOf (Exp a) => Syncable (GArr (Exp a)) where
sync arr = do

arr’ <- commit arr
write $ \ix -> [Synchronize]
return arr’

commit arr = do
let n = len arr
var <- newGlobalArray (typeOf (arr ! (E (LitInt 0)))) n
write $ \ix -> [(unE (index var ix)) ::= unE (arr ! ix)]
return $ mkArray (\ix -> index var ix) n

The sync function commits its argument array and thereafter writes
[Synchronize] into the W monad. To see what this means, one should also
look at the commit function, in which a new array is created of the same size and
type as the given array. In the next step, an assignment statement is written into W
monad (added to the intermediate code). It assigns the values computed in the given
array to the newly created array. From the intermediate code and the symbol table
accumulated into the W monad, C code is generated following a procedure outlined
in figure 3.3.

The first step depicted in the figure is the running the Obsidian program. This
builds two data structures IC and SymbolTable. The IC goes through a simple
liveness analysis where for each statement information about what data elements, in
this case arrays, are alive at that point is added. An array is alive if it is used in any
of the following statements or if it is considered a result of the program. The result
of this pass is a new IC where each statement also has a set of names pointing out
arrays that are alive at that point.

type ICLive = [(Statement, Set Name)]

Now, the symbol table together with the ICLive object is used to lay out the
arrays in memory. Arrays that had type SArr are assigned storage in the shared
memory and arrays of type GArr in Global memory. The result of this stage is a
Memory Map. This is a mapping from names to positions in memory. The picture
also shows that another output from this stage is intermediate code annotated with
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Figure 3.3: Steps involved in generating CUDA C code from Obsidian description.
The boxes represent functions and the arrows represent data structures.
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__global__ static void rev_add(int *source0,char *gbase){
extern __shared__ char sbase[] __attribute__ ((aligned(4)));
const int tid = threadIdx.x;
const int n0 __attribute__ ((unused)) = 256;
((int *)(gbase+0))[tid] = source0[((256 - 1) - tid)];
__syncthreads();
((int *)(gbase+1024))[tid] = (((int *)(gbase+0))[tid] + 1);

__syncthreads();

Figure 3.4: Generated CUDA code.

thread information, call it ICT. This is now done in a separate pass over the IC but it
could be fused with the memory mapping stage, saving a pass over the IC. The ICT
is just a list of statements and the number of threads assigned to compute them:

type ICT = [(Statement,Int)]

This enables the final pass over the IC to move thread information into the actual IC
as conditionals. The resulting IC is used to output CUDA code.

To illustrate this, the code generated from a simple Obsidian program is shown.
The example is very artificial and uses sync excessively in order to create more in-
termediate arrays :

rev_add :: GArr IntE -> W (GArr IntE)
rev_add = rev ->- sync ->- fun (+1) ->- sync

Figure 3.4 shows the CUDA C code generated from the rev_add program.
Here it is visible how intermediate arrays are assigned memory in global memory.
The global memory is pointed to by gbase:

The code in figure 3.4 does however not show how the ICT is used in assigning
work to threads. To show this a small part of the generated CUDA code from the
scan_add_kernel is given in figure 3.5. Notice the conditional if (tid <
128). This line effectively shuts down half of the threads. It can also be seen
here how shared memory is used, pointed to by sbase. Moreover, from the line
with (63 < 64) ? ... it becomes clear that there is room for some obvious
optimisations.
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__syncthreads();
if (tid < 128){

((int *)(sbase+1520))[tid] = ((tid < 64) ?
((tid < 64) ?
((int *)(sbase+496))[tid] :
((int *)(sbase+752))[(tid - 64)]) :
(((63 < 64) ?
((int *)(sbase+496))[63] :
((int *)(sbase+752))[(63 - 64)]) + ((tid < 64) ?
((int *)(sbase+496))[tid] :
((int *)(sbase+752))[(tid - 64)])));

}

Figure 3.5: A small part of the CUDA code generated from the recursive implemen-
tation of the Sklansky parallel prefix algorithm.

3.1.5 Results

Apart from the parallel prefix algorithm shown in this paper we have used Obsidian
to implement sorters. For the sorters, the generated C code performs quite well.
One periodic sorting network, called Vsort, implemented in Obsidian in the style
of the sorters presented in reference [CSS01], has a running time of 95µsecs for 256
elements (the largest size that we can cope with in a single kernel). This running time
can be compared to the 28µsecs running time of the bitonic sort example supplied
with the CUDA SDK. However, for 256 inputs, bitonic sort has a depth (counted in
number of comparators between input and output), of 36 compared to Vsort’s 64.
So we feel confident that we can make a sorter that improves considerably on our
Vsort by implementing a recursive algorithm for which the corresponding network
depth is less. (We implemented the periodic sorter in an earlier version of the system,
in which recursion was not available.) The point here is not to be as fast as hand-
crafted library code, but to come close enough to allow the user to quickly construct
short readable programs that give decent performance. The results for sorting are
promising in this respect. Sadly, the results for the Sklansky example are rather poor,
and we will return to this point in the following section.

The programs reported here were run on an NVIDIA 8800GTS and timed using
the CUDA profiler.
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3.1.6 Discussion

Our influences

As mentioned above, our earlier work on Lava has provided the inspiration for the
combinator-oriented or hardware-like style of programming that we are exploring
in Obsidian. On the other hand, the implementation of Obsidian has been much
influenced by Pan, an embedded language for image synthesis developed by Conal
Elliot [Ell03]. Because of the computational complexity of image generation, C code
is generated. This C code can then be compiled by an optimising compiler. Many
ideas from the paper “Compiling Embedded Languages”, describing the implemen-
tation of Pan have been used in the implementation of Obsidian [EFdM03].

Related work on GPU and GPGPU programming languages

We cannot attempt an exhaustive description of GPU programming languages here,
but refer the reader to a recent PhD thesis by Philipp Lucas, which contains an en-
lightening survey [Luc08]. Lucas distinguishes carefully between languages (such as
CG and HLSL) that aim to raise the level of abstraction at which graphics-oriented
GPU programs are written, and those that attempt to abstract the entire GPU, and so
must also provide a means to express the placing of programs on the GPU, feeding
such programs with data, reading the results back to the CPU, and so on, as well
as deciding to what extent the programmer should be involved in stipulating those
tasks. In the first group of graphics-oriented languages, we include PyGPU and
Vertigo. PyGPU is a language for image processing embedded in Python [LO06].
PyGPU uses the introspective abilities of Python and thus bypasses the need to im-
plement new loop structures and conditionals for the embedded language. In Python
it is possible to access the bytecode of a function and from that extract information
about loops and conditionals. Programs written in PyGPU can be compiled and run
on a GPU. Vertigo is another embedded language by Conal Elliot [Ell04]. It is a
language for 3D graphics that targets the DirectX 8.1 shader model, and can be used
to describe geometry, shaders and to generate textures.

The more general purpose languages aim to abstract away from the graphics
heritage of GPUs, and target a larger group of programmers. The thesis by Lucas
presents CGiS, an imperative data-parallel programming language that targets both
GPUs and SIMD capable CPUs – with the aim being a combination of a high degree
of abstraction and a close resemblance to traditional programming languages [Luc08].
BrookGPU (which is usually just called Brook) is an example of a language [BFH+04]
designed to raise the level of abstraction at which GPGPU programming is done. It
is an extension of C with embedded kernels, aimed at arithmetic-intense data par-
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allel computations. C is used to declare streams3, CG/HLSL (the lower level GPU
languages) to declare kernels, while function calls to a runtime library direct the
execution of the program. Brook had significant impact in that it raised the level
of abstraction at which GPGPU programming can be done. The language Sh also
aimed to raise the level of abstraction at which GPUs were programmed [MQP02].
Sh was an embedded language in C++, so our work is close in spirit to it. Sh has
since evolved into the RapidMind development platform [McC06], which now sup-
ports multicores and Cell processors as well as GPUs. The RapidMind programming
model has arrays as first class types. It has been influenced by functional languages
like NESL and SETL, and its program objects are pure functions. Thus it supports
both functional and imperative styles of programming. A recent PhD thesis by Jansen
asserts that there are some problems with RapidMind’s use of macros to embed the
GPU programming language in C++, including the inability to pass kernels (or shader
programs) as classes [Jan07]; the thesis proposes GPU++ and claims improvement
over previous approaches, particularly through the exploitation of automatic parti-
tioning of the programs onto the available GPU hardware, and through compiler
optimisations that improve runtime performance.

Microsoft’s Accelerator project moves even closer to general purpose program-
ming by doing away with the kernel notion and simply expressing programs in a data
parallel style, using functions on arrays [TPO06]. Data Parallel Haskell [JLKC08] in-
corporates Nested Data Parallelism in the style of NESL [Ble96] into Haskell. GPU-
Gen, like Obsidian, aims to support GPGPU programming from Haskell [Lee08]. It
works by translating Haskell’s intermediate language, Core, into CUDA, for collec-
tive data operations such as scan, fold and map. The intention is to plug GPUGen
into the Nested Data Parallel framework of the Glasgow Haskell Compiler. Our im-
pression is that we wish to expose considerably more detail about the GPU to the
programmer, but we do not yet have sufficient information about GPUGen to be able
to do a more complete comparison. Finally, we mention the Spiral project, which
develops methods and tools for automatically generating high performance libraries
for a variety of platforms, in domains such a signal processing, multiplication and
sorting [PMJ+05]. The tuning of an algorithm for a given platform is expressed
as an optimisation problem, and the domain specific mathematical structure of the
algorithm is used to create a feedback-driven optimiser. The results are indeed im-
pressive, and we feel that the approach based on an algebra of what we would call
combinators will interest functional programmers. We hope to experiment with sim-
ilar search and learning based methods, having applied similar ideas in the simpler

3Brook is referred to as a “stream processing” language, but this means something different from what
the reader might expect: a stream in this context is a possibly multi-dimensional array of elements, each
of which can be processed separately, in parallel.
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setting of arithmetic data-path generation in Lava.

Lessons learned so far in the project

Our first lesson has been the gradual realisation that a key aspect of a usable GPU
programming language that exposes details of the GPU architecture to the user is
the means to express where and when data is placed in and read from the memory
hierarchy. We are accustomed, from our earlier experience in hardware design, to
describing and generating networks of communicating components – something like
data-flow graphs. We are, however, unused to needing to express choices about the
use of the various levels in a memory hierarchy. We believe that we need to develop
programming idioms and language support for this. It seems likely, too, that such
idioms will not be quite as specific to GPU programming as other aspects of our
embedded language development. How to deal with control of access to a memory
hierarchy in a parallel system seems to be a central problem that must be tackled if we
are to develop better parallel programming methods in general. A typical example of
a generic approach to this problem is the language Sequoia, which aims to provide
programmers with a means to express how the memory hierarchy is to be used, where
a relatively abstract description of the platform, viewed as a tree of processing nodes
and memories, is a parameter [FKH+06]. Thus, programmers should write very
generic code, which can be compiled for many different platforms. This kind of
platform independence is not our aim here, and we would like to experiment with
programming idioms for control of memory access for the particular case of a CPU
plus some form of highly parallel co-processor that accelerates some computations.

A second lesson concerns ways to think about synchronisation on the GPU. We
naively assumed that sync would have nice compositional behaviour, but we have
found that in reality one can really only sync at the top level. The reason why the
CUDA code generated from the sklanky example works poorly on the GPU is that
it uses syncs in a way that leads to unwanted serialisation of computations. Looking
at our generated code, we see that it may be possible to make major improvements
by being cleverer about the placement of syncs. For instance, the semantics of two
guarantees that the two components act on distinct data, and this can be exploited in
the placing of syncs in the generated code.

Finally, we have found that we need to think harder about the two levels of ab-
straction: writing the kernels themselves and kernel coordination. This paper con-
cerned the kernel level. We do not yet have a satisfactory solution to the question of
how best to express kernel coordination. This question is closely related to that about
how to express memory use.
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3.1.7 Future work

The version of Obsidian described here is at a very experimental stage. The quality
of the C code generated needs to improve to get performance on par with the previous
version. The previous version however, was very limited in what you could express.
This older version is described in [Sve08]. There is a clear opportunity to perform
classic compiler optimisations on the IC formed by running an Obsidian program.
Currently this is not done at all.

Ways to describe the coordination of kernels in code that is still short and sweet
are also needed. Some experiments using methods similar to Lava’s netlist generation
have been performed, but the resulting performance is not yet satisfactory. In CUDA,
Kernel coordination is in part described in the actual kernel code. Kernels decide
which parts of the given data to use. As future work we will approach the kernel
coordination problem at a lower more CUDA-like level. We will, of necessity, need
to develop programming idioms or combinators that express how data is placed in
the memory hierarchy. The isolation of this as a central question is one of the more
unexpected and interesting results of the project. Right now work is focused on
developing combinators that are more clever in their treatment of syncs. This leads
to new data structures that allow the merging of syncs. This new approach seems to
make efficient implementations of combinators such as two possible.

3.1.8 Conclusion

Obsidian provides a good interface for experimenting with algorithms on GPUs. The
earlier version described in [Sve08] showed that it is possible to generate efficient
CUDA code from the kind of high level descriptions we are interested in. For the
kernel level, the work in progress described in this paper enhances the expressive
power of Obsidian, extending the range of algorithms that can be described, as well
as the degree of control exercised by the user. Future work will concentrate on im-
proving the performance of the resulting applications, as well as on support for the
kernel coordination level.
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3.2 Paper C:
GPGPU Kernel Implementation and Refinement
using Obsidian

Bo Joel Svensson, Koen Claessen, Mary Sheeran

Abstract

Obsidian is a domain specific language for data-parallel programming on graphics
processors (GPUs). It is embedded in the functional programming language Haskell.
The user writes code using constructs familiar from Haskell (like map and reduce),
recursion and some specially designed combinators for combining GPU programs.
NVIDIA CUDA code is generated from these high level descriptions, and passed to
the nvcc compiler [NVI08]. Currently, we consider only the generation of single
kernels, and not their coordination.

This paper is focussed on how the user should work with Obsidian, starting with
an obviously correct (or well-tested) description of the required function, and refin-
ing it by the introduction of constructs to give finer control of the computation on
the GPU. For some combinators, this approach results in CUDA code with satisfac-
tory performance, promising increased productivity, as the high level descriptions are
short and uncluttered. But for other combinators, the performance of generated code
is not yet satisfactory. Ways to tackle this problem and plans to integrate Obsidian
with another higher-level embedded language for GPU programming in Haskell are
briefly discussed.

3.2.1 Introduction

Multicore and manycore processors are becoming increasingly common. Modern
graphics processing units (GPUs) are examples of manycore processors. Today
GPUs come with hundreds of processing elements capable of managing thousands
of threads [NVI06]. The Obsidian project is about exploring ways to program these
new machines.

Obsidian is a domain specific language for general purpose programming on
GPUs (GPGPU), capable of generating code for modern NVIDIA GPUs. In [SSC09]
we describe a version of Obsidian that uses a monadic interface. In the current ver-
sion of Obsidian the monad has been replaced by another data structure, closely
related to Arrows [Hug00], representing GPU programs. Although the details are
left out because of space limitations, the use of this GPU program representation can
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be seen in subsection 3.2.2. For a description of the implementation see [SCS10] and
for more general information on embedded language implementation see [EFdM03].

GPU design is driven by the performance demands of graphics applications. The
kind of processing that is common in graphics falls in the data-parallel category
[PF05].

NVIDIA GPUs and CUDA

Starting with the 8000 series of GPUs (the G80 architecture), NVIDIA’s GPUs came
with a unified architecture, meaning that all the processing elements on the GPU are
of the same kind. This was different from the previous generation’s GPUs, which typ-
ically had two kinds of processing elements, fragment and vertex processors. Now
these two kinds of processors are replaced by a single kind with capabilities surpass-
ing both of the old ones. This new unified architecture together with development
tools for GPGPU programming go under the name CUDA (Compute Unified Device
Architecture) [NVI08]. CUDA offers the GPGPU programmer a C compiler and
libraries for CUDA enabled GPUs (NVIDIA 8000 series and above).

Figure 3.6, shows a conceptual picture of a CUDA enabled GPU. The GPU has
a number of Multiprocessors (MP in the picture). These MPs contain a number of
small processing elements called Streaming Processors (SP). These SPs operate in
an SIMD fashion. All SPs in a given MP execute the same instruction each clock
cycle.

Each MP is capable of maintaining a large number of threads in flight at the same
time. A group of threads running on an MP is referred to as a block. A block can
contain more threads then there are processing elements; today a block can hold up
to 1024 threads. There is a scheduler mapping these threads over the SPs available.
Threads are scheduled in groups called warps consisting of 32 threads that are exe-
cuted in an SIMD fashion on the MPs. Conditionals that take different paths within
a warp have a negative effect on performance; the two diverging paths will in fact be
executed sequentially [NVIa].

The MPs also have local memory that is shared between all the SPs of that MP,
and thus referred to as Shared Memory in the figure. It can be used to exchange infor-
mation between threads running on the SPs; it can also be used as a software managed
cache. Threads within a warp can safely communicate using shared memory without
the need for any synchronisation. Threads from different warps, however, need to
use a synchronisation primitive to ensure a coherent view of the shared memory. In
CUDA C this primitive is called __syncthreads(). The __syncthreads()
primitive provides a barrier that all threads of a block must reach before any is al-
lowed to proceed.
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Figure 3.6: Conceptual image of a CUDA enabled GPU.

The Global memory is located off chip and is accessible by all MPs. In current
GPUs, accesses to this memory are uncached.

Aims of Obsidian

The initial goal of Obsidian is to simplify the development of GPU kernels, the build-
ing blocks of larger GPU programs. In the future, ways to combine kernels into larger
algorithms will also be explored.

When implementing an algorithm in CUDA, what to compute and how to com-
pute it become codependent. Choices such as how many elements the kernel operates
on and how many threads it uses affect each other greatly. Once a kernel is designed
with a particular number of elements per thread, this becomes hard to tweak. In
CUDA the programmer writes a single program parameterised over a thread identity.
This program is then executed by several threads. Taking this point of view often
means that what elements to use needs to be computed from the threadIDs. Coming
up with these indexing computations is not always trivial.

In Obsidian the program is described as a computation between arrays, and com-
binators are used instead of direct indexing into structures. Obsidian provides an
environment where it is easy to experiment with different partitionings and choices
when implementing an algorithm. It is possible to write a simple running first proto-
type version of a kernel without thinking about architectural details. The prototype
implementation can then be refined into a more efficient implementation. The aim
of Obsidian is to raise the level of abstraction for the GPGPU programmer and to
relieve the programmer of details such as laying things out in memory. Performance
affecting decisions should be easy to make and change without major rewrites of the



82 CHAPTER 3. GPU PROGRAMMING PAPERS

code.

3.2.2 Programming in Obsidian
Obsidian is a language for GPGPU programming embedded in Haskell. Many of the
language features resemble those of Lava, a hardware description and verification
language [BCSS98]. The justification to use language constructs similar to that of
a hardware description language came from the observation that GPGPU algorithms
often were explained using circuit-like pictures, see for example [Ngu07].

Obsidian can be explained as two sub-languages. First there is a language of
arrays and operations on arrays, and second, a language that enables mapping of the
array language programs onto the GPU.

Array Language

Arrays in Obsidian do not, like in C, name an area of memory. Instead, an array
is represented by an abstract data type, called Arr, supporting the following opera-
tions: (!) for indexing, len returns the length of an array and mkArr that given
a function from indexes to elements and a length gives an array. For example using
these operations reversing an array can be accomplished as follows:

rev :: Arr a -> Arr a
rev arr = mkArr ixf n

where
ixf ix = arr ! (fromIntegral (n-1) - ix)
n = len arr

Array reversal is polymorphic in the element type which gives the rev program the
type Arr a -> Arr a. Internally an array is represented by the computation that
gives its elements. The array type consists of two parts, a function from indices to
elements and an integer representing its length:

data Arr a = Arr (IndexE -> a) Int

The length of the array is static, known at compile time, and is represented by an
Int. The elements of an array can be Int, Float or Bool valued expressions,
represented by the types IntE, FloatE and BoolE. Arrays can also contain arrays
and tuples as elements.

Obsidian provides a number of functions on this array type. For example, a
function can be mapped over an array using fmap.

fmap :: (a -> b) -> Arr a -> Arr b
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The array type is also an instance of Foldable, so there is a function foldr (often
called reduce) defined on arrays:

foldr :: (a -> b -> b) -> b -> Arr a -> b

Two other basic functions on arrays that are available are pair and unpair:

pair :: Arr a -> Arr (a,a)
unpair :: Choice a => Arr (a,a) -> Arr a

The function pair takes an array and returns an array of pairs where the first element
of the input array is paired up with the second, the third with the forth and so on. The
unpair function does the opposite.

The Choice class contains those types that have an ifThenElse function
defined on them:

ifThenElse :: Choice a => BoolE -> a -> a -> a

Another example of a function given in the array library is zipp of type(Arr a,
Arr b) -> Arr (a, b). This function performs on arrays what the normal
Haskell zip does on lists. However, the input to zipp is a pair of arrays.

GPU Programs

The second layer of Obsidian offers a data type that represents a GPU program with
input a and output b:

data a :-> b = ...

Informally we can think of a :-> b as representing programs that operate as illus-
trated in figure 3.7. This figure shows a program that performs some computation
using a number of threads followed by a barrier synchronisation, and so on. The
contents of the boxes marked with Pure can be thought of as containing an array
program.The type constructor :-> is a variant of an arrow, which in turn is a gen-
eralisation of a monad [SCS10]. One way to create a GPU program is by using the
function pure of type (a -> b) -> a :-> b. For example the array language
program fmap (+1), that increments every element of an array, can be lifted to a
GPU program:

incr :: Arr IntE :-> Arr IntE
incr = pure $ fmap (+1)

GPU programs can be executed on the GPU from GHCi (the Haskell interpreter)
using the function execute:
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Figure 3.7: A GPU program of type a :-> b can be thought of as pure computa-
tions interspersed by syncs.

execute :: (Flatten a, Flatten b)
=> (Arr a :-> Arr b) -> [a] -> IO [b]

Instances of Flatten are all the types that can be stored in the GPU memory.
Examples of types that are in Flatten are IntE, FloatE, BoolE. Arrays and
pairs of things that are in Flatten are also instances of Flatten. Here, execute is
used in order to run an instance of the incr program on the GPU:

*Obsidian> execute incr [0..9]
[1,2,3,4,5,6,7,8,9,10]

The elements of the Haskell list given to execute are used to create an input array
to the kernel. Following this, the kernel is executed on the GPU and the result is read
back and presented as a Haskell list.

In the example above, the execute function generates the following kernel
corresponding to the given GPU program:

__global__ void generated(word* input,word* result){
unsigned int tid = (unsigned int)threadIdx.x;
extern __shared__ unsigned int s_data[];
word __attribute__((unused)) *sm1 = &s_data[0];
word __attribute__((unused)) *sm2 = &s_data[0];
ix_int(result,tid) = (ix_int(input,tid) + 1);

}

The generated kernel has two arguments, an input array of words and an output array
of words. Words represent 32-bit quantities that can be either floating point or integer
valued. This particular kernel does not use any shared memory; the incremented
values are stored directly into the result array that resides in global memory.
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Given two GPU programs, f and g, of suitable types, a composite GPU program
can be created by passing the output of f to the input of g. In Obsidian this is done
using the composition operator (or combinator) (->-):

(->-) :: (a :-> b) -> (b :-> c) -> (a :-> c)

The following illustrates the use of (->-) by implementing a program that incre-
ments every element of an array but also reverses the array:

increv :: Arr IntE :-> Arr IntE
increv = pure (fmap (+1)) ->- pure rev

*Obsidian> execute increv [0..9]
[10,9,8,7,6,5,4,3,2,1]

The code generated from the increv program is very similar to that of inc but the
indexing is reversed:

__global__ void generated(word* input,word* result){
unsigned int tid = (unsigned int)threadIdx.x;
extern __shared__ unsigned int s_data[];
word __attribute__((unused)) *sm1 = &s_data[0];
word __attribute__((unused)) *sm2 = &s_data[0];
ix_int(result,tid) = (ix_int(input,(9 - tid)) + 1);

}

The code generated for the incr and increv examples uses 10 threads to compute
the resulting array. By default, the result will be computed using a number of threads
equal to the number of elements in the return array.

The increv program can also be specified with an explicit storing of interme-
diate values between the rev and the fmap (+1). This is accomplished using a
primitive GPU program called sync:

sync :: Flatten a => Arr a :-> Arr a

increv :: Arr IntE :-> Arr IntE
increv = pure (fmap (+1)) ->- sync ->- pure rev

This version of increv computes the same result as the previous one. However,
it does so by computing fmap (+1) on the array, storing the intermediate result
in shared memory followed by computing the reverse. The CUDA C code for this
version of increv looks like this. Notice how the shared memory is used and the
call to __syncthreads():
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__global__ void generated(word* input,word* result){
unsigned int tid = (unsigned int)threadIdx.x;
extern __shared__ unsigned int s_data[];
word __attribute__((unused)) *sm1 = &s_data[0];
word __attribute__((unused)) *sm2 = &s_data[8];
ix_int(sm1,tid) = (ix_int(input,tid) + 1);
__syncthreads();
ix_int(result,tid) = ix_int(sm1,(7 - tid));

}

3.2.3 Outline of Code Generation
This subsection briefly reviews the code generation process using a hyphothetical
program as example. The program under consideration is this:

prg = pure (fmap f) ->- sync -> rev ->- sync ->- pure (fmap g)

This program applies some function f to all elements of an array. The array
is then reversed and lastly a function g is applied to all elements. Between every
operation there is a sync. The program prg is an element of the datatype (a
:-> b). To see what happens during code generation, it is necessary to know the
implementation of this type.

data a :-> b
= Pure (a -> b)
| Sync (a -> Arr FData) (Arr FData :-> b)

The type (a :-> b) is essentially a list of computations. The function pure is di-
rectly implemented using the constructor Pure. The function sync is implemented
in terms of the constructor Sync:

sync :: Flatten a => (Arr a :-> Arr a)
sync = Sync (fmap toFData) (pure (fmap fromFData))

The example program prg would be represented as follows:

Sync (fmap (toFData . f))
(Sync ((fmap toFData) . rev . (fmap fromFData))

(Pure (fmap g)))

From this representation, which is essentially the list [fmap f, rev, fmap
g], the CUDA code is generated as outlined in figure 3.8. An input array is cre-
ated and applied to the first stage of the computation, (fmap f), resulting in:

Arr (\ix -> f(index (variable ‘‘input’’) ix)) n.
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Figure 3.8: Outline of the code generation procedure.

The information given by this array is used to construct the C assignment state-
ment sm1[tid] = f(input[tid]) as seen in the figure.

Following this a new Obsidian level array that indexed into sm1 is created and
used as input to the second stage of the computation.

3.2.4 Case Studies

This subsection describes a few slightly larger Obsidian programs. The main purpose
of this subsection is to show how we want to write GPGPU programs using Obsidian.

Sorting

Sorting is a popular function to place on the GPU, see [SA08, SHG09]. Odd-Even
merge sort, due to Batcher, uses a merger component called the Odd-Even merger.
This merger merges two sorted arrays. In Obsidian this merger and sorter can be
implemented using the combinators two, ilv, evens and odds. For a detailed
description of these combinators see [CSS01].

mergeOE :: (Choice a, Flatten a)
=> Int -> ((a,a) -> (a,a)) -> (Arr a :-> Arr a)

mergeOE 1 f = pure (evens f)
mergeOE n f = ilv (mergeOE (n-1) f) ->- sync ->- pure (odds f)

This is actually a pattern into which any two-input two-output function can be plugged.
However, we choose the following comparator function (a compare and swap oper-
ation). The resulting merger can be executed on the GPU.
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cmp :: (Ordered a, Choice (a, a)) => (a, a) -> (a, a)
cmp (a,b) = ifThenElse (a <* b) (a,b) (b,a)

*Obsidian> let input = ([1,3,5,7,2,4,6,8] :: [IntE])

*Obsidian> execute GPU (mergeOE 3 cmp) input
[1,2,3,4,5,6,7,8]

Given this merger, the sorter is implemented by recursively sorting two halves of the
input array followed by an application of the merger:

sortOE :: Int -> (Arr IntE :-> Arr IntE)
sortOE 0 = pure id
sortOE n = two (sortOE (n-1)) ->- sync ->- mergeOE n cmp

*Obsidian> execute GPU (sortOE 3) [6,0,1,3,4,2,5,7]
[0,1,2,3,4,5,6,7]

The performance of the code generated from this sorter specification is poor.
It runs about three times slower than the example Bitonic sorter distributed with the
CUDA SDK. The reason is that nested applications of the two and ilv combinators
are hard to optimise. We expect that single (parameterised) combinators correspond-
ing to particular nestings of these combinators will bring significant performance
improvement.

Parallel Prefix

This subsection shows the implementation of a parallel prefix (also called scan) ker-
nel, known as sklansky after J. Sklansky [Skl60]. This kernel will then be op-
timised step-by-step using Obsidian. This optimisation effort uses an experimental
feature of Obsidian called syncHow. This is different from the normal sync in the
way it assigns work to threads. For a more thorough explanation of syncHow see
[SCS10]. For an explanation of the parallel-prefix operation see [Ble90].

The sklansky parallel prefix algorithm is implemented by splitting the inputs in
two halves and recursively applying sklansky to both halves. The two sub-results are
then joined by applying the operation between the highest index of the first sub-result
and all the elements in the second sub-result, this is done using a function called fan:

fan op arr = conc (a1, (fmap (op c) a2))
where (a1,a2) = halve arr

c = a1 ! (fromIntegral (len a1 - 1))

The sklansky function is now implemented using two and fan:
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sklansky :: (Flatten a, Choice a)
=> Int -> (a -> a -> a) -> (Arr a :-> Arr a)

sklansky 0 op = pure id
sklansky n op = two (sklansky (n-1) op) ->-

pure (fan op) ->- sync

Executing (sklansky 3 (+)) on the GPU given input [0..7] computes the
prefix sum as expected, returning [0,1,3,6,10,15,21,28]

If sklansky is used to generate code for an array of 512 elements, it uses 512
threads to calculate the prefix sums. However, the number of applications of the op
operator that is needed in any stage of the algorithm is only 256. This indicates that
using 256 threads to compute the result would give more efficient use of the GPU’s
resources.

Since the code generated by Obsidian is not by default in-place with regard to
shared memory, each thread in the 256 threaded program needs to both perform
the operation between two elements and copy one value unchanged. This is desired
because then each thread performs the exact same operations, which means that there
is no risk for divergence within a warp.

This perfect division of labour is not obtainable with the current implementation
of the How argument to sync. However, one division of the work that has exper-
imentally been shown to perform well, see table in next subsection, is to let each
thread tid perform the work of tid and tid+ 256. This program is shown below:

sklansky1 :: (Flatten a, Choice a)
=> Int -> (a -> a -> a) -> (Arr a :-> Arr a)

sklansky1 0 op = pure id
sklansky1 n op = two (sklansky1 (n-1) op) ->-

pure (fan op) ->- syncHow (pairNth 256)

Another optimisation to apply to the sklansky algorithm is the removal of un-
necessary __syncthreads() calls from the generated code, this is done by using
syncWarp. It is up to the programmer to ensure that it is safe to use syncWarp.
For a sklansky network of size 32, it should be safe to leave out the __syncthreads
since all of the communication stays within a warp. Using this information leads to
the following code where the sklansky networks of size 32 or smaller use syncWarpHow.

sklansky2 :: (Flatten a, Choice a)
=> Int -> (a -> a -> a) -> (Arr a :-> Arr a)

sklansky2 0 op = pure id
sklansky2 n op = two (sklansky2 (n-1) op) ->- pure (fan op)

->- if n <= 5
then syncWarpHow (pairNth 256)
else syncHow (pairNth 256)
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A last tweak to force the algorithm to compute in-place. This is accomplished
using the primitives syncIP and syncIPHow, which are variants of sync that
enforce in-place computation.

Parallel Prefix Sums on large arrays

The Sklansky kernels given above can be used in an algorithm that computes the
parallel prefix of a large array. This is done in the same way as in [HS07]. The table
below shows the results of using the different parallel prefix kernels from above in
an algorithm for computing the prefix sums of 220 elements.

Kernel In-place Sync in Warp Threads ms
NVIDIA SDK Yes N/A 256 0.64
Hand Optimised Yes No 256 0.74
sklansky No yes 512 1.06
sklansky1 No yes 256 0.89
sklansky2 No No 256 0.86
sklansky3 Yes No 256 0.79

The table above shows the running times of six different Sklansky kernels. All
runtime measurements where performed on an NVIDIA 9800GX2 using one GPU.
The code labeled Hand Optimised was written directly in CUDA. This kernel was the
result of two afternoons of optimisation effort by two people. The three following
kernels sklansky to sklansky2 are generated from the given Obsidian programs. The
version called sklansky3 is identical to sklansky2 except is in-place. Even the
very first version, sklansky performs reasonably well, but by using the experimental
features the performance can be pushed quite close to the hand optimised version.
The fastest kernel, called NVIDIA SDK, is the one supplied with the CUDA SDK.
This kernel is based on the Brent-Kung network and its implementation is shown
in [HS07]. The NVIDIA SDK kernel is highly optimized with regards to its memory
access pattern and so the code is considerably more complicated than that of any of
the Obsidian parallel-prefix kernels.

3.2.5 Future work

Obsidian is work in progress and as such it changes a lot. Future work will both
explore improvements to code generation for kernels and ways to coordinate kernels.

In order to get to the quite efficient version of the sklansky kernel in subsec-
tion 3.2.4, the experimental How argument to sync was needed. This needs to be
explored further. How as it is today, any function of type IndexE -> [IndexE],
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offers too much freedom and with that the risk of introducing errors. We are search-
ing for an elegant model for expressing how and what to compute, and for ways to
integrate this with the language. This is our biggest research challenge.

Subsection 3.2.4, on case studies, showed that it is possible to generate quite effi-
cient code from Obsidian programs. The current version generates efficient code
for very specific uses of the two combinator, for example the kind used in the
sklansky parallel prefix network. More work needs to be done in order to find
a good way to produce efficient code for a larger set of combinators. This may very
well involve designing new combinators that do not need to be nested as the current
ones do.

The CUDA code generated by Obsidian uses very few registers. In fact, the gen-
erated code is under-utilizing the resources of the GPU. The generated code also
contains many common subexpressions. This hints that applying a step of com-
mon subexpression elimintaion would be beneficial, increasing the register use and
reducing the repeated computation of values. Performing common subexpression
elimination would also lower the instruction count, which is quite high to begin with,
because loops are unrolled. The register usage and instruction count values on which
these conclusions are based where obtained using the CUDA profiler supplied as part
of the CUDA toolkit [NVIc].

Obsidian can currently only be used to generate kernels, the small building blocks
used to form larger GPU algorithms. As future work, methods of describing kernel
coordination in a high level fashion will be investigated.

At the University of New South Wales, Manuel Chakravarty et. al. are develop-
ing another language for GPGPU programming called Accelerate. Accelerate is also
embedded in Haskell, but intends to be at a higher level of abstraction than Obsidian.
Accelerate supplies the programmer with a collection of basic building blocks for
data parallel programming. Amongst these building blocks are map, zipWith and
scan. With the Accelerate team at UNSW, we are looking into ways of combining
the two complementary approaches. In this setting Obsidian could be used to gener-
ate the underlying kernels (the building blocks) that the Accelerate programmer uses
to build a GPGPU application.

A limitation of Obsidian is the inability to express algorithms where the length of
the output array is dependent on the input data. An example of such a data dependent
algorithm is filter. The filter function takes a sequence of elements and a
predicate and produces a sequence of those elements for whom the predicate holds.
Future work will also consist of searching for a suitable minimal language construct
to add that enables expressing such algorithms.
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3.2.6 Related work
GPUs are becoming more and more interesting to use in non-graphical applications.
A modern GPU is a manycore machine with, today, hundreds of processing elements.
The question of how to program these machines arises. NVIDIA’s answer is CUDA
[NVI08]. CUDA supplies a slightly extended version of C in which the programmer
can specify GPU kernels and the controlling CPU program in the same language. In
CUDA the programmer writes a single program parameterised over a thread identity.
Compare this to Obsidian where the program describes a computation over an array.

There are a number of other C/C++ based languages that target GPGPU pro-
grammers, for example Brook[BFH+04] and RapidMind[McC06]. Brook, CUDA
and RapidMind are major improvements from what was previously available for the
programmer interested in general purpose computations on the GPU.

Higher level approaches are also being investigated. PyGPU embedds a GPGPU
programming language in Python[LO06]. PyGPU makes use of Python’s introspec-
tive abilities to generate efficient code.

Like Obsidian, Accelerate is embedded in Haskell [LCGK09]. Accelerate how-
ever, is higher level language than Obsidian. Where the purpose of Obsidian is to
implement basic algorithmic building blocks such as reductions and prefix sums,
Accelerate provide these building blocks as primitives.

Vertigo is another GPU programming language embedded in Haskell[Ell04].
Vertigo can be used to describe procedureal surfaces and textures and generates effi-
cient DirectX9 shader code.

There are also many examples of domain specific languages (DSLs) that target
not only GPUs but also other platforms, such as multicore machines. Of particular
interest to us is Microsoft’s Accelerator project [TPO06]. Interestingly, Accelerator
includes the same restriction to “hardware-like” algorithms as Obsidian does.

3.2.7 Discussion and conclusion
Obsidian is work in progress and there are many loose ends to tie up and paths left to
explore. In subsection 3.2.4, the strengths of Obsidian show; it is possible to express
quite complex algorithms using short and elegant programs. The case studies also
show that it is possible to generate quite efficient code from these high level descrip-
tions. However, this needs more work in order to more reliably produce efficient
code and to broaden the available set of combinators for combining GPU programs.

Obsidian offers the GPGPU programmer a higher level language, while trying
not to sacrifice too much performance. When Programming in CUDA C, the in-
dexing arithmetic often gets quite complex. This is a common trait of data-parallel
programming in C-like languages. One goal of Obsidian is to be able to express these
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algorithms without the complex index manipulations; instead the data access pattern
is captured in the use of functions such as pair and two or in the recursive structure
of the Obsidian program.

This paper presented Obsidian an embedded language for GPGPU programming
that offers a higher level of abstraction compared to languages such as CUDA. Ob-
sidian allows the programmer to think more of the algorithm and less of architectural
details of the GPU. The contributions of Obsidian to the GPGPU field is a higher
level programming environment that eases experimentation.
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3.3 Paper D:
Expressive Array Constructs in an Embedded GPU
Kernel Programming Language

Koen Claessen, Mary Sheeran, Bo Joel Svensson

Abstract

Graphics Processing Units (GPUs) are powerful computing devices that with the
advent of CUDA/OpenCL are becomming useful for general purpose computations.
Obsidian is an embedded domain specific language that generates CUDA kernels
from functional descriptions. A symbolic array construction allows us to guarantee
that intermediate arrays are fused away. However, the current array construction
has some drawbacks; in particular, arrays cannot be combined efficiently. We add
a new type of push arrays to the existing Obsidian system in order to solve this
problem. The two array types complement each other, and enable the definition
of combinators that both take apart and combine arrays, and that result in efficient
generated code. This extension to Obsidian is demonstrated on a sequence of sorting
kernels, with good results. The case study also illustrates the use of combinators for
expressing the structure of parallel algorithms. The work presented is preliminary,
and the combinators presented must be generalised. However, the raw speed of the
generated kernels bodes well.

3.3.1 Introduction

Graphics Processing Units (GPUs) are parallel computers with hundreds to thou-
sands of processing elements. The CUDA and OpenCL languages make available
the power of the GPU to programmers interested in general purpose computations.
In CUDA and OpenCL, the programmer writes kernels, Single Program Multiple
Data (SPMD) programs that are executed by groups of threads on the available pro-
cessing elements of the GPU.

CUDA and OpenCL are general purpose programming languages, mirroring the
increased capabilities of a modern GPU to target that domain. However, these lan-
guages lack compositionality. Also, being based in C/C++ means that the core idea
in a program may not be easily visible.
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Embedded DSLs for GPGPU programming

We are aiming for a GPU programming language that is more concise than main-
stream languages such as CUDA and OpenCL. Obsidian is a domain specific embed-
ded language (DSEL) implemented in Haskell. When an Obsidian program is run, a
representation of the program is created as a syntax tree. For more information on
EDSL implementation see [EFdM03]. The program representation generated when
running an Obsidian program is compiled into CUDA code. We are also working on
an OpenCL backend.

Our approach is different from that of other Haskell DSELs targetting
GPUs [CKL+11, MM10, Lar11]. We do not try to abstract away from all the pecu-
liarities of GPU programming, but rather provide a higher level language in which
to experiment with them. For instance, Accelerate provides a standard set of basic
operations such as map, reduce and zipWith as built in skeletons, implemented
with the help of small, predefined, hand-tuned CUDA kernels [CKL+11]. Obsidian,
on the other hand, allows the user to experiment with the generation of small kernels
for fixed size array inputs from higher level descriptions. It is intended to allow the
user to play with the kinds of tradeoffs that are important when writing such high
performance building blocks; in this paper, the main consideration is the number of
array elements of the input and output that are manipulated by a single thread in the
generated CUDA code. An important aspect of Obsidian is the symbolic array repre-
sentation used, along with its associated sync operation. As we shall see, the sync
operation allows the programmer to guide code generation and control parallelism
and thread use [JS11].

In Obsidian, a kernel that sums an array can be expressed as:

sum :: Array IntE -> Kernel (Array IntE)
sum arr | len arr == 1 = return arr

| otherwise = (pure (fmap (uncurry (+)) . pair)
->- sync
->- sum) arr

The result of running this kernel on an eight element input array, runKernel sum
(namedArray “input” 8), is an intermediate representation of the computa-
tion (shown in slightly pretty-printed form):

arr0 = malloc(16)
par i 4 {
arr0[i] = ( + input[( * i 2 )] input[( + ( * i 2 ) 1 )] );
}Sync
arr1 = malloc(8)
par i 2 {
arr1[i] = ( + arr0[( * i 2 )] arr0[( + ( * i 2 ) 1 )] );
}Sync
arr2 = malloc(4)
par i 1 {
arr2[i] = ( + arr1[( * i 2 )] arr1[( + ( * i 2 ) 1 )] );
}Sync
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The named intermediate arrays in this representation are then laid out in GPU shared
memory and CUDA code can be generated (here for arrays of length eight)4:
__global__ void sum(int *input0,int *result0){

unsigned int tid = threadIdx.x;
unsigned int bid = blockIdx.x;
extern __shared__ unsigned char sbase[];
(( int *)sbase)[tid] =
(input0[((bid*8)+(tid*2))]+
input0[((bid*8)+((tid*2)+1))]);

__syncthreads();
if (tid<2){
(( int *)(sbase + 16))[tid] =
((( int *)sbase)[(tid*2)]+
(( int *)sbase)[((tid*2)+1)]);

}
__syncthreads();
if (tid<1){

(( int *)sbase)[tid] =
((( int *)(sbase+16))[(tid*2)]+
(( int *)(sbase+16))[((tid*2)+1)]);

}
__syncthreads();
if (tid<1){

result0[(bid+tid)] = (( int *)sbase)[tid];
}

}

Arrays in Obsidian

An array is represented by an indexing function and a length:
data Array a = Array (UWordE -> a) Word32

This array representation has served us well. It has these properties:

• Fusion of operations is automatic.

• It naturally describes a data-parallel computation suitable for CUDA/OpenCL
generation.

• Many basic operations can be implemented: map, zipWith etc.

Using this array representation in a DSEL is not new; the first occurence that we
know of is in Pan [Ell03]. Similar array representations have also later been used in
Feldspar [ACS+11], and more recently also in the Repa library [KCL+10]. Func-
tions for indexing and getting the length of arrays are as follows:
(!) :: Array a -> UWordE -> a
(Array ixf _) ! ix = ixf ix

len :: Array a -> Word32
len (Array _ n) = n

4An alignment qualifier for shared memory has been omitted to save space in the listings showing
generated code
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A Functor instance for the Array datatype is
instance Functor Array where
fmap f arr = Array (\ix -> f (arr ! ix)) (len arr)

Now, composed applications of fmap will be automatically fused. This is illustrated
in the example program below and the CUDA generated from it.
mapFusion :: Array IntE -> Kernel (Array IntE)
mapFusion = pure (fmap (+1) . fmap (*2))

__global__ void mapFusion(int *input0,int *result0){
unsigned int tid = threadIdx.x;
unsigned int bid = blockIdx.x;

result0[((bid*32)+tid)] = ((input0[((bid*32)+tid)]*2)+1);
}

Both of these code listings need explanation. In the Haskell code, mapFusion has
type Array IntE -> Kernel (Array IntE); Kernel is a state monad
that accumulates CUDA code as well as provides new names for intermediate ar-
rays. Neither of these features of the monad is activated by this example though. The
pure function is defined using the monad’s return as pure f a = return
(f a). In this case, it lifts a function of type Array IntE -> Array IntE
into a kernel.

The generated CUDA code computes the result array using a number of threads
equal to the length of that array. In this case, the kernel was generated to deal with
arrays of length 32. The important detail to notice in the CUDA code is that there is
no intermediate array created between the (*2) and the (+1) operations.

The mapFusion example could just as well have been implemented using the
kernel sequential composition combinator, ->-.
mapFusion :: Array IntE -> Kernel (Array IntE)
mapFusion = pure (fmap (*2)) ->- pure (fmap (+1))

Exactly the same CUDA code is then generated.
In some cases, it is necessary to force computation of intermediate arrays. This

can be used to share partial computations between threads and to expose parallelism.
In Obsidian, the tool for this is called sync, a built-in kernel. Using sync as follows
prevents fusion of the two operations:
mapUnFused :: Array IntE -> Kernel (Array IntE)
mapUnFused = pure (fmap (*2)) ->- sync ->- pure (fmap (+1))

The generated CUDA code now stores an intermediate result in local shared memory
before moving on.
__global__ void mapUnFused(int *input0,int *result0){
unsigned int tid = threadIdx.x;
unsigned int bid = blockIdx.x;
extern __shared__ unsigned char sbase[];
(( int *)sbase)[tid] = (input0[((bid*32)+tid)]*2);
__syncthreads();
result0[((bid*32)+tid)] = ((( int *)sbase)[tid]+1);

}
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Intermediate arrays are laid out in the sbase array in shared memory. Since we
may store arrays of many different types in the same locations of the shared memory
at different times during the execution, the type casts used in the code above are
necessary.

Sync and parallelism

The sync operation also enables the writing of parallel reduction kernels. A reduc-
tion operation is an operation that takes an array as input and produces a singleton
array as output.

First, we define zipWith and halve on Obsidian arrays.
zipWith :: (a -> b -> c) -> Array a -> Array b -> Array c
zipWith op a1 a2 = Array (\ix -> (a1 ! ix) ‘op‘ (a2 ! ix))

(min (len a1) (len a2))

splitAt :: Word32 -> Array a -> (Array a, Array a)
splitAt n arr =

(Array (\ix -> arr ! ix) n ,
Array (\ix -> arr ! (ix + fromIntegral n)) (len arr - n))

halve arr = splitAt ((len arr) ‘div‘ 2) arr

A reduction kernel that takes an array whose length is a power of two and gives an
array of length one can be defined recursively. Defining kernels recursively results in
completely unrolled CUDA kernels, and kernel input size must be known at compile
time. The approach to reduction taken here is to split the input array into two halves
and then apply zipWith of the combining function to the two halves, repeating the
process until the length is one.
reduceS :: (a -> a -> a) -> Array a -> Kernel (Array a)
reduceS op arr | len arr == 1 = return arr

| otherwise =
(pure ((uncurry (zipWith op)) . halve)
->- reduceS op) arr

Since the output of this kernel is of length one, and the number of elements in the out-
put array specifies the number of threads used to compute it, this function, reduceS,
defines a sequential reduction. The generated code for arrays of length eight is
__global__ void reduceSAdd(int *input0,int *result0){

unsigned int tid = threadIdx.x;
unsigned int bid = blockIdx.x;

result0[(bid+tid)] =
(((input0[((bid*8)+tid)]+

input0[((bid*8)+(tid+4))])+
(input0[((bid*8)+(tid+2))]+
input0[((bid*8)+((tid+2)+4))]))+

((input0[((bid*8)+(tid+1))]+
input0[((bid*8)+((tid+1)+4))])+
(input0[((bid*8)+((tid+1)+2))]+
input0[((bid*8)+(((tid+1)+2)+4))])));

}
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Sequential reduction is not very interesting for GPU execution, but the fix is simple.
A well placed use of sync indicates that we want to compute, after each zipWith
phase, the intermediate arrays using as many threads as that intermediate array is
long. The effect is shown in the code below.

reduce :: Syncable Array a
=> (a -> a -> a) -> Array a -> Kernel (Array a)

reduce op arr | len arr == 1 = return arr
| otherwise =

(pure ((uncurry (zipWith op)) . halve)
->- sync
->- reduce op) arr

The CUDA code for reduction with addition on eight elements is

__global__ void reduceAdd(int *input0,int *result0){
unsigned int tid = threadIdx.x;
unsigned int bid = blockIdx.x;
extern __shared__ unsigned char sbase[];
(( int *)sbase)[tid] =

(input0[((bid*8)+tid)]+
input0[((bid*8)+(tid+4))]);

__syncthreads();
if (tid<2){

(( int *)(sbase + 16))[tid] =
((( int *)sbase)[tid]+
(( int *)sbase)[(tid+2)]);

}
__syncthreads();
if (tid<1){

(( int *)sbase)[tid] =
((( int *)(sbase+16))[tid]+
(( int *)(sbase+16))[(tid+1)]);

}
__syncthreads();
if (tid<1){

result0[(bid+tid)] = (( int *)sbase)[tid];
}

}

In this generated CUDA, three phases can be identified. The first uses four threads to
compute a four element intermediate array; the second uses two threads, and so on.
At the very end, a single thread copies the result from local shared memory to global
memory.

Drawbacks of Obsidian Arrays

The previous subsection described positive aspects of the array representation that
we have used so far. There are, however, circumstances in which this Array repre-
sentation is too restricted.

Take the problem of concatenating two arrays. Using the array representation
described above, the only way to concatenate two arrays is to introduce a conditional
into the indexing function. If f and g are the indexing functions of two arrays that
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are to be concatenated, and n1 is the length of the first array, the indexing function
of the result must be

new ix = if (ix < n1)
then f ix
else g (ix - n1)

The following program concatenates two arrays:

catArrays :: (Array IntE, Array IntE) -> Kernel (Array IntE)
catArrays = pure conc

When it is used to generate a CUDA kernel that concatenates two arrays of length
16, the following code is the result:

__global__ void catArrays(int *input0,int *input1,int *result0){
unsigned int tid = threadIdx.x;
unsigned int bid = blockIdx.x;

result0[((bid*32)+tid)] =
(tid<16) ? input0[((bid*16)+tid)] :

input1[((bid*16)+(tid-16))];
}

Now, conditionals like these are bad in code to execute on a GPU, with its wide-
SIMD data-parallel model. Separating the operation into two assignments and using
half as many threads gives much higher performance.

__global__ void catArraysByHand(int *input0,
int *input1,
int *result0){

unsigned int tid = threadIdx.x;
unsigned int bid = blockIdx.x;

result0[((bid*32)+tid)] = input0[((bid*16)+tid)];
result0[((bid*32)+tid+16)] = input1[((bid*16)+tid)];

}

There are cases where code with conditionals is not that bad. An expert on NVIDIA
GPUs in particular may say that code with the condition (tid < 32) is fine, since
32 is the SIMD width of those GPUs. However, any number that is not a multiple
of 32 would lead to poor performance, so in general this is a problem. Worse still,
zipping two arrays together and then unpairing (to get an array of elements) leads to
code that takes two different paths depending on odd or even thread id. When a GPU
executes such code, it shuts down half of the threads and computes the two paths in
sequence.

zippUnpair :: (Array IntE, Array IntE) -> Kernel (Array IntE)
zippUnpair = pure (unpair . zipp)

The zipp and unpair operations are defined as follows:

zipp :: (Array a, Array b) -> Array (a, b)
zipp (arr1,arr2) =

Array (\ix -> (arr1 ! ix, arr2 ! ix))
(min (len arr1) (len arr2))
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unpair :: Choice a => Array (a,a) -> Array a
unpair arr =

let n = len arr
in Array (\ix -> ifThenElse ((mod ix 2) ==* 0)

(fst (arr ! (ix ‘shiftR‘ 1)))
(snd (arr ! (ix ‘shiftR‘ 1)))) (2*n)

Code generated from the zippUnpair program exhibits really poor performance;
at any time half of the threads are shut down.

__global__ void zippUnpair(int *input0,
int *input1,
int *result0){

unsigned int tid = threadIdx.x;
unsigned int bid = blockIdx.x;

result0[((bid*64)+tid)] =
((tid%2)==0) ? input0[((bid*32)+(tid>>1))] :

input1[((bid*32)+(tid>>1))];
}

If we wrote this CUDA program by hand, we would, again, split it up into two phases
so that all threads can progress in parallel.

The arrays described so far, with an indexing function and a length, have been
nicknamed Pull arrays for how they describe how to compute an element by pulling
data from a number of places. Using just Pull arrays, we have been unable to solve
the problems described so far in this section. The solution is to add a complementary
array type to Obsidian.

3.3.2 Push Arrays
In order to improve low level control for the programmer, Push arrays are added to
Obsidian. The old Pull arrays are still available, along with the new array type.

Some operations, typically involving taking arrays apart, are easily described us-
ing Pull arrays, giving efficient code. In those cases, using a Push array would add
complexity in the implementation for no performance benefit. Other operations can-
not be implemented efficiently with Pull arrays, but Push arrays then provide the
solution. This duality is apparent when looking at operations on Pull arrays such as
halve and conc (for concatenate). The halve function is efficient since it intro-
duces no diverging conditionals. The conc function, on the other hand, introduces
conditionals. Concatening two arrays using the concP combinator, implemented on
Push arrays, allows us to generate the desired code:

catArrayPs :: (Array IntE, Array IntE) -> Kernel (ArrayP Int)
catArrayPs = pure concP

__global__ void catArrayPs(int *input0,int *input1,int *result0){
unsigned int tid = threadIdx.x;
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unsigned int bid = blockIdx.x;

result0[((bid*32)+tid)] = input0[((bid*16)+tid)];
result0[((bid*32)+(16+tid))] = input1[((bid*16)+tid)];

}

Compared to the CUDA code for catArrays, this kernel uses only 16 threads in-
stead of 32. At each step of the computation, all the threads are fully busy doing
exactly the same thing, which is the preferred mode of execution on the target plat-
form.

What are Push Arrays?

The idea behind Push arrays is to have a way to describe where elements are supposed
to end up. In some sense, a Push array produces a collection of Index/Value pairs.
This makes Push arrays complementary to Pull arrays. For example, it is possible
for a Push array to output several elements at the same index (which we probably
need to control carefully). Push arrays should permit us to provide more expressive
operations on arrays to the user, including an operation similar to Haskell’s filter
on lists. Here, we consider a different advantage of adding push arrays: finer control
over patterns of thread use in generated code.

A Push array consists of three parts: a function in continuation passing style, a
Program datatype and an array datatype.

type P a = (a -> Program) -> Program

For another example of using continuations and a more complete description of their
meaning and application, see [Cla99].

The Program datatype has now been adopted as Obsidian’s internal representa-
tion of CUDA programs.

data Program
= Skip
| forall a. Scalar a => Assign Name UWordE (Exp a)
| Par (UWordE -> Program) Word32
| Allocate Name Word32 Type
| Synchronize
| ProgramSeq Program

Program

Even Obsidian programs that never explicitly uses a Push array will also be repre-
sented by this datatype.

Note that the Par constructor, the parallel for loop, could potentially introduce
nesting, which would lead to nested data-parallelism. We do not compile nested
data parallelism into CUDA, and right now this is guaranteed by taking care not to
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introduce any nesting in the library functions provided. Some of the simpler cases
of nestedness should be possible to take care of quite easily. For example, one extra
level of nesting could be done by sequential execution in each thread of the GPU;
using sequential computations per thread has been shown to be beneficial [BOA09].
But for the general case of arbitrary nesting, some method of flattening is needed. We
also assume that both Allocate and Synchronize occur only at the top level in
objects of type Program.

Now, a Push array is a function in continuation passing style coupled with a
length.

data ArrayP a = ArrayP (P (UWordE, a)) Word32

There is a function that takes an array and turns it into a Push array, called push.
This function is defined for both Pull and Push arrays:

class Pushable a where
push :: a e -> ArrayP e

instance Pushable ArrayP where
push = id

instance Pushable Array where
push (Array ixf n) =

ArrayP (\func -> Par (\i -> func (i,(ixf i))) n) n

Going in the other direction, from a Push array to a Pull array, is a costly op-
eration; it involves writing all the elements to GPU memory followed by creating
a Pull array that represents reading them. The task of writing intermediate values
to memory has traditionally been up to the sync operation in Obsidian. Therefore,
in this version, sync is overloaded to operate on both Pull and Push arrays. This
means that the sync operation can be used both on arrays of type Array and of
type ArrayP. The result type, however, is always Array.

When a Push array is synced, it is applied to a continuation that writes the el-
ements into a named array in memory. The name to use is obtained through the
Kernel monad.

targetArray :: Scalar a => Name -> (UWordE,Exp a) -> Program
targetArray n (i,a) = Assign n i a

After applying the Push array to targetArray <name>, the sync operation
proceeds by storing away a representation of the program that computes the array
called <name>; it returns a Pull array that reads elements from that same array.

Now we have seen enough of the implementation of Push arrays to be able to
look at some operations. Earlier, we saw that the array concatenation function conc
on Pull arrays leads to inefficient code. The Push version of this operation, called
concP can be implemented as follows:
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concP :: (Pushable arr1,
Pushable arr2) => (arr1 a, arr2 a) -> ArrayP a

concP (arr1,arr2) =
ArrayP (\func -> f func

*>*
g (\(i,a) -> func (fromIntegral n1 + i,a)))

(n1+n2)
where

ArrayP f n1 = push arr1
ArrayP g n2 = push arr2

The function concP takes two arrays, that can be Push or Pull arrays, and concate-
nates them into a single Push array. It does so by creating a sequential program,
using the *>* operator for Program sequential composition. An example use of
this combinator has already been displayed in the catArrayPs example.

The zippUnpair example shows a drawback similar to that of catArrays
using Pull arrays. In this case, the problem is that the unpair function introduces
a conditional that takes different paths depending on odd or even thread id. A Push
array implementation of the unpair operation called unpairP can be given as
follows:
unpairP :: Pushable arr => arr (a,a) -> ArrayP a
unpairP arr = ArrayP (\k -> f (everyOther k)) (2 * n)
where
ArrayP f n = push arr

everyOther :: ((UWordE, a) -> Program ())
-> (UWordE, (a,a)) -> Program ()

everyOther f = \(ix,(a,b)) -> f (ix * 2,a) *>* f (ix * 2 + 1,b)

Just like concP, this function takes either a Push or Pull array as input, and produces
a Push array as result.

Rewriting the example from earlier using unpairP gives:
zippUnpairP :: (Array IntE, Array IntE) -> Kernel (ArrayP IntE)
zippUnpairP = pure (unpairP . zipp)

In this case, the generated code looks as follows:
__global__ void zippUnpairP(int *input0,int *input1,int *result0){

unsigned int tid = threadIdx.x;
unsigned int bid = blockIdx.x;

result0[((bid*64)+(tid*2))] = input0[((bid*32)+tid)];
result0[((bid*64)+((tid*2)+1))] = input1[((bid*32)+tid)];

}

Again, we get CUDA code that uses half as many threads as the inefficient version,
but all threads are occupied at all times. This uses the resources more efficiently.

Being able to generate the kind of code that we have just seen is something we
have desired for a long time. We believe that Push arrays are an important tool for
obtaining high performance kernels. The results in section 3.3.3 bear this out.
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3.3.3 Application

Sorting on a GPU

In this section, we introduce combinators that express patterns of computation on
whole arrays, and show their application to the development of fast sorting kernels.
By kernel, we mean a computation that is performed by multiple threads, each per-
forming the same computation, in a single block. The computation is performed
entirely on the GPU, operating on a short array, which has been placed into shared
memory. On the GPU on which we perform measurements, the maximum number
of threads in a single block is 512. Thus, we will build and benchmark a sequence
of kernels that sort 512 inputs. Our first kernels are implemented using one thread
per array element. Next, we show how Push arrays allow us to move to having each
thread operate on two array elements, giving a substantial performance improvement.

Sorting kernels are typically used as building blocks in larger programs to sort
much larger sequences of inputs. In section 3.3.3, we show how to build a sorter
for large arrays from small building blocks, including small kernels for sorting and
merging that are generated from Obsidian. Our small kernels are constructed in the
form of sorting and merging networks, building on Batcher’s bitonic merger [Bat68]
and on the periodic balanced merger [DPLR89]. We chose also to implement the
large sorter used in benchmarking the small kernels as a sorting network. However,
large sorters that are not themselves sorting networks (with typical examples being
radix sort and quicksort) often call small sorting networks when they need to sort
small arrays during their execution. Thus, small, fast sorting kernels have a variety
of uses.

Describing Batcher’s bitonic merger

The bitonic merger is typically presented as a recursive construction and we have ear-
lier explored ways to describe and analyse it in both (our) Ruby and in Lava [She89,
CSS01]. Here, we consider iterative descriptions using similar combinators.

Figure 3.9 illustrates the merger for 16 inputs. Data flows from left to right. The
vertical lines indicate components that operate on two array elements, placing the
minimum onto the lower (abstract) wire, and the maximum onto the other output of
the component. The leftmost stage operates (for n = 16) on elements that are 8
apart. the next stage deals with elements that are 4 apart, and so on.

We introduce a combinator ilv1, for interleave, that captures this pattern. ilv1
i f g applies f to elements 2i apart, producing the output at the lower of the two
input indices; it applies g to the same pairs of elements, producing the output on the
upper index. Defining stage i to be ilv1 i min max, the four stages in the
diagram are simply stage applied to3, 2 1 and 0. The definition of ilv1 makes
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Figure 3.9: A diagram of a 16 input bitonic merging network, using a style that is
standard in the literature. Note that in each stage containing 8 min/max or comparator
components, all 8 operate on independent parts of the input and so can proceed in
parallel.
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use of the fact that flipping the bit i of an index (using the function flipBit) gives
the index of the element that will be combined with it using the functionsf and g.
The decision about whether to apply f or g is made by looking at the value of bit i.
As we shall see, the use of the Obsidian ifThenElse produces conditionals in the
resulting CUDA.

lowBit :: Int -> UWordE -> Exp Bool
lowBit i ix = (ix .&. bit i) ==* 0

flipBit :: Bits a => Int -> a -> a
flipBit = flip complementBit

ilv1 :: Choice a =>
Int -> (b -> b-> a) -> (b -> b -> a) ->
Array b -> Array a

ilv1 i f g arr = Array ixf (len arr)
where

ixf ix = let l = arr ! ix
r = arr ! newix
newix = flipBit i ix

in (ifThenElse (lowBit i ix) (f l r) (g l r))

Expressing ilv1 using bit-flipping may seem strange, but it has the advantage that
it actually applies the desired pattern of computation repeatedly over larger input
arrays. Now, for 2n inputs, a Haskell list containing the n calls of this interleave
combinator are built:

bmerge :: Int -> [Array IntE -> Array IntE]
bmerge n = [istage (n-i) | i <- [1..n]]
where istage i = ilv1 i min max

Finally, the compose function makes each element of the list into a kernel (using
map pure) and places a sync between each kernel (using composeS).

compose :: (Scalar a) =>
[Array (Exp a) -> Array (Exp a)]
-> Array (Exp a) -> Kernel (Array (Exp a))

compose = composeS . map pure

runm k = putStrLn$ CUDA.genKernel "bitonicMerge"
(compose (bmerge k)) (namedArray "inp" (2^k))

Note that bmerge kworks on inputs of length 2k+j , for j > 0, applying the merger
to sub-sequences of length 2k. The CUDA code for bmerge 4 on 16 inputs (with
some newlines inserted) is

*Main> runm 4
__global__ void bitonicMerge(int *input0,int *result0){

unsigned int tid = threadIdx.x;
unsigned int bid = blockIdx.x;
extern __shared__ unsigned char sbase[];
(( int *)sbase)[tid]

= ((tid&8)==0)
? min(input0[((bid*16)+tid)],input0[((bid*16)+(tid^8))])
: max(input0[((bid*16)+tid)],input0[((bid*16)+(tid^8))]);

__syncthreads();
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(( int *)(sbase + 64))[tid]
= ((tid&4)==0)
? min((( int *)sbase)[tid],(( int *)sbase)[(tid^4)])
: max((( int *)sbase)[tid],(( int *)sbase)[(tid^4)]);

__syncthreads();
(( int *)sbase)[tid]

= ((tid&2)==0)
? min((( int *)(sbase+64))[tid],(( int *)(sbase+64))[(tid^2)])
: max((( int *)(sbase+64))[tid],(( int *)(sbase+64))[(tid^2)]);

__syncthreads();
(( int *)(sbase + 64))[tid]

= ((tid&1)==0)
? min((( int *)sbase)[tid],(( int *)sbase)[(tid^1)])
: max((( int *)sbase)[tid],(( int *)sbase)[(tid^1)]);

__syncthreads();
result0[((bid*16)+tid)] = (( int *)(sbase+64))[tid];

Modifying the bitonic merger

The bitonic merger for which we have just generated a kernel is known to sort so-
called bitonic sequences, which include sequences whose first half is sorted in one
direction and whose second half is sorted in the other direction. This fact can be
used to build the well-known bitonic sorting network. However, a GPU implemen-
tation typically needs to check, for each comparator, whether or not it should sort
upwards or downwards, see for instance the simple CUDA implementation shown in
Appendix A. We choose here to modify the merger so that it sorts two concatenated
sequences that are sorted in the same direction. We do this by using a well-known
trick, reversing half of the input to the merger. It turns out that we can also reverse
the same half of the output of the first stage of the network, without affecting over-
all behaviour. The resulting network, tmerge, shown in Figure 3.10, encourages
us to develop a new combinator to describe the characteristic V-shaped pattern that
results in the first stage. The combinator is modelled on ilv1. The only differ-
ence is that the “partner” of an index is found not by flipping bit i, but by flipping
bits 0 to i, using function flipLSBsTo. The implementation of vee1 is got from
that for ilv1 by replacing the call of flipBit by one of flipLSBsTo (and we
could also have chosen to make a more generic function that is parameterised on this
partner function).

flipLSBsTo :: Int -> UWordE -> UWordE
flipLSBsTo i = (‘xor‘ (oneBits (i+1)))

vee1 :: Choice a =>
Int -> (b -> b-> a) -> (b -> b -> a) ->
Array b -> Array a

vee1 i f g arr = Array ixf (len arr)
where
ixf ix = let l = arr ! ix

r = arr ! newix
newix = flipLSBsTo i ix

in (ifThenElse (lowBit i ix) (f l r) (g l r))

tmerge :: Int -> [Array IntE -> Array IntE]
tmerge n = vstage (n-1): [istage (n-i) | i <- [2..n]]
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Figure 3.10: 16 input merging network, tmerge. The first stage is made with a new
combinator that we call vee, while the remaining stages are as in the bitonic merger.
This network sorts an input that consists of two half-sized sorted sequences, giving
the opportunity to build a tree-shaped sorting network.

where
vstage i = vee1 i min max
istage i = ilv1 i min max

Now that we have a merger that sorts sub-sequences containing two concatenated
sorted sequences, it is easy to make a tree of them. The list of kernels to be composed
now becomes

tsort1 :: Int -> [Array IntE -> Array IntE]
tsort1 n = concat [tmerge i | i <- [1..n]]

The resulting sorting network is shown in Figure 3.11.
The following call writes the resulting CUDA to file tsort1.cu and this is the first
generated CUDA kernel whose performance is measured in section 3.3.3.

runs1 k
= writeFile "tsort1.cu" $ CUDA.genKernel "tsort1"

(compose (tsort1 k)) (namedArray "inp" (2^k))

The generated code uses one thread per array element (just as the bitonicMerge
kernel shown above did). The next step is to move to using Push as well as Pull arays,
so as to be able to generate more efficient code from essentially the same sorter con-
struction.
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Figure 3.11: A 16-input sorter made from a tree of tmerge mergers. 8 2-input mergers
feed 4 4-input mergers, followed by 2 8-input and one 16-input merger. A sorter on
8 inputs is shaded, as is a merger on 8 inputs, above it.

New combinator implementations using Push arrays

It is in combining the results of the f and g functions that we run into difficulty
using just Pull arrays. Earlier, we saw how to use Push arrays to implement concP,
which concatenates two arrays. Here, we use exactly the same approach to make a
new version of the interleave combinator. The results of applying the fs and gs are
combined into a Push array, in the right order.

ixMap :: (UWordE -> UWordE) -> ArrayP a -> ArrayP a
ixMap f (ArrayP p n) = ArrayP (ixMap’ f p) n

ixMap’ :: (UWordE -> UWordE)
-> P (UWordE, a)
-> P (UWordE, a)

ixMap’ f p = \g -> p (\(i,a) -> g (f i,a))

insertZero :: Int -> UWordE -> UWordE
insertZero 0 a = a ‘shiftL‘ 1
insertZero i a
= a + (a .&. fromIntegral (complement (oneBits i :: Word32)))

ilv2 :: Choice b =>
Int -> (a -> a -> b) -> (a -> a -> b) ->
Array a -> ArrayP b

ilv2 i f g (Array ixf n)
= ArrayP (\k -> app a5 k *>* app a6 k) n
where
n2 = n ‘div‘ 2
a1 = Array (ixf . left) (n-n2)
a2 = Array (ixf . right) n2
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a3 = zipWith f a1 a2
a4 = zipWith g a1 a2
a5 = ixMap left (push a3)
a6 = ixMap right (push a4)
left = insertZero i
right = flipBit i . left
app (ArrayP f _) a = f a

This new combinator can now replace ilv1 in the bitonic merger, giving a kernel
that runs considerably faster. We will use that kernel to build a large sorter later.

The implemenation of vee2 is almost identical to that of ilv2, with flipBit
i replaced by flipLSBsTo as before (so that, again, one would in fact make a
more generic function for building such combinators). Now, we just need to replace
the ilv1 and vee1 combinators in the tree sorter with ilv2 and vee2 , to get a
verrsion that uses half as many threads:

tmerge2 :: Int -> [Array IntE -> ArrayP IntE]
tmerge2 n = vstage (n-1) : [ istage (n-i) | i <- [2..n]]

where
vstage i = vee2 i min max
istage i = ilv2 i min max

tsort2 :: Int -> [Array IntE -> ArrayP IntE]
tsort2 n = concat [tmerge2 i | i <- [1..n]]

As we shall see in section 3.3.3, the resulting code is significantly faster. This is
because it uses one thread per two array elements, and the code no longer contains
any conditionals.

In order to go faster still, we resort to building a different sorting network, of
exactly the same size as the bitonic sorter, but based instead on the balanced pe-
riod merger of Dowd et al [DPLR89]. This involves the introduction of one new
combinator that can be seen as a mixture of the ilv and vee combinators already
introduced.

A sorter built from the balanced periodic merger

First, we note that the balanced periodic merger contains multiple uses of the now
familiar vee-shaped pattern, see Figure 3.12.

bpmerge2 :: Int -> [Array IntE -> ArrayP IntE]
bpmerge2 n = [vstage (n-i) | i <- [1..n]]

where vstage i = vee2 i min max

Now Dowd et al proved that the balanced periodic merger sorts two interleaved
sorted sequences. So, taking an iterative view of the resulting sorter, we want to build
a tree of mergers as before, but the smaller mergers should be interleaved, rather than
operating on adjacent sub-sequences. There should be one merger on the right hand
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Figure 3.12: 16 input periodic balanced merging network

end of the network; left of that, there should be two mergers that operate on the
odd and even elements, and each of them should in turn be fed by two interleaved
mergers, and so. The sorter is illustrated, for 16 inputs in Figure 3.13. Just to the
left of the final balanced merger, one of the two interleaved mergers is shown using
dotted lines. It operates on a completely different set of inputs from the other 8-input
merger in the same part of the tree.

The most straightforward way to give an iterative description of this sorter is to
introduce a new combinator that is a combination of ilv and vee. The only thing
that we need to change is the partner function. This time we will flip not the least
significant bits from position 0 to position i but from position i to i+ j.

-- flip bits from position i to position i+j inclusive
flipBitsFrom :: Bits a => Int -> Int -> a -> a
flipBitsFrom i j a = a ‘xor‘ (fromIntegral mask)

where
mask = (oneBits (j + 1):: Word32) ‘shiftL‘ i

ilvVee1 :: Choice a =>
Int -> Int ->
(b -> b-> a) -> (b -> b -> a) ->
Array b -> Array a

ilvVee1 i j f g arr = Array ixf (len arr)
where
ixf ix = let l = arr ! ix

r = arr ! newix
newix = flipBitsFrom i j ix

in (ifThenElse (lowBit (i+j) ix) (f l r) (g l r))

ilvVee2 :: Choice b => Int -> Int ->
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Figure 3.13: A sorter based on the idea that the periodic balanced merger network
sorts two interleaved sorted sequences. It consists of two half-sized sorters, one
working on the odd elements of the input and one on the even, followed by the
balanced merger. The diagram indicates using dotted lines the balanced merger that
is the final (rightmost) part of one of the half-size sorters.

(a -> a -> b) -> (a -> a -> b) ->
Array a -> ArrayP b

ilvVee2 i j f g (Array ixf n)
= ArrayP (\k -> app a5 k *>* app a6 k) n
where

n2 = n ‘div‘ 2
a1 = Array (ixf . left) (n-n2)
a2 = Array (ixf . right) n2
a3 = zipWith f a1 a2
a4 = zipWith g a1 a2
a5 = ixMap left (push a3)
a6 = ixMap right (push a4)
left = insertZero (i+j)
right = flipBitsFrom i j . left
app (ArrayP f _) a = f a

For both variants of the combinator, we simply add to the ilv definitions a new
Int parameter, j, and replace flipBit i by flipBitsFrom i j. We also
insert the zero bit (when calculating the left index) at position i + j rather than
just at position i. ilvVee is a generalisation of both ilv and vee. ilvVee i
0 has the same behaviour as ilv i, and ilvVee 0 (j-1) is the same as vee
j. The i parameter controls the degree of interleaving, and the j parameter controls
the size of the vee-shaped blocks.
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unsigned int arrayLength = 1 << LOG_L_SIZE;
unsigned int diff = LOG_L_SIZE - LOG_S_SIZE;
unsigned int blocks = arrayLength / S_SIZE;
unsigned int threads = S_SIZE / 2;

sortSmall<<<blocks, threads,4096>>>(din,din);

for(int i = 0 ; i < diff ; i += 1){
vSwap<<<blocks/2,threads*2,0>>>(din,din,(1<<i)*S_SIZE);

for(int j = i-1; j >= 0; j -= 1)
iSwap<<<blocks/2,threads*2,0>>>(din,din,(1<<j)*S_SIZE);

bmergeSmall<<<blocks,threads,4096>>>(din,din);}

Figure 3.14: CUDA code for our large sorter. sortSmall and bmergeSmall are
replaced by Obsidian-generated kernels in the experiments. vSwap and iSwap are
handwritten CUDA kernels that perform one column of compare and swap operations
in the vee and ilv shapes respectively, and are parameterised on the stride. (Our
generated kernels have fixed input and output size.)

For 16 inputs, the parameters to ilvVee that describe the periodic merger on
the right of the construction are i = 0 (for no interleaving) paired with 3, 2, 1 and
0 for the decreasing size of the vee-shaped blocks. Next, to the left, the mergers are
interleaved (i = 1) and there are three stages with vee-shaped blocks of decreasing
size (j = 2, 1, 0), see Figure 3.13. The following code gives an iterative description
of the construction for 2n inputs:

vsort :: Int -> Array IntE -> Kernel (Array IntE)
vsort n = composeS . map pure $ [istage (n-i) (i-j)

| i <- [1..n], j <- [1..i]]
where istage i j = ilvVee2 i j min max

The resulting generated code uses one thread per 2 indices.

Measuring performance of the generated kernels

We have measured the performance of generated 512-input sorting and merging ker-
nels by plugging them into a larger sorter written in CUDA. The sorter has exactly
the structure shown in Figure 3.11. Figure 3.15 shows the location of smaller sorters
and mergers, and of vSwap and iSwap kernels for 16 inputs. Larger sorters simply
have more columns of mergers, each preceded by a vSwap and a number of iSwaps.
The overall structure of the resulting CUDA code is shown in Figure 3.14. Because
iSwap is used repeatedly, we also wrote kernels corresponding to compositions of
two and three of them (avoiding memory accesses between the columns). That is,
we replaced the loop containing iSwap above by
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Figure 3.15: This diagram shows the tree-shaped sorting network that we saw earlier,
but with 4 input sorting and merging kernels indicated. This is the structure of the
network that we have used to implement large sorters, in which the small kernels
having 29 = 512 inputs in all cases. For 224 inputs overall, the resulting sorter has
one column of small sorters and 24− 9 = 15 of small mergers.

for(int j = i-1; j >= 0; j -= 3){
if (j==0)

iSwap<<<blocks/2,threads*2,0>>>(din,din,(1<<j)*S_SIZE);
else
{if (j==1)

iSwap2<<<blocks/4,threads*2,0>>>(din,din,(1<<j)*S_SIZE);
else
iSwap3<<<blocks/8,threads*2,0>>>(din,din,(1<<j)*S_SIZE);}}

The Obsidian implementation and all code for examples in the paper are available at
http://www.cse.chalmers.se/~joels/expressive.html.

Table 3.1 shows the performance figures for the large sorter for 5 different 512−input
small sorter kernels. tsort1 is defined above, and is a variant of bitonic sort that
does not require if statements to determine the direction of sorting of pairs, as all
comparison operations place the minimum at the same index as the lower input.
tsort2 is the same construction, but built with the combinators ilv2 and vee2
that result in the use of one thread per two indices. vsort, the fastest kernel, uses
a generalisation of those two combinators, and again uses one thread per two in-
dices. vsort1 is the same construction as vsort, but with ilvVee2 replaced
by ilvVee1, and so using one thread per index. As a reference small kernel im-
plementation, we include a simple hand-coded bitonic sort that uses one thread per
index (see code in Appendix). None of the kernels has been subject to optimisations

http://www.cse.chalmers.se/~joels/expressive.html


119

k 20 21 22 23 24 24(CPU)
bitonic(CUDA)(512) 5 12 25 54 117 2741
tsort1(512) 4 10 22 47 102 2742
tsort2(256) 4 9 23 45 98 2741
vsort1(512) 4 10 21 47 102 2747
vsort(256) 4 9 20 44 96 2783

Table 3.1: Sorting time (ms) for 2k inputs, 20 ≤ k ≤ 24. The GPU used is an
NVIDIA GTX480. Each line shows the result using a particular small 512 input
sort kernel with the indicated number of threads as sortSmall in the CUDA code
above. The small merge kernel used is our generated bmerge2, with two indices per
thread and 512 inputs. Memory transfer time (GPU-CPU) is not shown. In the 224

input case using vsort, the total sorting time, including memory transfers was 141
ms. The rightmost column shows the time taken for the C quicksort function qsort,
compiled with gcc -O3, to sort the same inputs as those sorted on the GPU on an
i7-920 2.8GHz CPU.

related to warp size.
We also recorded the GPU time spent in the calls to the small sorters alone (us-

ing the NVIDIA CUDA Visual profiler), see Table 3.2. The tsort1 and vsort1
kernels, which are built using only pull arrays, (and which have one index per thread
in the generated code) are noticeably slower than those that have two indices per
thread. The generation of the latter kernels is made possible by the introduction of
push arrays.

Although none of our generated kernels is optimised (for example with respect
to warp size), their performance is, nevertheless, very good. We are working on
automated warp size-related optimisations. It would also be interesting to explore
the fusion of adjacent columns of comparators in the small kernels; omitting a sync
would cause this fusion to happen but we also need to modify the threading behaviour
(doubling the number of indices per thread).

3.3.4 Discussion

Push arrays form a new approach to array representation in DSELs. We do not know
of similar approaches in the literature, despite the fact that the notions of demand and
data flow may feel familiar to the reader who considers Pull and Push arrays. The
addition of Push arrays to Obsidian seems highly beneficial. With this new feature,
the user gains finer grained control over the code generated and the resulting CUDA
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time percent
bitonic(CUDA) 30203 32.07
tsort1 15823 19.72
vsort1 14955 18.76
tsort2 11562 15.37
vsort 9228 12.67
bitonic (NVIDIA SDK) 23815 6.55

Table 3.2: time: GPU time (in µs) spent in calls to small sorter kernels in the initial
phase of the sorter for 224 inputs. percent: percentage of total GPU time spent in the
small sort kernel. The final line shows the numbers for the bitonic code (for large
sorts) that is distributed with the the NVIDIA SDK. Its structure also starts with a
phase of small sorting kernels. It takes 274 ms to sort 224 key-value pairs on an
NVIDIA GTX480 GPU. It could be sped up by using our vsort kernel, and also
by (hand) fusing single “column” kernels as we did with iSwap, although the need
to calculate directions of comparators in the bitonic network would complicate this.
Our CUDA code is simpler because all comparators point in the same direction in
the sorter construction.

kernels perform considerably better than before. This was illustrated in the series
of sorters explored in section 3.3.3. The performance of vsort is sufficiently good
that it can be used as a first phase in a larger sorter (written in CUDA) that can sort
16M elements in 96 ms, while an i7-920 CPU takes around 2740 ms. Further speed
improvements look possible, both in the coordination code and in the kernels. An
obvious next step would be to investigate the generation of the iSwap and vSwap
kernels from Obsidian. (This is not currently possible because of assumptions that
we made about the interfaces to kernels and about how thread ids are used. We will
look into ways to relax our assumptions.)

The series of kernels also illustrates how the use of combinators brings a form of
reuse, and makes design exploration easier. Our experience of using similar combi-
nators in the Lava hardware description language [CSS01] was that a relatively small
set of combinators went a long way. So, although we introduced three combinators
here, ilv, vee and ilvVee, which includes the other two, we do not believe that
every new kernel development exercise would demand a completely new set of com-
binators. We expect to provide the user with a well-documented set of combinators,
so that users can get access to this style of programming without having to develop
their own combinators, and without having to think too much about bit-hacking. The
bit-manipulation approach chosen to define our combinators automatically created
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functions that apply to sub-sequences of the input that are of an appropriate length.
In this paper, we made combinators for the special case of two input, two output

operations (built from two two-input funtions that we typically called f and g). This
approach should be generalised to deal with blocks that have 2k inputs and outputs.
Also, we made a compound combinator from ilv and vee, but generalising to more
than two input components would allow for composing combinators, and indeed for
recursive descriptions that could be unrolled. Then, ignoring syncs, a recursive
description of vsort could be something like

vsortR 0 = id
vsortR n = bpmergeR n . ilv2 1 (vsortR (n-1))

It would then be necessary to optimise the code generated from multiple applications
of ilv2 1, for example, whereas here we have forced the user to figure out both
the unrolling and the combinations. Moving to more general combinators would
also give the opportunity to provide predefined combinators that capture more of the
commonly used threading patterns (for instance k indices per thread rather than the
1 and 2 shown here).

The integration of Push arrays into Obsidian raises some new questions. Pre-
viously, there was a direct correspondence between the length of an array and the
number of threads used to compute it, which allowed the user to write an initial pro-
gram without worrying about threads at all, and then to tweak the Obsidian program
if he was not satisfied with the threading behaviour of the resulting kernel. Now, as
can be seen in the catArrayPs example and in the sorters, this correspondence can
be broken using Push arrays. The catArrayPs example and two of the sorters use
half as many threads as the number of elements. For users who are very concerned
about the speed of the generated kernels, getting this control through using Push ar-
rays in a particular pattern is clearly a good thing. But adding a second, different way
to control thread use in the generated code certainly complicates matters, and further
case studies are needed to confirm that the complication pays off.

The addition of Push arrays also adds the possibility to include potentially unsafe
operations in Obsidian, for example by writing multiple array elements to the same
index, or by discarding elements. This new expressiveness will have to be carefully
controlled. On the positive side, it offers the possibility to encode functions like
filter from Haskell that are simply not expressible using only Pull arrays. Being
able to implement filter would make programming kernels in obsidian feel much
more like programming in Haskell – a welcome loosening of the strait-jacket. Once
that is done, it will be time to develop a very simple coordination language to allow
programming of entire GPU applications that make use of the kind of small kernel
building blocks developed here.
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3.3.5 Appendix
__device__ inline void swap(int & a, int & b)
{

int tmp = a;
a = b;
b = tmp;

}

__global__ static void bitonicSort(int * values, int *results)
{

extern __shared__ int shared[];

const unsigned int tid = threadIdx.x;
const unsigned int bid = blockIdx.x;

// Copy input to shared mem.
shared[tid] = values[(bid*NUM) + tid];

__syncthreads();

// Parallel bitonic sort.
for (unsigned int k = 2; k <= NUM; k *= 2)
{
// bitonic merge
for (unsigned int j = k / 2; j>0; j /= 2)
{

unsigned int ixj = tid ^ j;

if (ixj > tid)
{

if ((tid & k) == 0)
{

if (shared[tid] > shared[ixj])
{

swap(shared[tid], shared[ixj]);
}

}
else
{

if (shared[tid] < shared[ixj])
{

swap(shared[tid], shared[ixj]);
}

}
}
__syncthreads();

}
}

// Write result.
results[(bid*NUM) + tid] = shared[tid];

}
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3.4 Paper E:
Counting and Occurrence Sort for GPUs using an
Embedded Language

Josef Svenningsson, Bo Joel Svensson, Mary Sheeran

Abstract
This paper investigates two sorting algorithms: counting sort and a variation, occur-
rence sort, which also removes duplicate elements, and examines their suitability for
running on the GPU. The duplicate removing variation turns out to have a natural
functional, data-parallel implementation which makes it particularly interesting for
GPUs.

The algorithms are implemented in Obsidian, a high-level domain specific lan-
guage for GPU programming.

Measurements show that our implementations in many cases outperform the sort-
ing algorithm provided by the library Thrust. Furthermore, occurrence sort is another
factor of two faster than ordinary counting sort. We conclude that counting sort is
an important contender when considering sorting algorithms for the GPU, and that
occurrence sort is highly preferable when applicable. We also show that Obsidian
can produce very competitive code.

3.4.1 Introduction
Sorting is an ever important, ever fascinating field of computer science. The intro-
duction of GPUs has introduced new challenges in designing fast sorting algorithms.

This paper focuses on counting sort together with a variation which removes
duplicate elements. We call this variation occurrence sort. Counting sort is a non-
comparing sort suitable for parallel implementation. The occurrence sort variation
presented here is interesting because it seems to be a particularly good fit for execut-
ing on the GPU. It has a very natural functional, data-parallel implementation. We
believe we are the first to study this variation in the literature.

These algorithms are explored in Obsidian [JS11, CSS12], a domain specific
language targeting GPU programming. The goal of Obsidian is to strike a balance
between high-level constructs and low-level control. We want to provide the pro-
grammer with a set of tools for low-level experimentation with the details that influ-
ence performance when implementing GPU kernels. The counting sort case study
shows that Obsidian generates competitive kernels with relatively little programmer
effort. That Obsidian is an embedded language allows us to rapidly experiment with
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the addition of features and with varying programming idioms. The version used in
this case study adds global arrays and atomic instructions to Obsidian, see section
3.4.4.

The contributions of this paper are:

• We provide measurements (section 3.4.7) showing that counting sort is a com-
petitive algorithm for sorting keys on the GPU, outperforming the sorting im-
plementation in the library Thrust[NVId] in many cases.

• Occurrence sort is shown to be particularly suitable for implementing on the
GPU (section 3.4.6) and performs well (section 3.4.7).

• The Obsidian implementation of the two sorting algorithms is detailed along
with the generated CUDA (sections 3.4.4 and 3.4.5).

Related work

Sorting has applications in the computer graphics field [SA08]. Example instances
of sorting and duplicate element removal in computer graphics can be identified in
references [OBA12] and [Kar12]. Another example of where sorting and the removal
of duplicates have applications is in databases [KGJ+11].

The paper [KVGH11] implements counting sort in CUDA, and also optimisa-
tions that overlap computations with transferring data to and from the GPU. Our
work differs by being implemented in a high-level embedded language and also by
implementation of the occurrence sort variant of counting sort. We have not been
concerned with trying to overlap computations and data transfer, but have instead
focused solely on computations within the GPU.

Obsidian is a high-level embedded language for GPU programming. Other such
approaches include Accelerate [CKL+11] and Nikola [MM10]. Accelerate and Nikola
both take an even higher level approach compared to Obsidian and abstract more
from GPU details. Another example of providing a high-level interface to program-
ming the GPU is the C++ library Thrust [NVId].

3.4.2 Counting Sort

Counting sort, like radix sort, relies on array indexing rather than comparison to order
elements. The key idea of counting sort is to count the number of occurrences of each
element, and then perform a prefix sum over all the counts. The prefix sum generates
an array which, for each element in the original array, will point to its position in the
final sorted array. In order for this to work, counting sort needs a lower and upper
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countingSort :: (Int,Int)
-> Array Int Int
-> Array Int Int

countingSort range input =
reconstruct $
scanlArray (+) 0 $
histogram range input

histogram :: (Int,Int)
-> Array Int Int
-> Array Int Int

histogram range =
accumArray (\i _ -> i+1) 0 range . elems . fmap dup

reconstruct :: Array Int Int -> Array Int Int
reconstruct arr =

array (0,arr!l-1)
[ (a,i)
| (i,e) <- init (assocs arr)
, a <- [ e .. arr!(i+1) - 1] ]

where (_,l) = bounds arr

dup a = (a,a)

Figure 3.16: A Haskell specification of Counting Sort. The function scanlArray
is not standard but works much like scanl for lists.

bound on the values of the elements in the input array. Counting sort is typically
explained in terms of sorting integers and we will do the same here.

The array {5,2,5,7,1} will be used as a running example. In addition, the
range (1,10) will be the approximation of the range of the keys in the input. A
diagrammatic illustration of our running example is presented in figure 3.17.

Counting sort consists of three steps: histogram creation, prefix sum and recon-
struction.

The histogram creation step computes a new array which records how many times
an integer occurs in the input array, i.e. the new array is a histogram of the input
array. The size and indices of the histogram array are determined by the range which
approximates the lower and upper bounds of the keys.

Computing the histogram of {5,2,5,7,1} with the range (1,10), results in
{1,1,0,0,2,0,1,0,0,0}. Indexing in this array starts at 1 because that’s the
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5 2 5 7 1

1 1 0 0 2 0 1 0 0 0

0 1 2 2 2 4 4 5 5 5 5

+ + + + + + + + +

1 2 5 5 7

Figure 3.17: An example run of counting sort in diagrammatic form

lower bound given in the range. Each element in the histogram indicates how many
times the corresponding value occurs in the input array. For example, 5 occurs twice
and 8 occurs zero times.

The second step of the algorithm computes the prefix sum (or inclusive scan with
plus) of the histogram array, and prepends a zero. For input array {5,2,5,7,1}
and range (1,10), the histogram array is {1,1,0,0,2,0,1,0,0,0} and its
prefix sum is {0,1,2,2,2,4,4,5,5,5,5}.

The array computed by the prefix sum is called the position array. It indicates
where in the final sorted array each value is placed. The indices of the position array
correspond to values in the final array and the elements correspond to positions in
the final array. The reconstruct step takes care of distributing the values into the final
sorted array. For each index in the position array, the difference between the element
at that index and the index plus one is computed. This difference indicates how many
times the value occurs in the final array.

The position array in our running example is {0,1,2,2,2,4,4,5,5,5,5}.
Indexing starts at 1 just as with the histogram. As an example, element 1 occurs
once in the final array because the difference between the element at position 1 and
2 in the position array is precisely one. Also, 1 is placed on index 0. Furthermore,
element 5 occurs twice in the final array (the difference between 2 and 4 in the
position array), on indices 2 and 3. Continuing this process with all elements will
result in the following final array: {1,2,5,5,7}.

A functional description of counting sort can be found in figure 3.16. The main
function is countingSortwhich takes two arguments: a range with a safe approx-
imation of the lower and upper bounds of the values in the input array, and the input
array itself. The histogram step is implemented by the function histogram, the
prefix sum with scanlArray and the reconstruct step with the function reconstruct.
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countingSort :: (Int,Int)
-> Array Int Int
-> Array Int Int

countingSort range input =
reconstruct $
scanlArray (+) 0 $
occurs range input

occurs :: (Int,Int)
-> Array Int Int
-> Array Int Int

occurs range =
accumArray (\_ _ -> 1) 0 range . elems . fmap dup

Figure 3.18: A Haskell specification of occurrence sort

Occurrence sort: Removing duplicates

There is an interesting variation of counting sort which removes duplicate elements.
It seems to be folklore; it is mentioned on Wikipedia [Wik]. However, we haven’t
found any description of it in the literature. It is particularly interesting because it
allows for an efficient data-parallel implementation.

Figure 3.18 shows the changes we make to counting sort in order to obtain oc-
currence sort. Only the histogram function needs changing so that instead of
computing an actual histogram which counts the number of occurrences of an ele-
ment, it only records if an element occurs or not with a 1 or a 0. Since the function
no longer computes a histogram it has been renamed to occurs.

The prefix sum and the reconstruction step can be kept intact. They will still
compute the correct result.

Compared to the full counting sort, occurrence sort has some interesting prop-
erties which make it more suited for parallel execution. In particular, the histogram
construction phase and the reconstruction phase allow for less synchronisation.

When constructing the histogram in the counting sort algorithm, an index has to
be incremented each time the corresponding value is found in the input array. When
parallelising this operation, it is important that the increments are done atomically,
which incurs a cost. The occurs phase presented above doesn’t need to employ any
special mechanism to ensure atomicity, since it writes a single word with the value 1
to memory.

Given the array {5,2,5,7,1} as input and (1,10) as range, the occurs step
will now compute {1,1,0,0,1,0,1,0,0,0}. The prefix sum will in turn pro-
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duce the following position array: {0,1,2,2,2,3,3,4,4,4,4}. The recon-
struct step computes {1,2,5,7}. In particular, there is only one occurrence of 5
in the final array.

3.4.3 GPUs and CUDA

The GPUs we target in this paper and with Obsidian are NVIDIA GPUs which sup-
port CUDA. Here we provide some background information on GPUs that we hope
will aid in the understanding of example programs throughout this paper.

GPUs supporting CUDA are based on a scalable design. The GPU consists of a
number of so-called multiprocessors (MPs) each consisting of a number of process-
ing elements (PEs); sometimes these are referred to as cores or as stream processors.
An MP also contains a local shared memory through which threads running on the
PEs can communicate. The key that makes the architecture scalable is that a GPU
consists of one or more of these MPs. This also influences the programming model
significantly; since threads can only communicate in a synchronised manner using
the local memory (or in a very limited way using atomic operations) the programmer
must partition the computation in such a way that its communication patterns follow
this architectural constraint. The GPU also has access to a larger memory called the
global or device memory. The sizes of these memories and the number of MPs and
PEs per MP vary slightly between generations of GPUs. For example, the GPU used
in the benchmarks (section 3.4.7) has a total of 1344 single-precision floating point
CUDA cores and has 2 GB global memory. The very latest GPU architectures from
NVIDIA slightly digress from what is outlined here but mostly still adhere to the
same programming model. For exact details refer to [NVIc].

The programming model that CUDA exposes is called single program multiple
threads (SPMT) and is a slight variation of the SPMD concept. This programming
model reflects the GPU architecture. In CUDA, the programmer writes a single
program that is executed by many threads. Because of the scalable architecture, with
its one or more MP, these threads are grouped into blocks (now up to 1024 threads
per block). A block of threads is executed on an MP; thus only threads within that
block can communicate using the shared memory. The same CUDA program can
be executed on any GPU along the scale, from the smallest with only one MP to the
largest. The only difference is in the number of blocks of threads that can be executed
in parallel. This constraint implies that all blocks must be free of any sequential
dependencies. The collection of all blocks is called a Grid.

A CUDA program has two parts; there is a coordination program that runs on the
CPU and there are kernels that execute on the GPU MPs. The program describing
a kernel is parameterised over a blockId and a threadId so that decisions can be
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__global__ void addv(float *i0,
float *i1,
float *r){

unsigned int ix =
blockIdx.x * blockDim.x + threadIdx.x;

extern __shared__ float sm[];
sm[threadIdx.x] = i0[ix] + i1[ix];
r[ix] = sm[threadIdx.x];

}

Figure 3.19: The code illustrates elementwise addition of vectors. Shared memory
(the sm array) is used to allow the addv program to be run with the result r pointing
to the same memory area as either of the inputs.

made from that information during execution. A typical CUDA program starts out by
loading data into local memory using some function of blockId and threadId. It then
computes on the local memory and uses a syncthreads primitive when exchanging
values between threads. When the local computation is done the final results are
written back into global memory again using some function of blockId and threadId.

For more CUDA and GPU specifics see references [NVIc, NVIb].

3.4.4 Obsidian
Obsidian is a programming language for expressing general purpose GPU kernels,
compute kernels, in a high level and functional style. Obsidian is embedded in
Haskell. Specifically, Obsidian is a library of functions for generating and com-
bining abstract syntax trees. By using features of Haskell such as overloading and
higher-order-functions, the library/language border is blurred and we call the result
an embedded language. From the abstract syntax trees generated while running an
Obsidian program, NVIDIA CUDA code is generated.

A brief history of Obsidian

In the Obsidian project we experiment with combinators and language features for
GPU kernel implementation. We seek to strike a balance between low-level control
and useful high-level abstractions. Over time, this has led to a number of different
versions of Obsidian. In reference [JS11], two versions of Obsidian differing by
having a monadic or a limited arrow like interface are described. We have settled on
using the monadic style.



132 CHAPTER 3. GPU PROGRAMMING PAPERS

#define BLOCK_SIZE 32
#define BLOCKS 4
#define N (BLOCKS * BLOCK_SIZE)

int main(int argc, char **argv){
float *v1, *v2, *r;
float *dv1, *dv2, *dr;

v1 = (float*)malloc(N*sizeof(float));
v2 = (float*)malloc(N*sizeof(float));
r = (float*)malloc(N*sizeof(float));

//Generate or read input data.
...

//Allocate arrays in Global memory
cudaMalloc((void**)&dv1, sizeof(float) * N );
cudaMalloc((void**)&dv2, sizeof(float) * N );
cudaMalloc((void**)&dr, sizeof(float) * N );

//Copy data into Global memory
cudaMemcpy(dv1, v1, sizeof(float) * N,

cudaMemcpyHostToDevice);
cudaMemcpy(dv2, v2, sizeof(float) * N,

cudaMemcpyHostToDevice);

//Launch the vector add kernel.
addv<<<BLOCKS, BLOCK_SIZE, BLOCK_SIZE * sizeof(float)>>>

(dv1,dv2,dr);

//Launch further kernels on the data.
...

cudaMemcpy(r, dr, sizeof(float) * N ,
cudaMemcpyDeviceToHost);

cudaFree(dv1);
cudaFree(dv2);
cudaFree(dr);

//Show or further process results on the CPU.
...

}

Figure 3.20: This code starts a CUDA kernel on the GPU. The syntax
<<<nb,nt,sm>>> is used to set up a kernel launch configuration. The nb,
nt and sm quantities refer to the number of blocks, the number of threads/block and
the amount of shared memory.
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One of the array representations that Obsidian uses, the Pull array, was present al-
ready in the earlier work but went under a different name. It was not until discovering
a complementary array representation, that we call push arrays, that the traditional
array was renamed to pull.

The Obsidian implementation of pull arrays was influenced by Pan’s representa-
tion of images as functions from coordinates to colour values [Ell03]. A pull array is
a function from index to value and an associated length.

Push arrays were added to Obsidian first in reference [CSS12]. A push array
specifies where elements are to end up in a result array, rather than where they come
from (as in a pull array). In essence, a push array is a computation which writes an
array to memory, but is parameterised on the write function which writes a single
element into memory. The push array function can then use the write function zero,
one, or several times.

Push arrays were added to Obsidian with the purpose of solving some perfor-
mance issues that we had been struggling with for a long time. These problems were
mainly concerned with concatenating or combining arrays in an efficient way. Push
arrays have also been adopted by others and are used in the implementation of filters
in reference [KN13] and in the new Nikola5.

Both push and pull arrays are virtual, in the sense that they do not directly corre-
spond to any data in a region of memory. This virtual nature of the array representa-
tions gives us fusion of operations for free. The programmer has to explicitly force
an array (using a force function) to actually compute the values and store them in
memory and to prevent operations from fusing.

In the version of Obsidian used in this paper6, new features were added. We in-
troduce two new variants of push and pull arrays called GlobPush and GlobPull.
This introduces a distinction between local arrays, short enough to be computed by a
block of the GPU, and global arrays that represent computations spread over blocks
of the GPU. This is an important step when it comes to Obsidian’s capabilities; we
can now express in what order a kernel fetches elements from global memory. Ear-
lier versions of Obsidian were limited to straight-line block indexing. A kernel gen-
erated by older Obsidian accessed blocks of elements in a fixed way (thread block
i accessed elements using (i * blocksize) + f tid, where f can permute
indices within a block but there is no similar way to permute the actual blocks).

In order to implement histograms we also need to add atomic operations to the
language. The addition of atomic operations here is done in a rather ad hoc way
and pushes us to program in a very low-level and imperative style. We strive to in-
corporate much of CUDA’s low-level functionality into Obsidian and adding atomic

5github.com/mainland/nikola/blob/master/src/Data/Array/Nikola/Repr/Push.hs
6github.com/svenssonjoel/Obsidian/branches/February2013
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operations is an attempt in that direction.
The version of Obsidian used in this paper also introduces a new monadic repre-

sentation of GPU programs. We call the monad Program. The Program type has
a parameter that represents at what level in the GPU hierarchy it executes. There are
sequential Thread programs and parallel Block and Grid programs. Type synonyms
are available, TProgram, BProgram and GProgram.

Many of the new features we mention above have been further refined and are
present in versions of Obsidian following the one we use in this paper. For example,
in the master branch of Obsidian7 we build on the ideas in this paper. There, global
and local arrays are represented by the same data type. That work also goes further
by implementing hierarchy generic functions that are applicable at different levels of
the Thread, Block and Grid hierarchy. We are also experimenting with the addition
of mutable arrays in order to better integrate the atomic operations8.

Obsidian programming example

In the different variants of counting sort that are developed in this paper, the prefix
sum operation is the same. It is therefore natural to use as an introductory example
of how Obsidian programs are written.

We need to operate on arrays that are too long to fit in a single block. The re-
sulting prefix sum is implemented as shown in reference [HS07], see figure 3.21.
There are three steps involved. First local prefix sums are computed; the rightmost
elements elements are also stored in a separate, auxiliary, array. Following this, the
prefix sum of the auxiliary array is computed. The prefix sums used in phase A and
B of the figure can both be generated from the same Obsidian program. Finally the
local prefix sums and the result of the auxiliary prefix sum are combined, forming a
large prefix sum over the entire array.

The figure also shows what kernels we need to produce. First, something that
performs a number of local prefix sums in parallel over the full length of an array
is needed. The prefix sum algorithm that we implement here is based on divide and
conquer and originates from Sklansky [Skl60].

The code below can be thought of as a program generator. Given an integer, n,
it gives a prefix computation for 2n elements. Here we go directly to generating the
prefix sums operations (with the operator + hard coded) rather than a higher order
function that can be used to more generically.

7github.com/svenssonjoel/Obsidian
8github.com/svenssonjoel/Obsidian/tree/mutable
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Figure 3.21: Illustration of how to combine many local prefix sum computations into
a large one. The algorithm has three steps: A compute local prefix sums, B recur-
sively compute prefix sums on the maximums of the local prefix sum calculations, C
distribute summed maximums over the local results.

Figure 3.22: Close-up on the prefix sum and distribute operations used in Figure
3.21.
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sklansky :: Int
-> Pull EWord32
-> BProgram (Pull EWord32)

sklansky 0 arr = return arr
sklansky n arr = do

let arr1 = binSplit (n-1) fan arr
arr2 <- force arr1
sklansky (n-1) arr2

The sklansky code above is short but still contains much that needs explana-
tion. First, the type specifies that the function takes a normal Haskell Int and an input
array (Pull EWord32). The result is a BProgram that produces a result array.
The function binSplit is in the Obsidian library and is used to implement divide
and conquer algorithms. This function splits an array recursively a given number of
times and then applies some computation on all parts. In this case the fan operation
implemented below is used.

fan arr = a1 ‘conc‘ fmap (+ (last a1)) a2
where

(a1,a2) = halve arr

The fan operation splits an array down the middle and then adds the element at
the highest index of the first half to all elements of the second. Then the two parts
are concatenated back together.

In order to obtain both the local prefix sum results and the maximum element of
the block, a small wrapper function is created.

sklanskyMax :: Int
-> Pull EWord32
-> BProgram (Pull EWord32,

Pull EWord32)
sklanskyMax n arr = do

res <- sklansky n arr
return (res,singleton (last res))

All this wrapper does is compute the prefix sum followed by returning the result
and a singleton array containing the maximum, last, element.

This local prefix sum is run on sub-parts of the global array. The function
mapDist splits up the array, runs a local computation on each part using the MPs
of the GPU; when it finishes, the result of that computation is an array that remains
distributed across the local memories of the GPU MPs.
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sklanskyG :: Int
-> GlobPull EWord32
-> GProgram (GlobPush EWord32,

GlobPush EWord32)
sklanskyG logbsize input =

toGProgram (mapDist (sklanskyMax logbsize)
(2^logbsize)
input)

In the sklanskyG function the local prefix combinator implemented so far is
turned into a global prefix sum computation. The toGProgram function takes a
function from blockId to a BProgram and gives back a GProgram, that is a pro-
gram running on the full GPU (across many MPs).

The CUDA code generated from sklanskyG is shown in figure 3.23. Writing
that type of CUDA code by hand is both tedious and error prone. The Obsidian code
is both shorter, more compositional and easier to read.

One kernel remains to be implemented, distribute.

distribute :: EWord32
-> GlobPull EWord32
-> GlobPull EWord32
-> GlobPull EWord32

distribute bs maxs inputs = zipWithG (+) maxs’ inputs
where
maxs’ = repeat bs maxs
repeat n = ixMap (\ix -> ix ‘div‘ n)

The distribute kernel takes three inputs, a number, n, and two global pull
arrays. The elements of the first array are repeated n times and then the result is
element wise added to the second input array. The code generated from this kernel is
shown in figure 3.24. The distribute kernel is used in the implementation of a
large prefix sum (over more elements then what can fit in shared memory) from local
prefix sum computations. This is indicated in figure 3.21.

A note about generated code

All generated code shown in this paper has been edited slightly by hand. This is
partly to increase readability but also to conserve space. The changes that have been
made are entirely cosmetic. Line breaks have been inserted in too long lines. All
occurrences of blockIdx.x, blockDim.x and threadIdx.x have been re-
placed with bid, bDim and tid. Some decimal constants have been changed to
hexadecimal. No other changes have been made.
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__global__ void sklansky(uint32_t *input0,
uint32_t *output0,
uint32_t *output1){

extern __shared__ unsigned char sbase[];
((uint32_t *)sbase)[tid] =

(((tid&0x1)<0x1)
? input0[((bid*32)+((tid&0xFFFFFFFE)|(tid&0x1)))]
: (input0[((bid*32)+((tid&0xFFFFFFFE)|0x0))]+

input0[((bid*32)+((tid&0xFFFFFFFE)|(tid&0x1)))]));
__syncthreads();
((uint32_t *)(sbase + 128))[tid] =
(((tid&0x3)<0x2)

? ((uint32_t *)sbase)[((tid&0xFFFFFFFC)|(tid&0x3))]
: (((uint32_t *)sbase)[((tid&0xFFFFFFFC)|0x1)]+

((uint32_t *)sbase)[((tid&0xFFFFFFFC)|(tid&0x3))]));
__syncthreads();
((uint32_t *)sbase)[tid] =
(((tid&0x7)<0x4)

? ((uint32_t *)(sbase+128))[((tid&0xFFFFFFF8)|(tid&0x7))]
: (((uint32_t *)(sbase+128))[((tid&0xFFFFFFF8)|0x3)]+
((uint32_t *)(sbase+128))[((tid&0xFFFFFFF8)|(tid&0x7))]));

__syncthreads();
((uint32_t *)(sbase + 128))[tid] =
(((tid&0xF)<0x8)

? ((uint32_t *)sbase)[((tid&0xFFFFFFF0)|(tid&0xF))]
: (((uint32_t *)sbase)[((tid&0xFFFFFFF0)|0x7)]+

((uint32_t *)sbase)[((tid&0xFFFFFFF0)|(tid&0xF))]));
__syncthreads();
((uint32_t *)sbase)[tid] =
((tid<0x10)

? ((uint32_t *)(sbase+128))[tid]
: (((uint32_t *)(sbase+128))[0xF]+

((uint32_t *)(sbase+128))[tid]));
__syncthreads();
((uint32_t *)(sbase + 128))[tid] = ((uint32_t *)sbase)[tid];
if (tid<1){
((uint32_t *)(sbase + 256))[tid] = ((uint32_t *)sbase)[31];

}
__syncthreads();
output0[((bid*32)+tid)] = ((uint32_t *)(sbase+128))[tid];
if (tid<1){
output1[(bid+tid)] = ((uint32_t *)(sbase+256))[tid];

}
}

Figure 3.23: CUDA code generated from the Obsidian sklanskyG prefix sum pro-
gram. This example shows the 32 element version of the prefix sum computation
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__global__ void distribute(uint32_t s0,
uint32_t *input1,
uint32_t *input2,
uint32_t *output0){

output0[((bid*bDim)+tid)] =
(input1[(((bid*bDim)+tid)/s0)]+
input2[((bid*bDim)+tid)]);

}

Figure 3.24: CUDA code generated from the Obsidian distribute function.

3.4.5 Implementing counting sort in Obsidian

Histogram

When computing the histogram, atomic operations are needed. Index i in the his-
togram array is incremented for each occurrence of the value i in the input array,
and if there are multiple occurrences of i then multiple threads will try to increment,
leading to a possible race. CUDA atomic operations must be applied to data stored
at an actual memory location. This does not fit very well into our setting with virtual
arrays (arrays that do not necessarily represent data in memory). But in Obsidian it
is possible to drop down to a low enough level of abstraction to still implement this
function. However, we are searching for suitable higher level abstractions to apply
here.

histogram :: GlobPull EInt32
-> GProgram ()

histogram gpull = do
global <- Output $ Pointer Word32
forAllT $ \gix ->

atomicOp global
(int32ToWord32 (gpull ! gix))
AtomicInc

Below, the code generated from this Obsidian program is shown.
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__global__ void histogram(int32_t *input0,
uint32_t *output0){

atomicInc(output0+(uint32_t)(input0[((bid*bDim)+tid)]),
0xFFFFFFFF);

}

The generated code uses atomicInc to increment a value in an array. The func-
tion is conditional, incrementing only if the value in memory is larger than the second
argument. Since we always want to increment, no matter the value in memory, we’ve
supplied 0xFFFFFFFF, which is the largest possible value.

The Obsidian code and the CUDA code are very similar in size and complexity.
However, an important advantage of the Obsidian code is that it composes better
than the CUDA code. If the input to histogram was a GlobPull array produced
by some other Obsidian function, then the two functions would be fused, typically
generating much faster code and not allocating memory for the fused array.

Reconstruct

The kernel for the reconstruct step uses one thread per element in the input array.
Each thread is implemented as a loop to write its corresponding element as many
times as it should occur in the output.

reconstruct :: GlobPull EWord32
-> GlobPush EInt32

reconstruct (GlobPull ixf) = GlobPush f
where f k =
do forAllT $ \gix ->

let startIx = ixf gix
in SeqFor (ixf (gix + 1) - startIx) $ \ix ->

k (word32ToInt32 gix) (ix + startIx)

The generated CUDA code for reconstruct can be seen below. Modulo syn-
tax and some index manipulation, the code is very similar to the Obsidian code.
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__global__ void reconstruct(uint32_t *input0,
int32_t *output0){

for (int i1 = 0;
i1 < (input0[(((bid*bDim)+tid)+1)]-

input0[((bid*bDim)+tid)]);
i1++)

{
output0[(i1+input0[((bid*bDim)+tid)])] =

(int32_t)(((bid*bDim)+tid));

}

}

Again, the difference between Obsidian and CUDA might seem small, but just as
above, the code in Obsidian composes better.

3.4.6 Implementing occurrence sort in Obsidian
Occurrence sort uses an occurs kernel instead of a histogram. The result of the oc-
curs computation is an array with a one at indices corresponding to values occurring
in the input array. The reconstruction of the sorted (and duplicate free) array is also
done slightly differently.

Occurs

The occurs kernel is implemented by using the scatterGlobal function from the
Obsidian library. This function takes two arrays, one of indices to write to and a
second of elements to write. In this case, it is applied to the input array and an array
containing all ones (replicateG 1).

occurs :: GlobPull EInt32 -> GlobPush EWord32
occurs elems =

scatterGlobal (fmap int32ToWord32 elems) (replicateG 1)

The CUDA code generated from this function is shown below.

__global__ void occurs(int32_t *input0,
uint32_t *output0){

output0[(uint32_t)(input0[((bid*bDim)+tid)])] = 1;

}
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When running this code, it is possible that many threads write to the same target
element. Since all are writing a one, no atomic operations are needed; the result will
still be one.

It is worth comparing the Obsidian code for the histogram kernel and the
occurs kernel. The histogram kernel is highly imperative in nature, and requires
atomic operations to manage synchronisation between threads. The occurs kernel,
on the other hand, has a very straightforward data-parallel implementation. Not only
is it simpler, but as we will see in section 3.4.7, it is also significantly faster.

Reconstruct

The reconstruct kernel for the occurrence sort algorithm is almost identical to the
kernel used for standard counting sort. The only difference is that a conditional can
be used instead of a loop. This can be seen as a slight optimisation; the previous
version of reconstruct could still be used in its place.
reconstruct :: GlobPull EWord32

-> GlobPush EInt32
reconstruct (GlobPull ixf) = GlobPush f

where f k =
do forAllT $ \gix ->

let startIx = ixf gix
in Cond ((ixf (gix + 1) - startIx) ==* 1) $

k (word32ToInt32 gix) startIx

This variant of reconstruct results in the generated code below.
__global__ void reconstruct(uint32_t *input0,

int32_t *output0){

if ((input0[(((bid*bDim)+tid)+1)]-
input0[((bid*bDim)+tid)])==1){

output0[input0[((bid*bDim)+tid)]] =
(int32_t)(((bid*bDim)+tid));

}

}

3.4.7 Performance evaluation
This section presents the experimental results. Our implementations of counting
sort are compared to the implementation of sorting from the Thrust library [NVId].
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Thrust is a C++ library, developed by NVIDIA, which provides abstractions similar
to the standard template library, but targets the GPU. The reason we have chosen to
compare with Thrust is that it has similar goals to Obsidian: to provide high-level
constructs while generating efficient GPU code.

All the data being sorted in the measurements are 32 bit unsigned integer valued
keys. The convention used in the charts is that the y-axis represents time in ms. The
different experiments are called sorted for sorting of an already sorted array, and
unique for sorting of randomised arrays where each element occurs exactly once.
There are also a number of experiments called Tx for a number x; the arrays used in
these experiments contain elements from an interval of numbers (0 to 2x − 1).

Figures 3.25 and 3.26 show the results of comparing our full counting sort to
Thrust sort and occurrence sort to Thrust’s sort and unique functions. Our imple-
mentation of counting sort consistently outperforms Thrust, except for small ranges
of values. The reason counting sort performance degrades is that the number of
threads used in the reconstruct step is proportional to the range, and therefore at
small ranges the execution becomes more sequential.

We compare occurrence sort to sort followed by unique from the Thrust library
because that seems to be the current best practice [KGJ+11]. Our implementation is
always at least twice as fast but in many cases it outperforms Thrust by more than a
factor of four. Our method is clearly beneficial for removing duplicates.

We also compare occurrence sort and counting sort to each other. The result of
this is shown in figure 3.27. We can see that the occurrence sort is typically a factor of
two faster than the regular sorting algorithm. The speedup comes from the fact that
the occurs kernel doesn’t need to perform any kind of synchronisation, whereas
the histogram kernel needs to use atomic operations.

The charts included in this paper show the performance when sorting eight re-
spectively 32 million (223 resp. 225) elements. However, we ran all benchmarks
with a number of elements, N , equal to 2n for n between 20 and 25. We found that
the interesting comparison is not in what happens as N grows larger but rather what
happens as we vary the ranges of the elements contained in the arrays.

All timing was performed on a system with an NVIDIA GTX670 GPU.

CUDA framework for the benchmarks

To obtain the timing measurements above, a framework9 written in CUDA was used.
This framework looks very similar to the CUDA code in figure 3.20. The main
difference is that a number of kernels are run in sequence, as shown in figure 3.29.

9Source code needed to repeat our experiments is available at www.cse.chalmers.se/~joels/
csort.html

www.cse.chalmers.se/~joels/csort.html
www.cse.chalmers.se/~joels/csort.html
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Figure 3.25: On the left, counting sort is compared to the Thrust library. On the right,
occurrence sort is compared to the sort followed by unique function in Thrust.
Both charts show running time for 8 Million elements.

Figure 3.26: This chart shows same comparison as figure 3.25, but for 32 Million
elements.

Figure 3.27: These two charts compares occurrence sort to counting sort. The left
chart is for 8 Million elements and the right chart is for 32 Million elements.
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float total_time;

cudaEventRecord(start,0);
for (int i = 0; i < 1000; ++i) {

// perform counting sort.
}
cudaEventRecord(stop,0);
cudaEventSynchronize(stop);

cudaEventElapsedTime(&total_time,start,stop);

Figure 3.28: The timing methodology used in performance experiments. A CUDA
event is recorded before and after the execution on the GPU. Their respective
recorded times are then compared.

The timing is performed on the GPU computation only, as illustrated by figure 3.28.

3.4.8 Discussion

It is instructive to compare the code of the two variants of counting sort. The standard
algorithm requires mutations and its parallel implementation is rather complicated.
The occurrence sort variation avoids key synchronisations, making the algorithm
data-parallel and this gives it a performance advantage. However, in applying the
trick to remove synchronisation we have changed the semantics of the function. In
this case, it is still useful, albeit less generally applicable. The idea of removing
synchronisation is a general and important idea for speeding up algorithms, but it is
not clear how general the method used in this paper is. We currently do not know of
any other algorithms which could benefit from a similar trick.

If the desired effect is to sort and remove duplicates (for an example of this see
[KGJ+11]) then there is a clear benefit to using occurrence sort over the sort com-
bined with unique method.

In this paper, we are entirely focused on the implementation and performance of
kernels. Reference [KVGH11] goes into the details of performing data transfers in
parallel with ongoing computations. We have not addressed this issue at all in our
implementations. This is also the reason why we haven’t performed any benchmarks
against the algorithm in [KVGH11], because it would compare very different things.
As a piece of future work, it would be interesting to add the capability of streaming
data from the main memory to the GPU to our algorithms.

In counting sort, an auxiliary array holding the count of how many times each el-
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histogram<<<NB,BS,0>>>(dinput,dhistoutput);

scan256<<<NB,BS,2052>>>
(dhistoutput,dscanoutput+1,dmaxs+1);

//dmaxs needs to be scaned (dmaxs2 is ignored)
scan256<<<SMALL,BS,2052>>>

(dmaxs+1,dmaxs+1,dmaxs1+1);

scan16<<<1,SMALL,132>>>
(dmaxs1+1,dmaxs1+1,dmaxs2);

// distribute can be in-place regarding dresult
// since it reads and writes in the exact
// same location (per thread)
distribute<<<SMALL,BS,0>>>

(BS,dmaxs1,dmaxs+1,dmaxs+1);
distribute<<<NB,BS,0>>>

(BS,dmaxs,dscanoutput+1,dscanoutput+1);

reconstruct<<<NB,BS,0>>>
(dscanoutput,dresult);

Figure 3.29: The kernel launch sequence used in the timing of counting sort for 1
Million elements. Any other input data size would vary only some of the prefix sum
(scan in the code) sizes.



147

ement occurs in the input array, the histogram array, is created. The size of this array
is based on the range of elements occurring in the input. This means that more mem-
ory is needed for larger ranges and may imply that counting sort is suitable only up
to some point. A related algorithm, known as radix sort [Knu98], addresses this issue
by using multiple counting sort like passes, one for each digit position and thus limits
this auxiliary memory usage to an array of size related to the radix (number of unique
digits) used in the representation of the values being sorted. During our exploration
of the counting sort algorithm on a GPU, we were not much concerned by memory
usage; all data and auxiliary arrays fit easily in the device memory. The charts (3.25,
3.26 and 3.27) indicate that our implementation offers the most benefit in the ranges
labelled as T10 to T17; these are in fact relatively small ranges (1024 to 131072
unique values). Our current hypothesis is that the decrease in benefit of counting sort
from range T18 and onward is due to more and more complicated memory access
patterns in the reconstruction phase. However, more in-depth profiling is needed to
understand where the decrease in benefit comes from.

Obsidian is work in progress but this paper shows a step forward in its capabili-
ties. New kinds of kernels that operate on global arrays can be implemented. We also
added atomic operations to the language. However, when dealing with atomic opera-
tions, we express the Obsidian program at a very low level. One task for future work
is to find some way to raise the level of abstraction in that area. Another future di-
rection in exploring the counting sort algorithm is to consider further optimisations.
One possibility is to work with sequentiality (more work per thread). Continuing
exploration in that direction could lead to further improvements of Obsidian when it
comes to low-level control.

In the current version of Obsidian, we need to write some CUDA code by hand
in order to implement the algorithm we describe. In the future we want to be able to
do all coding without leaving Haskell.
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3.5 Paper F:
A High-Level Embedded Language for Low-Level
GPU Kernel Programming

Bo Joel Svensson, Mary Sheeran

abstract
Graphics Processing Units (GPUs) offer potential for very high performance; they
are also rapidly evolving. Obsidian is an embedded language (in Haskell) for imple-
menting high performance kernels to be run on GPUs. We would like to have our
cake and eat it too; we want to raise the level of abstraction at which the programmer
works from that of CUDA code (which we generate) and still to give the programmer
fine control over low level details.

We present the user’s view of Obsidian by showing case studies and a detailed
optimisation effort applied to reduction kernels. Our chosen array representations
(pull and push arrays) provide fine control over the use of memory, but are also
sufficiently abstract to give guaranteed fusion of composed array operations. The
case studies also show that Obsidian helps to make exploration of the design space
for kernels easy. Code reuse and composition is easier in Obsidian than in CUDA.

Obsidian uses types to model the hierarchical nature of the GPU, to help the
programmer to write suitable (and easy to compile) GPU programs. Type directed
compilation provides the user with language constructs that can be used at different
levels of the GPU hierarchy; the types constrain the allowed behaviour of programs
at different levels, while remaining reasonably unobtrusive. The way in which the
hierarchical structure of the GPU architecture has influenced the design of Obsidian
is a major theme of this paper. Thus, the paper may function as an introduction to
GPUs and GPU programming for functional programmers.

Benchmarks show that the low-level, detailed control offered to the programmer
does have an associated pay-off in running time.

3.5.1 Introduction
Graphics Processing Units (GPUs) offer potential for high performance implemen-
tations of data parallel computations. However, GPUs are a bit quirky to program;
often, the programmer needs to consider very low-level concepts in order to make
the best use of the GPU. GPU programming models mirror the hierarchy of the
GPU, with threads, groups of threads with special properties and then groups of such
groups. There is a matching memory hierarchy, ranging from slow global memory
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that is accessible to all threads to fast local memory that allows threads within a
single group of threads to communicate with each other. For NVIDIA GPUs, both
the architecture and the programming model are called CUDA (for Compute Unified
Device Architecture). GPU kernels are compiled to run on the GPU, while serial host
code controls how they are launched and supplied with data. Here, the word kernel
denotes an SPMD (Single Program Multiple Data) program that is run on the GPU.
Section 3.5.1 covers GPU architecture.

Obsidian is an embedded language for GPU programming that aims to raise the
level of abstraction for the GPU programmer, while maintaining control over the
low-level details that are needed for performance.

So far, we have chosen not to try to apply automatic transformations or compiler
optimisation techniques to a GPU architecture agnostic program and hope to get
performance. In Obsidian, we want to put the tools to make the correct decisions
into the hands of the programmer. From Obsidian programs, CUDA kernels are
generated; host code can be written in Obsidian, but is still preferably written in
CUDA.

For key building blocks like scan and reduce, we see a trend towards the use of
fewer and much more complicated kernels [MG09], so that the host code is often
relatively simple. We wish to support the construction of these sophisticated kernels.

Motivation and contributions

Obsidian aims to provide a higher-level language with a more concise programming
style than that of CUDA. We want to achieve this while keeping programmer con-
trol over the details that influence performance. The programmer should be able
to experiment with global memory access patterns, make tradeoffs between sequen-
tial computation per thread and parallel computations across threads (using shared
memory) and avoid unnecessary synchronisation.

We envision the user of Obsidian as someone who is familiar with and interested
in the details of GPU hardware. For this category of users, the value of Obsidian
can be in the rapid prototyping of programming ideas. Obsidian is also useful for
trying to understand the actual cost model of a particular GPU, since it is so easy to
generate programs that are systematically varied.

Another possible use of Obsidian could be as the code generating backend of
a domain specific language that could benefit from GPU acceleration. Reference
[CMM12] is an example of this.

Our work on Obsidian makes the following contributions:

• A high-level programming interface that encourages design space exploration
through experimentation with details of GPU kernels (section 3.5.4).
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• Compositional abstractions for implementation of efficient GPU Kernels (sec-
tion 3.5.4).

• We use types to model the hierarchical nature of GPUs in our embedded lan-
guage and to rule out programs that we cannot easily compile to a GPU (section
3.5.3).

• We use type directed compilation of language constructs and implement some
GPU hierarchy generic functions (section 3.5.3).

The GPU and CUDA

This section provides some background information related to GPU architecture. Fo-
cus is placed on those aspects of GPUs that have influenced our work with Obsidian
the most.

The GPUs we target with Obsidian are NVIDIA GPUs that support CUDA [NVIb].
CUDA is the NVIDIA C-dialect for data-parallel programming on their GPUs. We
try to stay within the subset of functionality that is common between CUDA and
OpenCL [TKG], as we may in future want to generate OpenCL programs.

The NVIDIA CUDA capable GPUs are built on a scalable architecture. A GPU
consists of a number of multiprocessors; each multiprocessor has a number of pro-
cessing elements (cores) and a local memory that is shared between threads running
on the cores. Figure 3.30 illustrates these concepts. A GPU can come with as few as
one of these multiprocessors. The GPUs used in our measurements are the GTX 680,
which has eight multiprocessors, with a total of 1536 processing cores, the GTX 670
with 1344 cores, and the GT 650M, a laptop GPU, which has 384 such cores. On
these cores, groups of 32 threads called warps are scheduled. There are a number
of warp scheduling units per multiprocessor. Within a warp, threads execute in lock-
step (SIMD); diverging branches, that is those that take different paths on different
threads within a warp, are serialised, leading to performance penalties.

The scalable architecture design also influences the programming model. CUDA
programs must be able to run on all GPUs from the smallest to the largest. Hence
a CUDA program must work for any number of multiprocessors. The CUDA pro-
gramming model exposes abstractions that fit the underlying architecture; there are
threads (executing on the cores), blocks of threads (groups of threads run by a multi-
processor) and finally the collection of all blocks, which is called the grid.

The threads within a block can use the shared memory of the multiprocessor to
communicate with each other. A synchronisation primitive, __syncthreads(),
gives all the threads within a block a coherent view of the shared memory. There is
no similar synchronisation primitive between threads of different blocks.
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Figure 3.30: A GPU. Each multiprocessor has its own shared memory (SM).

The prototypical CUDA kernel starts out by loading data from global memory.
The indices into global memory for an individual thread are expressed in terms of the
unique identifier for that block and thread. Some access patterns allow memory reads
to be coalesced, while others do not, giving very poor performance. The patterns
that lead to good performance vary somewhat between different GPU generations,
but regular, consecutive accesses by consecutive threads within a warp are best.

A CUDA program is expressed at two levels. Kernels are data-parallel programs
that run on the GPU. They are launched by the controlling program, which runs on
the CPU of the host machine.

3.5.2 A taste of Obsidian programming
Obsidian, like CUDA, differentiates between Thread, Block and Grid computations.
The programmer specifies a sequential computation to be carried out by each thread.
Many instances of a sequential computation run in parallel over threads, to form a
block. A number of such blocks run in parallel, to form a grid.

Obsidian is a monadic embedded language. Local computations have the form
a0 -> .. -> an -> BProgram b, where BProgram is a representation
of programs that can be performed by a block of threads.

There are two different array representations, Pull and Push arrays. A pull array
naturally represents gather operations, while a push array captures scattering opera-
tions. Reference [CSS12] describes the introduction of push arrays into Obsidian.
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As an example, the code below implements a program that reverses the elements
of an short local array.

reverseL :: SPull a
-> BProgram (SPush Block a)

reverseL = liftM push . return . reverse

This program does not make use of any specific details of the BProgram monad;
instead it just composes return and push with the Obsidian library function
reverse. The push function converts a pull array to a push array. SPull and
SPush arrays have static lengths, this is explained in more detail on page 160.

We can change the reverseL function slightly to have the result stored in local
(shared) memory. Although this storing in shared memory serves little purpose in
this case, it illustrates the programmer’s ability to use shared memory. The force
function takes either a push or a pull array , computes it and places the result in
shared memory. Using force requires a MemoryOps constraint on the element
type.

reverseL’ :: MemoryOps a
=> SPull a
-> BProgram (SPush Block a)

reverseL’ = liftM push . force . reverse

The result of force is always a program yielding a pull array, and hence the use
of liftM push.

A CUDA program describes what one thread does and the mapping of that pro-
gram over many threads is done implicitly. In Obsidian, the programmer specifies
the entire kernel program; the whole computation is specified, including how that
computation is spread out over blocks, to form a Grid program.

The following Obsidian code shows how to split a large array up into chunks of
256 elements (splitUp 256 arr) and how the local reverseL and reverseL’
kernels are mapped, in parallel, over blocks using pConcatMap.

reverses :: DPull a -> DPush Grid a
reverses arr = pConcatMap reverseLocal

(splitUp 256 arr)

reverses’ :: MemoryOps a => DPull a -> DPush Grid a
reverses’ arr = pConcatMap reverseLocal’

(splitUp 256 arr)
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__global__ void reverse(int32_t* input0,
uint32_t n0,
int32_t* output0){

output0[((blockIdx.x*256)+threadIdx.x)] =
input0[((blockIdx.x*256)+(255-threadIdx.x))];

}

__global__ void reverse’(int32_t* input0,
uint32_t n0,
int32_t* output0){

extern __shared__ uint8_t sbase[];
((int32_t*)sbase)[threadIdx.x] =
input0[((blockIdx.x*256)+(255-threadIdx.x))];

__syncthreads();
output0[((blockIdx.x*256)+threadIdx.x)] =
((int32_t*)sbase)[threadIdx.x];

}

Figure 3.31: Code generated from the reverses and reverses’ programs.
reverses’ stores the array in shared memory before copying it to the global result
array.
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The pConcatMap combinator is overloaded; here it is applied at the following type:

pConcatMap :: ASize l
=> (a1 -> Program t (SPush t a))
-> Pull l a1
-> Push (Step t) l a

pConcatMap takes a computation resulting in a push array at a specific level of
the GPU hierarchy, t, and a pull array. The computation is applied to each element
of the pull array and the results are concatenated into a push array at the level above
t. Here, this is used to apply a block level computation, giving a grid computation.

The CUDA code generated by the above reverses function is shown in Fig-
ure 3.31. Note how it uses the indices of the block and thread (BlockIdx.x and
ThreadId.x) to ensure that each thread accesses the correct part of the global input
array.

To reverse a large array (one that cannot fit in one block), the elements in each
block-sized chunk are reversed locally, and the order of those chunks is reversed.

largeReverse :: DPull b
-> Push Grid EWord32 b

largeReverse arr =
pConcat $ reverse $ fmap reverseLocal

(splitUp 256 arr)

The kernels that can be generated using Obsidian take arrays in global memory
as inputs and output an array to global memory. Kernels with this behaviour have a
type of the form:

myKernel :: a0 -> ... -> aN -> DPush Grid b

where a0 to aN can be pull arrays or scalars. This choice limits the kinds of kernels
can be expressed, but makes compilation of those kernels a lot easier. For example, a
kernel that outputs data to two different global arrays cannot currently be expressed.
Lifting this restriction is work in progress.

3.5.3 Obsidian internals
Many array languages supply a fixed set of parallel primitives like Reduce, Scan and
Permute, but do not give the user control over how they are implemented. Obsid-
ian programmers are, instead, encouraged to experiment with the implementation of
such primitives, to maximise performance, for example by trading off sequential and
parallel work or by varying memory access patterns. Obsidian’s two array represen-
tations (pull and push arrays) are central to providing this fine control.
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Figure 3.32: The CUDA hierarchy, showing important Obsidian features at each
level.

Scalars

An expression data type defines the language available at the scalar level of Obsidian.
This is implemented as a GADT (Generalised Algebraic Data Type) to provide a type
safe programmer’s interface:

data Exp a where
Literal :: Scalar a

=> a
-> Exp a

BlockIdx :: DimSpec
-> Exp Word32

ThreadIdx :: DimSpec
-> Exp Word32

Index :: Scalar a =>
(Name,[Exp Word32])
-> Exp a
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If :: Scalar a
=> Exp Bool
-> Exp a
-> Exp a
-> Exp a

BinOp :: (Scalar a,
Scalar b,
Scalar c)

=> Op ((a,b) -> c)
-> Exp a
-> Exp b
-> Exp c

UnOp :: (Scalar a,
Scalar b)

=> Op (a -> b)
-> Exp a
-> Exp b

Most constructors are standard, implementing arithmetic and conditionals via the
BinOp, UnOp and If constructors. There are also two GPU specific variables,
ThreadIdx and BlockIdx referring to the thread identity.

We provide type synonyms for commonly used element types:

...
type EInt32 = Exp Int32
type EInt64 = Exp Int64
...
type EWord32 = Exp Word32
type EWord64 = Exp Word64
type EFloat = Exp Float
type EDouble = Exp Double
type EBool = Exp Bool

Pull arrays

Pull arrays are perfectly suited for so-called gather operations (read many values,
compute one value), as well as directly suitable for parallelisation on a GPU. A pull
array uses the well known representation of arrays as functions from index to ele-
ment.

data Pull s a = Pull s (EWord32 -> a)
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Very similar representations are used in many other embedded languages. The
embedded language Pan [EFdM03] used a similar representation for images and
it has been used since in Obsidian, Feldspar [ACS+11] and Repa [KCL+10]. In
Obsidian, there is a force function that, when applied to a pull array, writes the
elements of that array into shared memory using as many threads as needed from
those available. If the array is larger than the number of threads made available, the
force operation is split into two or more passes. This is a change compared to earlier
versions of Obsidian, where the length of arrays we could force were limited to the
maximum number of threads per block (1024 threads). In this version, the threads
are, in a sense, virtual. The mapping from virtual threads to real threads is done as a
step in the compilation.

The length of an array, the s parameter, can be either static (a Haskell known-at-
compile-time value) or dynamic (a runtime value). Static lengths are used for local
(or block) computations, with those lengths determining shared memory consump-
tion. Dynamic lengths are used for global computations (across many blocks). After
specifying a local computation, it can often be applied over a variable number of
blocks. The dynamic lengths capture this common use case.

There are type synonyms for the dynamic and static versions of pull arrays:

type SPull = Pull Word32
type DPull = Pull EWord32

Thread, Block and Grid Computations

The programs that can be specified in Obsidian are represented in a Program data
type. This data type also represents the lowest level programming interface exposed
by Obsidian. In reference [SSS13] we make use of the low-level capabilities pro-
vided by that interface to implement histograms using atomic operations (not shown
here).

The Program data type has a parameter, t, that can be either Thread, Block
or Grid, corresponding to the GPU hierarchy, as shown in Figure 3.32.

data Step a -- A step in the hierarchy
data Zero

type Thread = Zero
type Block = Step Thread
type Grid = Step Block

Below are some selected parts of the Program data type. There is a sequential,
SeqFor, loop that runs a sequential loop body a given number of times. In this
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case, both the loop body and the loop itself are Thread Programs. More interesting
is the ForAll case that introduces different kinds of parallelism depending on the
t parameter. ForAll executes a program body at the level below several times in
parallel. If the body of the ForAll loop is a Thread computation, the ForAll
loop itself is a Block computations. Likewise, if the body is a Block computation,
the loop itself is a Grid computation.

data Program t a where
Identifier :: Program t Identifier
Assign :: Scalar a

=> Name
-> [EWord32]
-> (Exp a)
-> Program Thread ()

Allocate :: Name
-> Word32
-> Type
-> Program Block ()

...
SeqFor :: EWord32

-> (EWord32 -> Program Thread ())
-> Program Thread ()

ForAll :: EWord32
-> (EWord32 -> Program t ())
-> Program (Step t) ()

...
Sync :: Program Block ()

The Assign and Allocate constructors represent assignment into shared mem-
ory or a variable, and allocation of shared memory. The Identifier constructor
is used to obtain fresh Identifiers and is not meant to be made available to the pro-
grammer. The Sync constructor corresponds to the CUDA __syncthreads()
function.

To allow the programmer to use the monadic do notation when constructing
Obsidian programs, the Program data type is made an instance of Monad. The
details of how this is done are outlined in section 3.5.3.
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Push arrays

A push array captures the idea of scattering, focussing on where elements end up
rather than where they come from. In Obsidian, a push array is defined as follows:

data Push p s a =
Push s ((a -> EWord32 -> TProgram ()) -> Program p ())

A push array has two parts, a length and a higher-order function. The idea is that
this function is provided with a method to write an element into memory (a write-
function), and returns a program that uses that write-function a number of times. Note
that the write-function produces a TProgram (short for Program Thread). As
a result, push arrays cannot represent nested data parallelism. This concept is best
illustrated by showing how to turn a pull array into a push array.

convToPush :: SPull a -> SPush Block a
convToPush arr =

Push n $ \wf ->
ForAll (fromIntegral n) $ \tid -> wf (arr ! tid) tid

where
n = len arr

This is actually one case of the definition of the push function, which we will see
shortly. In the push array case, the length represents the maximum index the push
array might write to.

Push and pull array interplay

Both push and pull arrays represent methods of computing an array. They do not
directly correspond to actual data stored in memory, but rather are virtual. This
enables fusion of operations on both push and pull arrays. One such example is map
fusion: map f . map g = map (f . g). It is only by using force that the
programmer can explicitly demand that the operations should not be fused but that the
actual intermediate result should be stored in memory. In Obsidian, force is also
the only way to convert a push array into a pull array. With some class constraints
removed for simplicity, the type of force is:

force :: ( ... )
=> arr Word32 a
-> Program Block (Pull Word32 a)

where arr is an array (push or pull) with elements that can be stored into memory.
Note that the return type of force is a program yielding a pull array. This pull array
represents reading from a named area of memory.
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Converting a pull array to a push array is cheap and is done using a function
called push that behaves differently (sequentially or in parallel) at different levels
of the GPU hierarchy. This is implemented as a type class:
class Pushable t where

push :: ASize s => Pull s e -> Push t s e

The ASize class has instances for both the static and dynamic lengths and is used
to obtain conversion to a representation used internally; the function sizeConv
converts both static and dynamic lengths to a Word32 expression.

There are two instances of the Pushable class, one for thread programs and one
for block programs:
instance Pushable Thread where

push (Pull n ixf) =
Push n $

\wf -> SeqFor (sizeConv n) $ \i -> wf (ixf i) i

instance Pushable Block where
push (Pull n ixf) =
Push n $

\wf -> ForAll (sizeConv n) $ \i -> wf (ixf i) i

Now, the push function captures just one possible way to convert a pull array
into push array – with one write per thread. In the block case, it is possible to vary
the amount of work per thread using the pushN function provided by the library.
Indeed, the conversion of pull arrays into push arrays can be done in many ways. For
example, when pushing more than one element per thread one could make choices
between placing them consecutively or far apart. We intend to provide a variety of
such special purpose push functions, but would also expect Obsidian users to tailor
push functions to their own particular needs.

Compilation to CUDA

Obsidian is a monadic language. The Program data type is made a monad by
adding the following constructors:
data Program t a where

...

Return :: a -> Program t a
Bind :: Program t a

-> (a -> Program t b)
-> Program t b
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and adding a very simple Monad instance:

instance Monad (Program t) where
return = Return
(>>=) = Bind

The choices above influence the compilation procedure. Implementing a com-
piler for the Program data type is not entirely straightforward. Our approach is
described in further detail in reference [SS13]; the presentation here focuses instead
on the type directed compilation of the ForAll primitives.

The first step in the compilation process is to turn the monadic Program into
a first-order representation. This first-order representation also makes explicit what
level of parallelism the ForAll constructor refers to. It does this by having separate
constructors for parallel loops over all threads of a block SForAll and parallel loops
over blocks SForAllBlocks. The first-order representation is a list of statements.
The extra value of type a that is carried around with each statement is used to keep
track of meta information in later compilation passes.

type IMList a = [(Statement a,a)]

type IM = IMList ()

data Statement t =
forall a. (Show a, Scalar a)

=> SAssign Name [EWord32] (Exp a)

...
| SSeqFor String (EWord32) (IMList t)

...
| SForAll (EWord32) (IMList t)
| SForAllBlocks (EWord32) (IMList t)

...
| SAllocate Name Word32 Type

...
| SSynchronize

The type directed part of the compilation is implemented using a type class called
Compile. The Compile class houses just one function, called compile. The
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compile function takes a splittable value supply and a Program t a and outputs
intermediate code, of type IM, and a value of type a. The significance of the value
supply and of the value of type a will be made clear after considering the instances
of Compile.

class Compile t where
compile :: Supply Int -> Program t a -> (a,IM)

For each of the levels of the GPU hierarchy, Grid, Block and Thread, there
is an instance of the Compile class. The simplest case is Thread, which does not
at all support parallel loops; it just delegates the compilation process to a function
that takes care of all non type directed cases (called cs).

instance Compile Thread where
compile s p = cs s p

The cases for blocks takes care of compilation of the ForAll constructor into a
use of the SForAll statement. Likewise, the grid case compiles into an SForAllBLocks
statement.

instance Compile Block where
compile s (ForAll n f) = (a,out (SForAll n im))
where

p = f (ThreadIdx X)
(a,im) = compile s p

compile s p = cs s p

instance Compile Grid where
compile s (ForAll n f) = (a, out (SForAllBlocks n im))
where

p = f (BlockIdx X)
(a,im) = compile s p

compile s p = cs s p

The out function used in the compilation function has type
Statement () -> IM and generates a one element IM list with unit attached as
meta-data.

Currently, only the ForAll constructor is given the type directed treatment. All
other language features are tied to a specific level of the GPU or are completely
independent of any such concerns. Taking care of these operations as well as the
monadic Return and Bind cases is in the hands of the cs function. This is also
where the value supply and the a parameter play a role.
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cs :: Compile t => Supply Int -> Program t a -> (a,IM)
cs i Identifier = (supplyValue i, [])
...

The Identifier constructor does not correspond to any code executed on the
GPU. It just helps in reifying the Programmonad. Now it can be seen that the value
of type a that is being returned is the monadic value of the Program. This follows
the same monad reification technique as described in reference [SS13].

The constructors mentioned above are directly compiled into the corresponding
statements.

cs i (Assign name ix e) = ((),out (SAssign name ix e))
cs i (Allocate id n t) = ((),out (SAllocate id n t))
cs i (Sync) = ((),out (SSynchronize))

Turning to the monadic Bind and Return constructors, it becomes clear why
we need that extra value of type a in the return type of the compile functions. We
need a value to pass to the function in the Bind constructor.

cs i (Bind p f) = (b,im1 ++ im2)
where
(s1,s2) = split2 i
(a,im1) = compile s1 p
(b,im2) = compile s2 (f a)

cs i (Return a) = (a,[])

In the IM, all arrays in shared memory will have unique names. These names are
obtained via the value supply during the reification of the Program monad. These
names will be used in a memory mapping phase. A liveness analysis of the arrays
collects information needed to lay out the arrays in the shared memory of the GPU.
Currently no spilling of arrays that do not fit into shared memory is performed, so it
is very possible to design an Obsidian program that will not work because of shared
memory restrictions. After the arrays are assigned addresses in the shared memory,
a renaming phase replaces array names with these locations.

The last step in the compilation process uses the Language.C.Quote library to
turn the IM into CUDA code. This compilation stage takes a configuration as pa-
rameter. The configuration tells how many actual threads per block the CUDA code
should be generated for. At this stage parallel for loops (SForAll) are turned into
more than one parallel for loop in sequence, if needed.
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3.5.4 Case studies
The following case studies show first a typical application, the Mandelbrot fractal,
in which the required work is naturally highly parallel. The remaining case studies
consider key building blocks, reduce and scan, that have data-flow graphs involving
much more communication. Then, the programmer must find ways to decompose
the algorithm in order to fit within the constraints imposed by the GPU architecture.
These two case studies illustrate the use of Obsidian for exploring the design space
when implementing a particular algorithm.

Fractals

The Mandelbrot fractal is generated by iterating a function:

zn+1 = z2n + c

where z and c are complex numbers. The method to generate the fractal presented
here is based on a sequential C program from reference [Ste89]. However, the
problem is embarrassingly parallel.

In order to get the Mandelbrot image, one lets z0 be zero and maps the x and y
coordinates of the image being generated to the real and imaginary component of the
c variable.

xmax = 1.2 :: EFloat
xmin = -2.0 :: EFloat
ymax = 1.2 :: EFloat
ymin = -1.2 :: EFloat

To obtain the well known and classical image of the set, we let the real part of c
range over −2.0 to 1.2 as the x coordinate range from 0 to 512 and similarly for the
y coordinate and the imaginary component.

-- For generating a 512x512 image
deltaP = (xmax - xmin) / 512.0
deltaQ = (ymax - ymin) / 512.0

The image is generated by iterating the function presented above. We have cho-
sen to map the height of the image onto blocks of executing threads. Each row of
the image is computed by one block of threads. This means that for a 512×512 pixel
image, 512 blocks each of 512 threads are needed.

The function to be iterated is defined below and called f. This function will be
iterated until a condition holds (defined in the function cond). We count the number
of iterations and if they reach 512 we break out of the iteration.
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f bid tid (x,y,iter) =
(xsq - ysq + (xmin + (w32ToF tid) * deltaP),
2*x*y + (ymax - (w32ToF bid) * deltaQ),
iter+1)
where
xsq = x*x
ysq = y*y

cond (x,y,iter) = ((xsq + ysq) <* 4) &&* iter <* 512
where
xsq = x*x
ysq = y*y

The number of iterations that are executed is used to decide which colour to
assign to the corresponding pixel. In the function below, seqUntil iterates f until
the condition cond holds. Then the number of iterations is extracted and used to
compute a colour value (out of 16 possible values).

iters :: EWord32 -> EWord32 -> SPush Thread EWord8
iters bid tid = fmap extract $

seqUntil (f bid tid) cond (0,0,1)
where
extract (_,_,c) = ((w32ToW8 c) ‘mod‘ 16) * 16

The final step is to run the iterations for each pixel location. This is done by using
the generate function:

generate :: ASize l
=> l
-> (EWord32 -> SPush t b)
-> Push (Step t) l b

generate is a function that can be used at the thread or block level. It takes a
function from index to computation for that index and executes a number of such
computations at the level above. Here, it is used to compute an element per thread, a
block, and then to execute a number of such blocks over a grid.

genRect :: EWord32
-> Word32
-> (EWord32 -> EWord32 -> SPush Thread b)
-> DPush Grid b

genRect bs ts p = generate bs $
\bid -> generate ts $ p bid
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Image xmax xmin ymax ymin ms
mandel 1.2 -2.0 1.2 -1.2 2.65
mandel1 -0.690906 -0691060 0.387228 0.387103 1.78
mandel2 -0.723005 -0.793114 0.140974 0.037822 6.79
mandel3 -0.745388 -0.745464 0.113030 0.112967 5.7

Figure 3.33: Running times for the Mandelbrot program. The parameters (xmax,
xmin, ymax, ymin) correspond to zooming in on different areas of the generated
images.
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Figure 3.34: Left: evenOdds - zipWith reduction, leads to uncoalesced memory
accesses.
Right: halve - zipWith reduction, leads to coalesced memory accesses. This
coalescing is most important during the very first phase, when data is read from
global memory.

The largest possible image that can be obtained using this particular method is
1024×1024. This is because of the maximum threads per block limitation of current
GPUs. The code below generates a 512×512 element image.

mandel = genRect 512 512 iters

This case study illustrates the use of the generate function at two different
levels of the GPU hierarchy. We also make use of iterations within each thread.

Reduction

In this section, we implement a series of reduction kernels. The Obsidian reductions
are implemented to take an associative operator as a parameter. In the benchmarking,
the operation used will be addition and the elements will be 32 bit integers.

Some of the reduction kernels will also require that the operation is commutative.
To illustrate the kind of low level control that an Obsidian programmer has over ex-
pressing details of a kernel, we show a series of reduction kernels, each with different
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Figure 3.35: Left: BAD Adding sequential reductions like this, reintroduces memory
coalescing issues. Consecutive threads nolonger access consecutive memory loca-
tions.
Right: GOOD Using sequential reduction but maintaining coalescing

optimisations applied. Many of the optimisations that are applied to the kernels are
influenced by a tutorial presentation from NVIDIA [Har].

The kernels implemented in the following subsections use a variant of force,
called unsafeForce that attempts to be clever about the insertion of synchroni-
sation into the generated code. If the array that is being forced is shorter than the
warp width, a synchronisation is not needed. It is called unsafe because when using
push arrays there is still no absolute guarantee that the threads do not later write to
indices that are used by threads that belong to another warp. Programmers should
use unsafeForce with care; it is however safe together with pull arrays.

This section focuses on local reduction kernels. The construction of large reduc-
tion algorithms from these kernels will be illustrated in section 3.5.4.

Reduction 1: Our first attempt at reduction combines adjacent elements repeat-
edly. This approach is illustrated on the left of Figure 3.34. In Obsidian, this entails
splitting the array into its even and its odd elements and using zipWith to combine
these. This procedure is then repeated until there is only one element left. This kernel
will work for arrays whose length is a power of two.

red1 :: MemoryOps a
=> (a -> a -> a)
-> SPull a
-> BProgram (SPush Block a)

red1 f arr
| len arr == 1 = return $ push arr
| otherwise =

do
let (a1,a2) = evenOdds arr
arr’ <- unsafeForce $ zipWith f a1 a2
red1 f arr’
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The above code describes what one block of threads does. To spread this com-
putation out over many blocks and thus perform many simultaneous reductions,
pConcatMap is used (as before):

mapRed1 :: MemoryOps a
=> (a -> a -> a)
-> DPull (SPull a)
-> DPush Grid a

mapRed1 f = pConcatMap $ red1 f

This kernel does not perform well (as can be seen in Figure 3.36). This may be
attributed to the memory access pattern used. Remember that one gets better per-
formance on memory access when consecutive threads access consecutive elements,
which happens if each thread accesses elements that are some stride apart.

Reduction 2: red2 lets each thread access elements that are further apart. It does
this by halving the input array and then using zipWith on the halves (see Fig-
ure 3.34). This choice can only be made if the operator is commutative.

red2 :: MemoryOps a
=> (a -> a -> a)
-> SPull a
-> BProgram (SPush Block a)

red2 f arr
| len arr == 1 = return $ push arr
| otherwise =
do

let (a1,a2) = halve arr
arr’ <- unsafeForce $ zipWith f a1 a2
red2 f arr’

Reduction 3: The two previous implementations of reduce write the final value
into shared memory (as there is a force in the very last stage). This means that
the last element is stored into shared memory and then directly copied into global
memory. This can be avoided by cutting the recursion off at length 2 instead of 1,
and performing the last operation without issuing a force.
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red3 :: MemoryOps a
=> (a -> a -> a)
-> SPull a
-> BProgram (SPush Block a)

red3 f arr
| len arr == 2 =

return $
push $
singleton $ f (arr ! 0) (arr ! 1)

| otherwise =
do

let (a1,a2) = halve arr
arr’ <- unsafeForce $ zipWith f a1 a2
red3 f arr’

Reduction 4: Now we have a set of three basic ways to implement reduction and
can start experimenting with adding sequential, per thread, computation. red4 uses
seqReduce, which is provided by the Obsidian library and implements a sequential
reduction that turns into a for loop in the generated CUDA code. The input array is
split into chunks of 8 that are reduced sequentialy. The partial results are reduced
using the previously implemented (red3).

red4 :: MemoryOps a
=> (a -> a -> a)
-> SPull a
-> BProgram (SPush Block a)

red4 f arr =
do
arr’ <- force $

pConcatMap (seqReduce f)
(splitUp 8 arr)

red3 f arr’

As can be seen by the running times in Figure 3.36, this optimisation did not
come out well. The problem is that it reintroduces memory coalescing issues (see
Figure 3.35).

Reduction 5: With red5, the coalescing problem is dealt with by defining a new
function to split up the array into sub arrays. The idea is that the elements in the
inner arrays should be drawn from the original array in a strided fashion.
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coalesce :: Word32 -> SPull a -> SPull (SPull a)
coalesce n arr =

mkPull s $ \i ->
mkPull n $ \j -> arr ! (i + fromIntegral s * j)

where
s = (len arr) ‘div‘ n

With coalesce in place of splitUp, red5 can be defined as:

red5 :: MemoryOps a
=> (a -> a -> a)
-> SPull a
-> BProgram (SPush Block a)

red5 f arr =
do
arr’ <- force $

pConcatMap (seqReduce f)
(coalesce 8 arr)

red3 f arr’

Reductions 6 and 7: Lastly, we try to push the tradeoff between number of threads
and sequential work per thread further. red6 and red7 represent changing red5
to reduce 16 and 32 elements in the sequential phase. The performance of the fastest
of these kernels is very satisfactory, at a level where the kernel is memory bound, that
is constrained by memory bandwidth.

Larger local reductions: Figure 3.37 shows running time results for kernels that
are very similar to the ones described above, but with a larger number of elements per
local reduction (that is per block). This means that all the kernels need to introduce
a small amount of sequentiality at the beginning. This is done by introducing a new
force function:

unsafeForce’ arr | len arr > 1024 = return arr
| otherwise = force arr

unsafeForce’ exploits the fact that force doesn’t actually change the elements
of the array. Skipping the write into shared memory should still give the desired
effect, so replacing it with return is safe. Two parallel phases are fused into one
parallel phase that performs sequential work.

This is a new way of introducing sequential work into kernels; unlike seqReduce,
it does not result in a for loop, but rather in an unrolled loop in the kernel.
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Kernel Threads Shared mem. ms
red1 1024 16384 2.085
red2 1024 16384 1.748
red3 1024 16384 1.741
red4 256 2048 2.113
red5 256 2048 0.455
red6 128 1024 0.441
red7 64 512 0.441

Figure 3.36: Execution time of a grid of 8192 reductions , each of 2048 elements and
on a GTX680. The timing figures were obtained using the NVIDIA Profiler.

Kernel Threads Shared mem. ms
red1l 1024 16384 1.567
red2l 1024 16384 1.073
red3l 1024 16384 0.976
red4l 256 2048 2.240
red5l 256 2048 0.443
red6l 128 1024 0.440
red7l 64 512 0.440

Figure 3.37: Execution time of a grid of 4096 reductions, each of 4096 elements on
a GTX680. The timing figures were obtained using the NVIDIA Profiler.
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0 1 2 3 4 5 6 7

0 1 2 5 4 9 6 13

0 1 3 6 4 9 15 22

0 1 3 6 10 15 21 28

Figure 3.38: Sklansky parallel prefix network

Scan

Scan computes all the prefix sums of a sequence of values using a binary associative
operator (and is familiar to Haskell programmers as the scanl1 function).

Given an array of values a0, a1, . . . , an and associative operator ⊕, the scan op-
eration computes a new array:

s0 = a0
s1 = a0 ⊕ a1

. . .
sn = a0 ⊕ a1 ⊕ . . .⊕ an

Figure 3.38 shows a standard divide and conquer decomposition of scan. Data
flows from top to bottom and boxes with two inputs are operators. At each level,
exactly half of the boxes are operators and in an imperative language the algorithm
would naturally be implemented in-place. Since we cannot express in-place algo-
rithms currently in Obsidian, this means that we need to copy unchanged values into
a new array during each phase. The memory mapping gives us a ping-ponging im-
plementation, but an in-place implementation would likely be faster.

Also, the threads now do two different things (copy, or perform operation). One
can have as many threads as elements, but then each must have a conditional to decide
whether to be a copy or operation thread. Or we can launch half as many threads and
have each of them perform both a copy and an operation. We will show code for both
of these options; the first is easier to implement.

The Obsidian code below implements the scan network from Figure 3.38, using
as many threads as there are elements.
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sklansky :: (Choice a, MemoryOps a)
=> Int
-> (a -> a -> a)
-> SPull a
-> BProgram (SPush Block a)

sklansky 0 op arr = return $ push arr
sklansky n op arr =

do
let arr1 = binSplit (n-1) (fan op) arr
arr2 <- force arr1
sklansky (n-1) op arr2

This is a kernel generator; the (Haskell) Int parameter can be used to generate
kernels of various sizes by setting it to the log base two of the desired array size.

The binSplit combinator used in sklansky is part of the Obsidian library
and used to implement divide and conquer algorithms. It divides an array recursively
in half a number of times (first parameter) and applies a computation to each part
(second parameter). The operation applied in this case is fan:

fan :: Choice a
=> (a -> a -> a)
-> SPull a
-> SPull a

fan op arr = a1 ‘conc‘ fmap (op c) a2
where

(a1,a2) = halve arr
c = a1 ! fromIntegral (len a1 - 1)

It is the array concatenation (conc) used in this function that introduces condi-
tionals into the generated code.

Two elements per thread: Both to avoid conditionals and to allow for larger scans
per block, we move to two elements per thread. Each phase of the algorithm is a
parallel for loop that is executed by half as many threads as there are elements to
scan. The body of the loop performs one operation and one copy, using bit-twiddling
to compute indices. Note the use of two write functions in sequence. Similar patterns
were used in our implementations of sorting networks [CSS12], for similar reasons.
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phase :: Int
-> (a -> a -> a)
-> SPull a
-> SPush Block a

phase i f arr =
Push l $ \wf -> ForAll sl2 $ \tid ->
do
let ix1 = insertZero i tid

ix2 = flipBit i ix1
ix3 = zeroBits i ix2 - 1

wf (arr ! ix1) ix1
wf (f (arr ! ix3) (arr ! ix2) ) ix2

where
l = len arr
l2 = l ‘div‘ 2
sl2 = sizeConv l2

For an input of length 2n, n phases are composed as follows:

sklansky2 :: MemoryOps a
=> Int
-> (a -> a -> a)
-> SPull a
-> BProgram (SPush Block a)

sklansky2 l f = compose [phase i f | i <- [0..(l-1)]]

compose takes a Haskell list of programs and composes them in sequence, forc-
ing intermediate arrays between each step.

compose :: MemoryOps a
=> [SPull a -> SPush Block a]
-> SPull a
-> BProgram (SPush Block a)

compose [f] arr = return $ f arr
compose (f:fs) arr =

do
let arr1 = f arr
arr2 <- force arr1
compose fs arr2

Comparing the two kernels sklansky and sklansky2 in the NVIDIA profiler
indicates that sklansky2, while being faster than sklansky in many cases, has
a worse memory loading behaviour. This indicates that tweaking the way data is
loaded into shared memory may be beneficial in that kernel.
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Figure 3.39: left:The time it takes to run 4096 blocks of varying sizes using our
different implementations of the Sklansky kernel.
Right: varies the number of blocks so that the number of elements is the same in
each experiment. These results where obtained on an NVIDIA GTX 670.

sklansky3 :: MemoryOps a
=> Int
-> (a -> a -> a)
-> SPull a
-> BProgram (SPush Block a)

sklansky3 l f arr =
do
im <- force$ load 2 arr
compose [phase i f | i <- [0..(l-1)]] im

Here we use load 2 to realise loading of 2 elements per thread but in a strided
way that is more likely to lead to a good memory access pattern. This function is an
example of one of the custom ways to create a push array from a pull array mentioned
in section 3.5.3. The results of these optimisations are shown in Figure 3.39. To make
a seriously fast local and global scan, we would need to add more sequential work, as
we did in the reductions. We do not yet know if our inability to do in-place updates
prevents us from competing with hand-tuned CUDA scan code.

Combining kernels to solve large problems

With Obsidian, we can experiment with details during the implementation of local
computations. In section 3.5.4, we saw that the description of a local kernel involves
its behavior when spread out over many blocks. However, solving large problems
must sometimes make use of many different local kernels or the same local kernel
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used repeatedly. For now, we turn to CUDA for describing these algorithms. Here
the procedure of making use of combinations of kernels is explained using large
reduction as an example.

Large reductions

We implement reduction of large arrays by running local kernels on blocks of the
input array. If the local kernel reduces ELT_PER_BLOCK elements to 1 then
this first step reducesBLOCKS∗ELT_PER_BLOCK elements intoBLOCKS
partial results. The procedure is then repeated on theBLOCKS elements until there
is one value.

Chosing red5l from section 3.5.4 and a block-size and local size of 4096 gives
a 16 Million element reduction in only two stages.

The CUDA code we need to write by hand is very simple and only describes
the actual order of the kernels we wish to launch. We make no changes to the ker-
nels themselves. The listing in figure 3.40 shows an outline of the CUDA code for
launching red5l to give 224 (= 16777216) element reduction.

This is just a very simple example of what CUDA code can look like. Part of the
motivation for showing it is to make the presentation complete. We currently write
this kind of CUDA skeleton by hand; section 3.5.5 describes future work to improve
this situation.

Table 3.41 shows the running time for the Obsidian together with CUDA 224

element reduction compared to Data.Array.Accelerate. Again, the kernel generated
from Obsidian is memory bound. These values are interesting since they indicate
that the Accelerate reduction skeleton is very well optimised, while maintaining gen-
erality. We expected this, since reduction corresponds directly to the Accelerate Fold
skeleton, which we believe to have been manually optimised as a one-time effort. It
is also interesting that adding the second phase of reduction, in this case one instance
of 4096 elements, only negligibly influences the running time.

Related work

There are many languages and libraries for GPU programming. Starting at the low-
level end of the spectrum we have CUDA [NVIb]. CUDA is NVIDIA’s name for the
programming model and extended C language for their GPUs. It is the capabilities
of CUDA that we seek to match with Obsidian, while giving the programmer the
benefits of having Haskell as a meta programming language.

While remaining in the imperative world, but going all the way to the other end
of the high-level - low-level spectrum, we have the NVIDIA Thrust Library [NVId].
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/* Define sizes to work on */
#define BLOCKS 4096
#define ELT_PER_BLOCK 4096
#define N (BLOCKS * ELT_PER_BLOCK)

int main(void) {

/* Allocate host and device arrays */
float *input, result;
float *dinput, *dresult;

input = (float*)malloc(N*sizeof(float));

cudaMalloc((void**)&dinput,N*sizeof(float));
cudaMalloc((void**)&dresult,BLOCKS*sizeof(float));

/* Generate input data */
...

/* Copy data to device */
cudaMemcpy(dinput,

input,
N*sizeof(float),
cudaMemcpyHostToDevice);

/* Launch kernels */
red5l<<<BLOCKS,256,512*sizeof(float)>>>(dinput,

N,
dresult);

red5l<<<1,256,512*sizeof(float)>>>(dresult,
4096,
dresult);

/* Copy result from device */
cudaMemcpy(&result,

dresult,
1*sizeof(float),
cudaMemcpyDeviceToHost);

/* Process data on host side, if needed */
...

return SUCCESS;

Figure 3.40: CUDA code that combines reduction kernels into reduction of a large
array.
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System Elements ms
Obsidian and CUDA 224 0.449
Accelerate 224 0.478

Figure 3.41: Running times of 224 element reduction using Obsidian and CUDA or
Accelerate. The results were obtained on a NVIDIA GTX680 GPU.

Thrust offers a programming model where details of GPU architecture are com-
pletely abstracted away. Here, the programmer expresses algorithms using building
blocks like: Sort, Scan and Reduce.

Data.Array.Accelerate is a language embedded in Haskell for GPU programming
[CKL+11]. The abstraction level is comparable to that of Thrust. In other words, Ac-
celerate hides most GPU details from the programmer. Accelerate provides a set of
operations (that are parallel and suitable for GPU execution, much like in Thrust)
implemented as skeletons. Recent work has permitted the optimisation of Acceler-
ate programs using fusion techniques to decrease the number of kernel invocations
needed (see reference [MCKL13]). It seems to us that when using Accelerate the
programmer has no control over how to decompose his computation onto the GPU
or how to make use of shared memory resources. For many users, remaining entirely
within Haskell will be a big attraction of Accelerate.

Nikola [MM10] is another language embedded in Haskell that occupies the same
place as Accelerate and Thrust on the abstraction level spectrum.

The systems above are all for flat data-parallelism, Bergstrom and Reppy are at-
tempting nested data-parallelism by implementing a compiler for the NESL language
for GPUs [Ble96].

The Copperhead [CGK11] system compiles a subset of Python to run on GPUs.
Much like other languages mentioned here, Copperhead identifies usages of certain
parallel primitives that can be executed in parallel on the GPU (such as reduce, scan
and map). But Copperhead also allows the expression of nested data-parallelism and
is in that way different from both Accelerate and Obsidian.

In reference [OAB+12], Oancea et al. use manual transformations to study a
set of compiler optimisations for generating efficient GPU code from high-level and
functional programs based on map, reduce and scan. They tackle performance
problems related to GPU programming, such as bad memory access patterns and
diverging branches. Obsidian enables easy exploration of decisions related to these
issues.

In the implementation of Obsidian we use a very simple and direct approach
to monad reification. Related to this work is the approach based on a continuation
monad by Persson et al [PAS12]. Recent work by Sculthorpe et al. in reference
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[SBGG13] is also related. Our approach to monad reification is simpler but less
general.

3.5.5 Future Work
Increase low level control

The capabilities of the GPU are changing and evolving. For example, it is now possi-
ble to do warp local computation that exchange values between threads using a set of
shuffle instructions. These kernels do not need to use shared memory to the same
extent as the ones we generate. It would be interesting to try to incorporate these
capabilities Obsidian. However, this would mean that plans to target both OpenCL
and CUDA would have to be retired.

In reference [SSS13], we experiment with atomic operations and are forced to
write our code in a very imperative style. The addition of mutable arrays and a set
of operations on them could improve this situation while giving up purity. We will
explore what the addition of mutable arrays to Obsidian would mean as future work.

Being able to do in-place operations on arrays is beneficial to some algorithms.
There are cases where in-place operation both simplifies implementation and im-
proves performance. Feldspar, an EDSL for Digital Signal Processing being devel-
oped in our group at Chalmers, has mutable arrays. In that case, it was Fast Fourier
Transform that pushed us towards this choice. Scan, in which elements must be
copied unchanged between arrays, while others are operated upon, may also push us
towards mutable arrays. We need to do more experiments before deciding whether
or not to take this step, particularly as we value the simpilicity of the current version
of Obsidian.

To automate or not to automate

Obsidian makes use of types that model the GPU hierarchy. This limits the kind
of programs that can be expressed, ensuring that the resulting programs are suitable
for the GPU. An alternative is to remove these types and at the same time make the
compiler more clever. This would move some of the required GPU detail knowl-
edge from the programmer into compiler transformations. We have recently started
a project to investigate this change to Obsidian, together with a Masters student.

To optimise or not to optimise

The version of Obsidian described here does not try to use any compiler optimisation
techniques. Instead, we are expecting that the CUDA compiler will apply a good
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set of techniques, from common subexpression elimination to more GPU specific
transformations. As future work, we will investigate to what extent this reliance
on the CUDA compiler is justified. Also, we want to see if there are high-level
optimisations that we can perform more easily on our intermediate representations
of GPU kernels than what is possible on low-level CUDA code.

Kernel Coordination

In section 3.5.4, we implemented large reduction using CUDA and kernels generated
using Obsidian. This is something we want to be able to avoid. We envision a kernel
coordination language embedded in Haskell where the programmer can express the
kind of sequential and parallel compositions of kernels; note that this is different from
composing two local computations into one, which we already have the capability
to do. Having an embedded language for expressing full algorithms that make use
of many different kernels would further improve the usability of Obsidian. We have
started a project with the goal of implementing this language, together with a Masters
student.

What should the combinators be?

In this latest version of Obsidian, we have at last got a system that permits the con-
struction of high performance kernels. But it is clear that we need to think hard about
the set of combinators that we use to describe common patterns of parallel and se-
quential computation. Our current choice is a bit ad hoc and needs to be generalised
and made more systematic. We will also explore the use of search to find algorithmic
decompositions that are well matched to the GPU, exploiting the fact that Obsidian
is embedded in a powerful host language.

3.5.6 Conclusion

Obsidian lends itself well to the kind of experimentation with low level GPU details
that allow for the implementation of efficient kernels. This is illustrated in section
3.5.4, where we manage to apply techniques used in the NVIDIA tutorial [Har]. The
case study also show hows we can compose kernels and thus reuse prior effort.

The use of GPU hierarchy generic functions makes the kernel code concise. The
pMap and pZipWith functions are applicable both at block and grid level and are
compiled into suitable parallel loops. The types that are used to model the GPU
hierarchy also rule out any programs that we cannot very easily compile to the GPU.
An alternative to this was discussed in the Future work section 3.5.5.
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Our monad reification method certainly simplified the implementation of Obsid-
ian, and showed that the method works well in practice (see reference [SS13] for
more details of the method).

While other approaches to GPU programming in higher level languages tend
to deliberately abstract away from the details of the GPU, we persist in our aim of
exposing architectural details of the machine and giving the programmer fine control.
This is partly because trying to provide simple but effective programming idioms is
an interesting challenge. More importantly, though, we are fascinated by the problem
of how to assist programmers in making the subtle algorithmic decisions needed to
program parallel machines with strange, programmer controlled memory hierarchies,
and strange constraints on memory access patterns. This problem is by no means
confined to GPUs, and it is both difficult and pressing. We hope that Obsidian can
form the basis for work in this area.
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4.1 Paper G:
Programming Future Parallel Architectures with
Haskell and Intel ArBB

Bo Joel Svensson, Ryan R. Newton

Abstract
New parallel architectures, such as Cell, Intel MIC, GPUs, and tiled architectures,
enable high performance but are often hard to program. What is needed is a bridge
between high-level programming models where programmers are most productive
and modern parallel architectures. We propose that that bridge is Embedded Domain
Specific Languages (EDSLs).

One attractive target for EDSLs is Intel ArBB, a virtual machine for parallel,
vectorized computations. We propose to wed ArBB with the functional program-
ming language Haskell, using an EDSL that generates code for the ArBB VM. This
Haskell integration provides added safety guarantees compared to other ArBB in-
terfaces. Further, our prototype, Harbb, is one of the first EDSL implementations
with optimized backends for multiple parallel architectures (CPU, NVIDIA GPU,
and others), allowing portability of source code over devices and their accelerators.

4.1.1 Introduction
Are radical new parallel architectures market-feasible if they require significant changes
for programmers? The jury is out. In recent years we have seen difficult-to-program
chips suffer (e.g. Cell) and GPU vendors strive to enable more traditional program-
ming features [NVI09] (e.g. C++). There is an increasing tension between ease of
programming and efficiency.

The tension shows across diverse chip markets. For example, small embedded
devices are most power efficient if their processors and operating systems omit pro-
gramming features such as virtual memory and threads [HSW+00]. At the other end
of the power spectrum, GPU’s graphics performance may suffer due to inclusion of
hardware to ease GPGPU programming. In short, there is an opportunity cost to
including extra hardware for programmability.

In this paper, we argue that a specific technique holds the greatest promise of
solving the programmability dilemma. Domain-specific languages, embedded within
general purpose languages (EDSLs) enable familiar programming models and flex-
ible mapping onto new hardware. The key to having this cake and eating it too is
metaprogramming. Familiar programming features are present, but are eliminated
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at an intermediate (metaprogram evaluation) phase and therefore do not reach the
parallel hardware itself.

In pursuit of this vision, we offer a new EDSL implementation, called Harbb,
that combines existing systems, Accelerate [CKL+11] and ArBB [Int], to produce
a unified high-level programming environment equally suited to multicore, vector-
ized CPUs, as to GPUs and other accelerators (such as Intel MIC chips [SCS+08]).
Harbb is a single EDSL implementation with independently optimized backends by
different teams; namely, the ArBB backend for CPU/MIC, and a CUDA backend for
NVIDIA GPU. This makes Harbb an appealing platform for fair CPU/GPU com-
parisons, as well as a compelling programming model for single-source portable
performance across a range of parallel architectures, present and future.

4.1.2 Embedded Domain-Specific Languages
Domain-specific languages—from Makefiles and LATEX to Matlab—are almost too
ubiquitous to notice. Most relevant to our purposes, domain-specific languages
(DSLs) that target a narrow domain and expose communication patterns to the com-
piler have achieved performance-portability across a wide range of parallel architec-
tures. StreamIt[G+06] is a good example.

DSLs may start out simple and focused, but if they gain popularity they quickly
grow in complexity to rival full-blown languages. Feature creep can make DSL im-
plementations complex and expensive to maintain. Further, non-standard DSL syn-
tax and features present a learning curve for users. In the last ten years an attractive
solution to this dilemma has emerged: embed each DSL into a general-purpose host
language that can provide common functionality with familiar syntax and semantics.

When embedding, host language programs generate DSL programs; the deeper
the embedding, the more integrated the DSL into the syntax and type-system of the
host language. A key host-language feature for embedding is that language con-
structs can be overloaded to operate over abstract syntax trees (ASTs)1. For example,
the following simple function operates on scalars:

float f(float x) { return (2*x - 1); }

But simply by changing the types, f might be lifted to operate on expressions (which,
when evaluated, will yield floats):

exp<float> f(exp<float> x) {
return (2*x - 1);

}
1This ad-hoc polymorphism is accomplished, for example, through operator-overloading in C++ or

type classes in Haskell.
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A common arrangement is for the host language program to execute at runtime
but to generate ASTs that are executed by a just-in-time (DSL) compiler. This use
of metaprogramming (program generation) differs from the more common usage of
preprocessors and macros, which typically add extra phases of computation before
compile time—increasing the number of compile-time rather than runtime phases.

One reason that EDSLs are good for productivity is that the programmer gains the
software engineering benefits of the host language (object-orientation, higher-order-
functions, modules, etc), while not paying the cost at runtime for additional lay-
ers of abstraction or indirection. Indeed, the embedded languages for performance-
oriented EDSLs are often simple, first-order languages without pointers [NGC+08,
CKL+11].

As a research area, EDSLs and two-stage DSLs have been actively pursued for at
least a decade [Ell04, NGC+08] but are gaining steam recently [CGK11, Sta] and are
beginning to appear in commercial products [Int]. Further, EDSL techniques have
spread beyond their origin in the programming languages community. For example,
both Stanford’s Parallel Programming Laboratory (PPL) and the Berkeley Parlab are
creating EDSLs as their flagship parallel programming solutions for domains such
as machine learning and rendering [Sta]. Moreover, EDSLs need not be hosted by
esoteric research languages—Intel’s ArBB embeds an array language in C++ and
Berkeley’s Copperhead [CGK11] generates CUDA from simple Python code.

For the remainder of this paper we will focus our discussion on the Intel ArBB
VM, a virtual machine for just-in-time generation of vector codes, which imple-
ments a restricted domain-specific language of array computations. In this paper we
introduce High-level ArBB, (Harbb), an EDSL that internally uses the ArBB VM.
While Intel’s ArBB package already includes an EDSL targeting the VM (for C++),
Harbb offers additional advantages, including more succinct programs and addition-
ally safety guarantees—namely, complete deterministic-by-construction parallel pro-
grams (across both host and VM languages).

4.1.3 Harbb = ArBB + Accelerate

Our first Harbb prototype adapts an existing EDSL called Accelerate. Accelerate tar-
gets high-level data-parallel programming in Haskell. Previous work on Accelerate
has focused on developing a CUDA-backend for GPU programming. In this paper
we describe our effort to retarget Accelerate to ArBB.

With respect to determinism guarantees, the existing Intel ArBB product repre-
sents an integration of the safe (ArBB VM) with the unsafe (C++). In the Haskell
context, because purely functional computations are guaranteed deterministic (even
when executed in parallel), and because ArBB computations invoked by Haskell
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functions are themselves free of side-effects, Harbb achieves a guarantee of deter-
minism for complete programs that combine both Haskell computation and ArBB
VM computation.

The Accelerate programming model consists of collective operations that can be
performed over arrays, together with a simple language of scalar expressions—in
the current release, the Haskell type system enforces that parallelism not be nested.
Accelerate’s collective operations include Map (akin to parallel for loops) ZipWith (a
generalization of elementwise vector addition) and Fold (sum generalized)—familiar
operations for programmers versed in the functional paradigm. All of these collective
operations are easily parallelizable.

dotProd (xs :: Vector Float)
(ys :: Vector Float) =

let xs_ = use xs
ys_ = use ys

in fold (+) 0 (zipWith (*) xs_ ys_)

The Accelerate code listing above specifies a function that takes two 1-dimensional
arrays as inputs (of type Vector Float, e.g. a vector of floats). The result of the func-
tion is a single scalar. The use function is applied to an array to convert it for use in
the collective operations provided by Accelerate; use may result in copying the array
to, for example, the GPU in the case of Accelerate’s CUDA backend.

After applying use to bring in input data, the programmer then constructs a
data-parallel program from collective operations. Above, fold is a function that
takes three arguments, here those arguments are (+), 0 and zipWith (*) xs_ ys_.
zipWith, in turn, is a function taking three arguments, (*), xs_ and ys_. The zipWith
operation here applies pairwise multiplication to the two arrays and the fold sums
up all the elements into a single scalar.

Accelerate’s CUDA backend implements collective operations using a hand-tuned
“skeleton” for each operation (and possibly for different hardware versions). The
kernel—for example, the function to mapped over the dataset—is instantiated into
the body of the skeleton code. The resulting program is compiled using the NVIDIA
CUDA compiler and dynamically linked into the running Haskell program.

4.1.4 Intel Array Building Blocks (ArBB)
The operations exposed by ArBB are similar to those of Accelerate. In ArBB, par-
allel computations are expressed using a set of built-in primitives. All vectorization
and threading is managed internally by ArBB. The programmer uses collective op-
erations with a clear semantics such as add_reduce that computes the sum of the
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elements in a given array. ArBB also has language constructions for control flow,
conditionals and loops. These operations have their usual sequential semantics and
are not parallelized by the system, rather, only specific collective operations are exe-
cuted in parallel.

Today’s existing ArBB product is embedded in C++ and provides special types
for scalars and arrays (e.g. dense<f32> rather than vector<float>). Using ArBB/C++
to express the dot product computation can be done as follows:

void dot_product(const dense<f32>& a,
const dense<f32>& b,
f32& c)

c = add_reduce(a * b);

Note that arithmetic operators such as (*) are overloaded for to operate on arrays
as well as scalars (e.g. a * b above). Thus, the above C++ function multiplies two
arrays before summing them with add_reduce:

The code listing below is indicative to the amount of glue code needed to invoke
an ArBB computation2. It shows how the dot product code is launched using call
and how data is bound, bind, for use in ArBB.

int main()
{
double a[SIZE];
double b[SIZE];

for ( int i = 0; i < SIZE; ++i) {
a[i] = ...; b[i] = ...;

}
dense<f32> va, vb;
f32 vc;
bind(va, a, SIZE);
bind(vb, b, SIZE);
call(dot_product)(va, vb, &vc);
...

}

The model provided by Accelerate is slightly richer than that of ArBB. Even the
two very simple dot_product examples above manage to illustrate this. In Acceler-
ate there is a more general reduction primitive called fold where in ArBB there are

2In OpenCL and CUDA the glue code situation is even worse
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Figure 4.1: Architecture of the Harbb system.

specific reductions, add_reduce, mul_reduce and so on. Not visible in these small
examples is another difference, Accelerate operations are generalized to arbitrary di-
mensions while ArBB operations are limited to 1, 2, and 3 dimensions (and 0, i.e.
scalar). These differences aside, the ArBB and Accelerate programming models are
very similar.

4.1.5 Implementation of Harbb
Using Accelerate and ArBB together, we propose a layered architecture for Harbb,
pictured in Figure 4.1. The host language execution (via Haskell in this case) ex-
ecutes the programmer’s source code, generating a vector program in the restricted
language of the Accelerate front-end. Then either Accelerate backend—ArBB or
CUDA—may be used. The bottom layer of the ArBB backend consists of a direct
mapping of the ArBB virtual machine API (VMAPI) into Haskell including one-
to-one bindings for each C function. To [partially] automate the creation of these
bindings we used the C2HS system [Cha99]. The ArBB/Haskell bindings are very
low-level. The idea is that the ArBB/Haskell bindings should be used to implement
backends for higher-level data-parallel EDSLs.

To address the functionality mismatch between Accelerate and ArBB, when pos-
sible we reencode the users Accelerate program using existing ArBB mechanisms.
Our prototype does not support 100% of Accelerate’s compute model (for example,
only supporting up to three-dimensional arrays), but the remaining functionality can
be mapped onto ArBB in time using known methods—for example, our compiler
could map higher dimensional arrays onto a specific lower-dimensional data-layout.

One example of a functionality discrepancy bridged by our implementation is
reductions. As mentioned in 4.1.4, Accelerate allows the programmer to reduce using
an arbitrary associative function, but ArBB has only built-in reductions with fixed



195

operations (add, multiply, xor, etc). We plan to provide general reductions in the
ArBB backend by a two-fold strategy:

1. Attempt to map an Accelerate reduction directly onto an ArBB primitive such
as add_reduce.

2. Apply a general reduction technique based on log(N) map operations over
successively halving array sizes. Essentially, cut the array in half, combine the
halves, repeat. In [Har] this approach is explained in the context of CUDA.

In our current experiments, approach (2) is significantly slower. Therefore, the
ideal would be that ArBB exposed general reduction directly in its programming
model. We expect this functionality to be added in future releases. In the meantime
we plan to explore a technique that would allow us to maximize the number of situ-
ations in which (1) above applies. Namely, a reduce operation can often be factored
into a map followed by a reduce. For example, a reduction that multiplies each input
number by a coefficient and sums the results can be split into a map phase for the
multiplication followed by the built-in add_reduce operator.

Another choice faced by our implementation is the granularity at which the ArBB
JIT is invoked. Specifically, should each collective operation result in its own call to
the ArBB JIT (in ArBB terminology, immediate-mode, akin to the pre-OpenGL 3.0
immediate mode), or should multiple collective operations be placed together inside
an ArBB function and passed to the JIT? We will call the latter approach retained-
mode.

Retained-mode generally offers performance benefits; a bigger chunk is given
to the JIT compiler, enabling cross-optimization between collective operations. Our
prototype Accelerate backend uses ArBB in a combination of immediate- and retained-
mode. The main collective operations are compiled using the retained-mode. For
example, in the case of a map f operation first the function to be mapped is created
and compiled using retained-mode then a small mapper function is also created and
compiled using retained-mode. Between the collective operations the backend needs
to perform data management and copying, which are performed in immediate-mode.
It is our belief that Harbb would benefit from using retained-mode exclusively but
we leave that as future work.

4.1.6 Preliminary Results
Black-Scholes option pricing is a finance-related benchmark that has been used in
similar DSLs targeting GPUs [CKL+11, MM10]. Since we are re-using the Ac-
celerate front-end, we can directly use the Black-Scholes benchmark that is shipped
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with that system. Figure 4.2 shows the complete code listing for an Accelerate Black-
Scholes function which can be executed on GPUs or any processor targeted by ArBB.

The kernel of this algorithm performs arithmetic on triples of floating point num-
bers, creating pairs of floats as results. The problem is embarrassingly parallel, con-
sisting of independent computations for every element of an array (a map).

Figures 4.3 and 4.4 show preliminary results obtained on the Black-Scholes bench-
mark. The figures where obtained on a system with a 4-core Intel Core I7 975 ma-
chine with HyperThreading. The GPU used was a NVIDIA GTX480.

Figure 4.3 shows running times obtained when JIT-time is included. JIT com-
pilation time is much larger in the CUDA backend than the ArBB one. Part of this
difference can be attributed to the fact that the CUDA backend calls an external com-
piler (nvcc), which takes its input in a file and runs in a separate process. ArBB,
on the other hand, has a library interface to its JIT-compiler. Figure 4.4 shows re-
sults obtained when pre-compiling the CUDA functions eliminating JIT overhead. In
Accelerate, this happens automatically when the same kernel is invoked repeatedly,
because the Accelerate CUDA backed uses a caching scheme to avoid unnecessary
JIT invocations. (The caching functionality has not yet been duplicated in the ArBB
backend.)

These early results demonstrates the principle that even when a kernel executes
with higher throughput on a GPU, in a particular program it is difficult to decide
whether a computation is worth moving to a GPU, incurring extra data-movement
and possibly extra JIT compilation [GH11]. Specifically, we see that the Accelerate
Black-Scholes program from Figure 4.2 performs better on the CPU if it executes
once (even on a large window of data) whereas the GPU would yield better perfor-
mance in a sustained series of executions. Because both CPU and GPU execution
may be desirable—and the selection may be dynamic—it is beneficial to have a sin-
gle source code that is portable across both.

4.1.7 Related Work

OpenCL [Khr08] is a programming model very similar to CUDA but with the as-
piration to offer both acceleration of computations on GPUs or to multicore CPUs.
OpenCL JIT compiles the kernels for the particular hardware available and is in that
sense similar to ArBB. OpenCL programs are relatively low-level and require a large
amount of boilerplate to create and invoke. In this sense they occupy a very different
niche than Accelerate.

Microsoft Accelerator [TPO06] is an embedded language with similar aspirations
as ArBB, that is, to target a diverse range of architectures using the same source
code. Accelerator can be used from the C# language or the functional F# language
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blackscholes (xs :: Vector (Float,Float,Float)) =
map kernel (use xs)

kernel x =
let (price, strike, years) = unlift x

r = 0.02 -- riskfree constant
v = 0.30 -- volatility constant
sqrtT = sqrt years
d1 = (log (price / strike) +

(r + 0.5 * v * v) * years) /
(v * sqrtT)

d2 = d1 - v * sqrtT
cnd d = d >* 0 ? (1.0 - cndfn d, cndfn d)
cndD1 = cnd d1
cndD2 = cnd d2
expRT = exp (-r * years)

in lift ( price * cndD1 -
strike * expRT * cndD2

, strike * expRT * (1.0 - cndD2) -
price * (1.0 - cndD1))

cndfn d =
let poly = horner coeff

coeff = [0, 0.31, -0.35, 1.78, -1.82, 1.33]
rsqrt = 0.39894228040143267793994
k = 1.0 / (1.0 + 0.2316419 * abs d)

in rsqrt * exp (-0.5*d*d) * poly k

horner coeff x =
let madd a b = b*x + a
in foldr1 madd coeff

Figure 4.2: Complete code listing for a Black-Scholes function expressed in Haskell
syntax using the Accelerate and Harbb libraries. Invocations of the functions use,
lift and unlift represent additional boilerplate added for conversion in and out of
Accelerate types. Specifically, lift and unlift convert tuples and handle the fact
that Accelerate arrays of tuples are really implemented as tuples of arrays. Otherwise,
the program is identical to a plain Haskell implementation.
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Figure 4.3: Running time experiments including JIT-time.
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Figure 4.4: Running time experiments JIT-time excluded.
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and targets GPUs or of CPUs and their vector units.
Many CPU and GPU comparisons, and some CPU/GPU workload partitioners

[LCWM08], rely on redundant hand-written versions of all kernels (though some
systems like Qilin [LHK09] allow a single source code). It is difficult in this kind of
scenario to make fair comparisons, controlling for the amount of effort put into the
respective implementations. For example, comparing unoptimized serial CPU im-
plementations vs. GPU ones is not informative [LKC+10]. In Harbb controlling for
effort need happen only once—both CUDA and ArBB are independently optimized
by their respective teams of engineers—not for each benchmark.

4.1.8 Discussion and Conclusions
We have demonstrated that an EDSL such as Accelerate is sufficiently platform-
independent to break free of its original hardware target (CUDA/GPU) and create
efficient programs on other architectures. This gives us hope that Harbb/Accelerate
programs will be forward-portable to future parallel architectures and instruction
sets.

The EDSL approach changes the playing field for the designer of compiler back-
ends. Rather than contending with full blown languages and their complexities (e.g.
pointers, aliasing, inheritance, virtual functions, etc), compiler backends can focus
on simple value-oriented compute languages.

But the EDSL method solves only part of the performance-portability problem.
Simple as EDSL target languages may be, there remains a substantial challenge
in mapping them efficiently to the diversity of parallel architectures available now
and in the near future. For example, the idiosyncrasies of memory bank access on
NVIDIA GPUs must be taken into account to generate efficient implementations of
the high-level collective operations that we have discussed.

This is a compiler backend research challenge. The skeletons method mentioned
in Section 4.1.3 is one approach to this problem, as are the optimizations stud-
ied in the Copperhead [CGK11] and Obsidian [JS11] projects. On the other hand,
systems that rely on advanced optimizations typically suffer to some extent from
performance-predictability problems. Thus achieving portable, predictable perfor-
mance on a wide range of architectures—even for the simplest target languages—
will be the subject of much future work.
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4.2 Paper H:
Parallel Programming in Haskell Almost for Free

Bo Joel Svensson, Mary Sheeran

Abstract

Nowadays, performance in processors is increased by adding more cores or wider
vector units, or by combining accelerators like GPUs and traditional cores on a chip.
Programming for these diverse architectures is a challenge. We would like to ex-
ploit all the resources at hand without putting too much burden on the programmer.
Ideally, the programmer should be presented with a machine model abstracted from
the specific number of cores, SIMD width or the existence of a GPU or not. Intel’s
Array Building Blocks (ArBB) is a system that takes on these challenges. ArBB is a
language for data parallel and nested data parallel programming, embedded in C++.
By offering a retargetable dynamic compilation framework, it provides vectorisation
and threading to programmers without the need to write highly architecture specific
code. We aim to bring the same benefits to the Haskell programmer by implement-
ing a Haskell frontend (embedding) of the ArBB system. We call this embedding
EmbArBB. We use standard Haskell embedded language procedures to provide an
interface to the ArBB functionality in Haskell. EmbArBB is work in progress and
does not currently support all of the ArBB functionality. Some small programming
examples illustrate how the Haskell embedding is used to write programs. ArBB
code is short and to the point in both C++ and Haskell. Matrix multiplication has
been benchmarked in sequential C++, ArBB in C++, EmbArBB and the Repa library.
The C++ and the Haskell embeddings have almost identical performance, showing
that the Haskell embedding does not impose any large extra overheads. Two image
processing algorithms have also been benchmarked against Repa. In these bench-
marks at least, EmbArBB performance is much better than that of the Repa library,
indicating that building on ArBB may be a cheap and easy approach to exploiting
data parallelism in Haskell.

4.2.1 Introduction

Modern hardware architectures provide much parallelism in the form of multi- and
many-core processors and heterogeneous combinations of the two. We would like to
exploit this parallelism without over-burdening the programmer, and without sacri-
ficing too much performance. Ideally, the programmer should be encouraged to write
the code in a way that is not too closely linked to the precise combination of cores,
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SIMD vector processing power and GPU that is currently targeted. It should also
be possible to easily retarget the code to new architectures. As processor architec-
tures develop and are combined at an ever increasing pace, these requirements place
considerable demands on programming languages and libraries for parallel program-
ming.

Intel’s Array Building Blocks (ArBB) is one approach to the problem of how to
increase productivity for programmers who need to exploit hardware parallelism, but
for whom very low level parallel programming (as typically found in High Perfor-
mance Computing) is too difficult or time consuming [NSL+11]. ArBB is a retar-
gettable dynamic compilation framework that is provided as an embedded language
in C++. It aims to give the programmer access to data and thread parallelism, while
protecting him from common pitfalls such as race conditions and deadlock.

Many of the ideas in ArBB feel familiar to functional programmers. For example,
when referring to collection data types, reference [NSL+11] states that “Expressions
over collections always act as if a completely new collection were created and as-
signment between collections always behaves as if the entire input collection were
copied.” This rather functional view of data is accompanied by extensive optimisa-
tion that (as the paper states) removes almost all copying. A key to the approach is the
use of standard patterns of computation such as scan and reduce – familiar as higher
order functions in a functional setting. The system tries to fuse away intermediate
data-structures when these patterns are composed. The patterns are deterministic,
so that problems with race conditions are avoided by design. Programs are stated
to be short and close to the mathematical specification, and that, again, is a familiar
mantra. The system allows C++ users to construct code objects called closures. The
first time the call operation is applied to a particular function, ArBB captures the
sequence of operations over ArBB types and creates an intermediate representation.
This representation is then compiled to vector machine language, which is cached
for later use. The machine code is also invoked (in parallel on multiple cores, if
appropriate). The next time the function is called, ArBB reuses the cached machine
code rather than regenerating it. Although dynamically typed closures are available,
ArBB is generally statically typed.

ArBB is an embedded language, implemented as a library in the host language
C++. The embedding makes heavy use of the C++ template machinery. There is also
a lower level interface to ArBB, the ArBB Virtual Machine C API [Int]. The low level
C API is not intended for use directly by applications programmers, but rather as a
base for implementations of alternative ArBB frontends (embeddings) [NSL+11].
The ArBB VM implements the compilation and parallelisation. Reference [SN11]
presents Haskell bindings to the ArBB C API as well as initial steps towards using
ArBB as a backend to the embedded language Accelerate [CKL+11].
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The design of ArBB seems particularly well suited to a functional setting. In
this paper, we present work in progress on embedding ArBB in Haskell. We call the
embedding EmbArBB. It is our hope that using Haskell as a host language will be just
as user friendly and efficient as the C++ version. EmbArBB does not yet include all
of the functionality of ArBB, and this is discussed further in section 4.2.8. However,
our first benchmarks show that the performance of EmbArBB is very similar to that
of ArBB in C++. This bodes well.

EmbArBB is available at GitHub as
github.com/svenssonjoel/EmbArBB.

4.2.2 Related Work

Data.Array.Accelerate

Accelerate [CKL+11] is an embedded language for general purpose, flat data parallel
computations on GPUs.

The Accelerate programmer expresses algorithms using collective operations over
vectors. These collective operations are similar to the parallel patterns of ArBB, but
are generally higher order. That is, where ArBB and EmbArBB have addReduce,
mulReduce and so on, Accelerate has a single higher-order fold function. This
means that the Accelerate library gets away with a much smaller set of operations,
while maintaining a higher level of expressivity in the language.

Accelerate arrays have their dimensionality (shape) encoded in the type and this
was the inspiration for the similar approach taken in EmbArBB. In Accelerate, a one
dimensional array of integers has type Array DIM1 Int. However, Accelerate
does not limit the dimensionality to one, two or three, as ArBB does, but rather
supports arbitrary dimensionality.

Data Parallel Haskell

Data Parallel Haskell (DPH) is an extension to GHC for nested data parallelism. This
is one thing that DPH and ArBB have in common.

In DPH, the programmer can use parallel arrays of type [:e:] that look similar
to normal Haskell lists, but give access to data parallel execution. The similarity to
Haskell list processing doesn’t end there. The operations on these parallel arrays are
also reminiscent of Haskell’s normal list processing functions. For example, mapP,
unzipP and sumP are parallel versions of these well known functions.

DPH relies on a technique called flattening to transform its nested data paral-
lelism into flat data parallelism. A recent article about DPH is reference [JLKC08].

github.com/svenssonjoel/EmbArBB
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Feldspar

Feldspar is a language for Digital Signal Processing (DSP) programming developed
at Chalmers, ELTE University and Ericsson (the telecom company) [ACD+10]. The
functional while loop of EmbArBB is inspired by the same concept in Feldspar.

Feldspar is based on a deeply embedded core language and implements a vector
library as a shallow embedding on top of that. This means that there are no vector
specific constructs in the core abstract syntax.

Nikola

Nikola is an embedded language for GPU programming[MM10], also in Haskell.
During the early phases of implementation of EmbArBB, the source code of Nikola
was often studied for inspiration.

The embedding used in Nikola makes use of an untyped expression data struc-
ture wrapped up in phantom types, in the style of Pan [EFdM03]. The EmbArBB
embedding works in the same way. One of the listed strengths of Nikola is the ability
to generate GPU functions from Haskell functions, which enables function reuse and
the ability to amortise the cost of code generation over several launches in an easy
way. The ability the generate target language function from Haskell functions is a
present in EmbArBB as well.

Nikola, like Accelerate, provides a set of higher-order functions with general
map, reduce and zipWith functionality.

Repa

Repa is a library for regular, shape polymorphic parallel arrays [KCL+10]. Repa
uses a concept of delayed arrays to obtain fusion of operations, such as the typical
map fusion:

map f . map g = map (f . g)

A delayed array has a representation that is quite direct to parallelise; it is represented
as a function from an index-space to an element and the extents of that same index-
space. Concretely:

data DArray sh e = DArray sh (sh -> e)

Parallelising the computation of such an array is done by splitting up the index-
space over the available parallel resources of the system. Repa does not use SIMD
(vector) instructions; this is something that ArBB does and that EmbArBB gets for
free.

Repa is compared to EmbArBB in the benchmarks in section 4.2.7.
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4.2.3 Motivation

We have two main motivations for implementing EmbArBB.

Firstly, we are interested in exploring programming idioms for data parallel pro-
gramming in a functional setting. Embedding ArBB gives a quick route to a platform
for such exploration, without too much implementation effort. This is what the “al-
most for free” in the title is intended to refer to. We wish to explore ways to make
use of the fact that we have an array programming library embedded in a sophisti-
cated, strongly typed host language. In our earlier work on the embedded hardware
description language Lava, we investigated various approaches to exploiting the host
language during netlist synthesis [She04], and we have also experimented with the
use of search and dynamic programming in generating parallel prefix (or scan) net-
works [She11]. We intend to apply similar methods to the development of data par-
allel programs once the EmbArBB implementation is more complete and stable.

A second motivation is the desire to teach NESL-style data parallel programming
in a Masters course on parallel functional programming that has recently been intro-
duced at Chalmers [HS12]. The first instance of the course (in Spring 2012) covered
Blelloch’s NESL language, with its associated cost model [Ble96], but did not pro-
vide any satisfactory way for the students to experience real, nested data parallel
programming. This was due not only to a lack of suitable hardware, but also to defi-
ciencies in the available tools. We used the Repa library to get flat data parallelism,
but then suffered from the lack of a built-in scan primitive (as many of Blelloch’s
NESL examples use scan). Perhaps as a result of needing scan, we did not get good
performance. We have not done enough examples or experiments yet, but it seems
to us that EmbArBB could be used to give students an experience of real parallel
programming in a NESL-like functional language. It remains to be seen whether
the limited degree of nesting allowed in ArBB can be offset, at least to some extent,
by clever use of the host programming language during generation of the desired
abstract syntax tree.

4.2.4 Programming in ArBB

What the authors of ArBB call latent parallelism is expressed both by using oper-
ations like scan and reduce (or fold) over vectors and by mapping functions over
collection data-types. ArBB provides both dense and nested vectors. Dense vectors
can be one, two or three dimensional; they correspond to ordinary arrays.

Matrix-vector multiplication can be expressed in ArBB and C++ like this:
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void arbb_matrix_vector(const dense<f32, 2>& a,
const dense<f32>& x,
dense<f32>& b) {

b = add_reduce(a * repeat_row(x, a.num_rows()));
}

This function takes a dense matrix (a two dimensional array), a, and a dense vector,
x, and returns a dense vector b. It uses add_reduce and repeat_row, which
are built in ArBB operations. Note that we are not provided with a general reduction
operator that takes a function as parameter, but rather with specific instances.

The matrix-vector multiplication code above is very concise, but some further
steps are necessary before it can be run on real data. The code in figure 4.5 shows
how to set up a 4x4 scaling matrix and a vector to multiply by that matrix using
ArBB. This entails allocating memory on the ArBB heap and copying data into it,
reminiscent of the copying of data from host to device that is common in general
purpose GPU (GPGPU) programming .

After setting up and copying the data into ArBB, arbb_matrix_vector is
called using the call command. At this point, a number of things happen. If the
function is called for the first time, it is captured. This means that the function is
run as a C++ function, which produces an intermediate representation (IR) of the
computation (which is standard in such embeddings). For example, if the function
being captured contains a normal C++ for loop, it will be unrolled, much in the same
way as recursion in a Haskell embedded DSL results in unrolled code. After the
function is captured, the IR is further optimised and finally executed. Compilation
and capture only occur the first time a function is called. The compilation procedure
is outlined in [NSL+11].

Nested vectors in ArBB allow the creation of an array of dense vectors of vary-
ing length – giving the ability to express less regular parallelism. There is a limit,
though, in that only one level of such nesting is allowed. Section 4.2.5 shows a small
example that uses this nestedness in EmbArBB to implement sparse matrix vector
multiplication. The program in ArBB itself is very similar. We note, though, that one
of the samples distributed with ArBB is also sparse matrix vector multiplication, but
implemented using dense vectors and a function that can take sections of a vector.
We will need to experiment further with nestedness and when it should be used.

4.2.5 Programming in EmbArBB
In EmbArBB, ArBB functions are expressed as Haskell functions on expressions
(abstract syntax trees). This is standard Haskell embedded language procedure. A
function that adds a constant to all elements of a vector is
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int main(void)
{

float matrix[4][4] = {{2.0,0.0,0.0,0.0},
{0.0,2.0,0.0,0.0},
{0.0,0.0,2.0,0.0},
{0.0,0.0,0.0,2.0}};

float vector[4] = {1.0,2.0,3.0,4.0};

// set up the matrix in ArBB
dense<f32, 2> a(4, 4);
range<f32> write_a = a.write_only_range();
float* a_ = &write_a[0];
memcpy(a_,matrix,16*sizeof(float));

// set up the vector in ArBB
dense<f32> x(4);
range<f32> write_x = x.write_only_range();
float* x_ = &write_x[0];
memcpy(x_, vector,4*sizeof(float));

// Room for the result
dense<f32> arbb_b(4);
const_range<f32> read_arbb_b;

call(arbb_matrix_vector)(a, x, arbb_b);
read_arbb_b = arbb_b.read_only_range();

for (int i = 0; i < 4; ++i) {
printf("%f ", read_arbb_b[i]);

}

return 0;
}

Figure 4.5: ArBB glue code.
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addconst :: Num a
=> Exp a
-> Exp (DVector Dim1 a)
-> Exp (DVector Dim1 a)

addconst s v = v + ss
where

ss = constVector (length v) s

In this function (+) is used for elementwise addition of two vectors. The func-
tion constVector is part of the EmbArBB library and creates a vector of a given
length containing the same value at each index.

EmbArBB supports one, two and three dimensional dense vectors. These vectors
are represented by a datatype called DVector (for Dense Vector). DVector takes
two arguments, the first specifying its dimensionality and the second its payload
type. Hence, an array of 32 bit words has type DVector Dim1 Word32. The
one dimensional DVector also has the alias Vector. The type of the addconst
function above could also have been written:

addconst :: Num a
=> Exp a
-> Exp (Vector a)
-> Exp (Vector a)

The nested vectors of ArBB correspond to NVectors in EmbArBB.
The addconst function needs to be captured before it can be executed. The

term capture is borrowed from ArBB nomenclature and corresponds to compiling
the embedded language function into an ArBB function. In EmbArBB, a function is
captured using the function capture; in the C++ embedding, a function is captured
when it is called for the first time. The same could have been done in the Haskell
embedding of course, but we chose to make capture explicit for simplicity. The
capture function takes a Haskell function as input and produces an opaque typed
function identifier as output. The identifier points out the function in an environment
that is managed by a monad called ArBB. To make this concrete, Figure 4.6 shows
the complete procedure from capturing to execution.

The withArBB function (line two) is the “run”-function of the ArBB monad.
It turns something of type (ArBB a) into (IO a). This is how ArBB computa-
tions are interfaced with Haskell. A withArBB session also sets the scope for any
captured functions or vectors created in the ArBB monad.
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The result of capture addconst on line four in the code has type

Function (BEScalar Float :- BEDVector Dim1 Float)
(BEDVector Dim1 Float)

representing a function that takes a float and a vector of floats as input and gives a vec-
tor of floats as result. The “BE” prefixes in those names (BEScalar,BEDvector)
refers to this being vectors and scalar that reside in the ArBB heap (Backend vectors).
BEVectors and Scalars are mutable and the vector used to store the result needs to
be allocated by the programmer. This interface seems rather imperative but ArBB
requires output data to be placed into an output vector of the correct size. Because
of this, the options were either to try to infer result size (which can be dependent on
the value of input data) or to have the programmer supply storage for the result. We
chose the latter, and thus also avoid additional runtime overhead due to size infer-
ence.

Continuing with the example: the function, once captured, can be executed on
data. On line five, a DVector is copied into ArBB using the copyIn function. A
vector to hold the result is created using the new function on line eight. The new
function takes a shape description ((Z:.10), meaning a one dimensional vector of
length 10) and an element to fill the vector with initially. A scalar c is created using
mkScalar on line nine. Next, on line ten, the function is executed by issuing

execute f (c :- x) r1

The (c :- x) is a heterogeneous list of inputs. The :- operator is similar to
normal cons (:) on Haskell lists. The output is stored in r1. Had there been more
outputs, the output list would have also had a heterogeneous list type of the form
(r1 :- ... :- rn). If the result is a scalar, a storage location can be created
using a function called mkScalar that takes its initial value as input.

All that remains is to copy the output vector out of ArBB and show the result;
this is done on lines eleven and twelve in the figure.

In this example, we have seen all of the important parts of the Haskell to Em-
bArBB interface: how embedded language functions are compiled and executed, and
how to transfer data from Haskell into the ArBB world. The following subsections
show EmbArBB versions of some common data parallel computations.

In the examples one can assume that following imports have been made:

import Data.Vector as V
import Prelude as P

In this way, wherever there is potential for mixup between EmbArBB functions and
Prelude or Data.Vector functions, these are prefixed by either “V.” or “P.”.
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1 main =
2 withArBB $
3 do
4 f <- capture addconst
5 x <- copyIn $ mkDVector
6 (V.fromList [1..10 :: Float])
7 (Z:.10)
8 r1 <- new (Z:.10) 0
9 c <- mkScalar 1

10 execute f (c :- x) r1
11 r <- copyOut r1
12 liftIO$ putStrLn$ show r

Figure 4.6: The code shows how to capture a function, upload data to ArBB and how
to execute the captured function.
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-- Scatter values into a vector
-- resolves collisions by adding elements
addMerge :: Exp (DVector (t:.Int) USize) -- indices

-> Exp USize -- res length
-> Exp (DVector (t:.Int) a) -- src
-> Exp (DVector (t:.Int) a)

-- Reduce a vector using addition
addReduce :: Num a

=> Exp USize -- rows, cols or pages
-> Exp (DVector (t:.Int) a)
-> Exp (DVector t a)

-- Segmented version of addReduce
addReduceSeg :: Num a

=> Exp (NVector a) -- nested input
-> Exp (DVector Dim1 a)

-- Create a nested vector from a dense
applyNesting :: Exp USize -- lengths or offsets

-> Exp (DVector Dim1 USize) -- nesting
-> Exp (DVector Dim1 a)
-> Exp (NVector a)

-- Create a vector with a constant value
constVector :: Exp USize -- length

-> Exp a -- value
-> Exp (DVector Dim1 a)

Figure 4.7: A list of EmbArBB functions that are used in the examples with short
descriptions, part 1.
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-- Extract a column from a 2D vector
extractCol :: Exp USize -- col. index

-> Exp (DVector Dim2 a)
-> Exp (Vector a)

-- Fill a portion of a vector with a constant
fill :: Exp a -- fill value

-> Exp USize -- start
-> Exp USize -- end
-> Exp (DVector Dim1 a) -- dst
-> Exp (DVector Dim1 a)

-- Gather elements from a vectors
gather1D :: Exp (DVector Dim1 USize) -- indices

-> Exp a -- default
-> Exp (DVector Dim1 a) -- values
-> Exp (DVector Dim1 a)

-- Get the number of rows
getNRows :: Exp (DVector (t:.Int:.Int) a)

-> Exp USize

-- Turn a zero dimensional vector into a scalar
index0 :: Exp (DVector Z a) -> Exp a

-- Create a 2D vector by repeating a 1D vector
repeatRow :: Exp USize -- #repetitions

-> Exp (DVector Dim1 a) -- row
-> Exp (DVector Dim2 a)

-- Replace one column in a 2D vector
replaceCol :: Exp USize -- col

-> Exp (DVector Dim1 a) -- new values
-> Exp (DVector Dim2 a)
-> Exp (DVector Dim2 a)

-- Convert every element of a vector to USize
vecToUSize :: Exp (Vector a)

-> Exp (Vector USize)

Figure 4.8: A list of EmbArBB functions that are used in the examples with short
descriptions, part 2.
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• ISize is an integer type used to specify for example offsets.

• USize is an unsigned integer type used for lengths or indices.

• Boolean replaces the Bool type for EmbArBB programs. The reason for
this is that ArBB internally represents booleans as 8bit words. while the
Storable instance for Bool does not.

• DVector is the type of regular shaped vectors.

• NVector is the type of irregularly shaped vectors.

Figure 4.9: A list of EmbArBB types with short descriptions
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Saxpy

Saxpy is a vector operation that gets its name from the description of what it does
“Single-precision Alpha X Plus Y”. There is also a double-precision version called
daxpy. Here we can use a single source to obtain both versions:

saxpy :: Num a
=> Exp a
-> Exp (DVector Dim1 a)
-> Exp (DVector Dim1 a)
-> Exp (DVector Dim1 a)

saxpy s x y = (ss*x) + y
where

ss = constVector (length x) s

Now, capture can be used to instantiate the function at either float or double
types.

main = withArBB $
do

f <- capture saxpy

let v1 = V.fromList [1,3..10::Float]
v2 = V.fromList [2,4..10::Float]

x <- copyIn $ mkDVector v1 (Z:.5)
y <- copyIn $ mkDVector v2 (Z:.5)

r1 <- new (Z:.5) 0

c <- mkScalar 1

execute f (c :- x :- y) r1

r <- copyOut r1

liftIO$ putStrLn$ show r

Changing Float to Double in the definitions of v1 and v2 gives the double
precision version of the function. A function needs to be captured at every type at
which it is to be used. This is because the resulting ArBB function is not polymorphic
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over something corresponding to Num types (while the embedded language function
is).

Matrix-vector multiplication

In section 4.2.4, matrix-vector multiplication was shown using the C++ ArBB in-
terface. Here, EmbArBB is used to implement the same function. The function
definition itself is very similar to the C++ one:

matVec :: Exp (DVector Dim2 Float)
-> Exp (DVector Dim1 Float)
-> Exp (DVector Dim1 Float)

matVec m v = addReduce rows
$ m * (repeatRow (getNRows m) v)

The addReduce function takes a parameter that specifies whether to reduce
rows or columns.

The following Haskell main function completes the comparison to the C++ ver-
sion shown in the Introduction:

main = withArBB $
do

f <- capture matVec
let m1 = V.fromList [2,0,0,0,

0,2,0,0,
0,0,2,0,
0,0,0,2]

v1 = V.fromList [1,2,3,4]

m <- copyIn $ mkDVector m1 (Z:.4:.4)
v <- copyIn $ mkDVector v1 (Z:.4)

r1 <- new (Z:.4) 0

execute f (m :- v) r1

r <- copyOut r1

liftIO$ putStrLn$ show r
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The complete Haskell version of this program is slightly shorter than the correspond-
ing C++ version. However, the C++ version could probably be made shorter as well;
the Haskell and C++ versions must be considered similar in implementation com-
plexity.

Matrix-matrix multiplication

The following EmbArBB implementation of matrix-matrix multiplication is used as
a benchmark in section 4.2.7:

matmul :: Exp (DVector Dim2 Float)
-> Exp (DVector Dim2 Float)
-> Exp (DVector Dim2 Float)

matmul a b = fst $ while cond body (a,0)
where

m = getNRows a
n = getNCols b
cond (c,i) = i <* n
body (c,i) =

let mult = a * repeatRow m (extractCol i b)
col = addReduce rows mult

in (replaceCol i col c, i+1)

This example uses a while loop. In the C++ embedding of ArBB, the program-
mer has the option of using a C++ while loop or a special while_ loop. The
normal C++ while loop unrolls at capture time; the while_ is kept by ArBB and
corresponds to an ArBB loop. The two loops differ in the kinds of values on which
they can depend. The C++ loop can only depend on C++ values, so the number of
iterations in a normal while loop must be known at capture time. All of these con-
cepts have Haskell counterparts. The while loop used in the example corresponds
to the while_ loop and will remain in the generated ArBB code; it can depend on
ArBB values at runtime. Haskell recursion is used to get the kind of unrolling that
one gets by using a C++ while loop.

The EmbArBB while loop takes three parameters, a condition, a body and an
initial state. In every iteration of the loop, the body is applied to the state and the
condition checked.

Histogram

The histogram of a grayscale image contains the frequency with which each shade
occurs in the image. In this example, the image used represents the shade of each
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pixel with a single byte, so that 256 different shades are possible. An array of length
256 is created to hold at index i the number of occurrences of the shade i in the
image. In essence, this is an array of buckets.

histogram :: Exp (DVector Dim2 Word8)
-> Exp (Vector Word32)

histogram input = addMerge (vecToUSize flat) 256 cv
where

flat = flatten input
cv = constVector (r * c) 1
r = getNRows input
c = getNCols input

The addMerge operation takes a vector of inputs, a vector of indices and finally
a size (specifying the result size). Elements from the input vector (cv in the example)
are placed into the result at the index specified at the same location in the indices
vector. Elements placed at the same index are added together. Here, the input vector
contains all ones, while the image is cast into a vector of indices. The result is that
index i of the output vector contains the number of times shade i appears in the
image. The histogram computation becomes very concise through the use of the
addMerge operation.

The code below creates the image shown in figure 4.10. It takes as input a vector
on frequencies and outputs a two dimensional vector, a grayscale image.
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Figure 4.10: The righ-hand image visualises the frequency with which different
shades of gray occur in the left-hand one.

histImage :: Exp (Vector Word32)
-> Exp (DVector Dim2 Word8)

histImage input = fst $ while cond body (cvn,0)
where

cond (img,i) = i <* n
body (img,i) = (replaceCol i col’ img,i+1)

where
val = input ! i
col = extractCol i img
col’ = fill black 0 n col
n = 255 - scale 255 m val

n = length input
cv = constVector (n*n) white
cvn = setRegularNesting2D n n cv
m = index0 (maxReduce rows input)
black = 0
white = 255
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Sobel edge detection filter

Sobel edge detection is an example of a stencil computation over an array. At each
element of the array, a computation is performed that depends on that element and
on elements close by. Which of the nearby elements to use, and how much they
influence the result is typically described using a matrix (in the two dimensional
case) called the stencil. Below are two stencils used in the sobel edge detection filter:

Gx =

−1 0 1
−2 0 2
−1 0 1


Gy =

−1 −2 −1
0 0 0
1 2 1


In ArBB, the map operation gives the programmer a way to implement stencil

computation. It takes a function and a vector on which to apply the function at
each element. Inside the function being mapped, the programmer may use a set of
getNeighbor functions to access nearby elements.

The elements used by the stencils are kept (in the form of coordinates relative to
the centre point of the matrix) in two Haskell lists. This is an example of how host
language (Haskell) features are used as a kind of scripting aid.

s1, s2 :: [(Exp ISize,Exp ISize)]
s1 = [(1,1),(0,1),(-1,1),(1,-1),(0,-1),(-1,-1)]
s2 = [(1,1),(1,0),(1,-1),(-1,1),(-1,0),(-1,-1)]

The actual weights are placed in a separate list.

coeffs :: [Exp Float]
coeffs = [-1,-2,-1,1,2,1]

The following functions implement the stencil computation part of the program
using the elements pointed out by s1 and s2 together with the weights in coeffs.
Each of the six neighbours is multiplied by the appropriate weight. Haskell’s foldl
function is used to sum up the values, to give the result for the location in question.
Using a Haskell fold means that the summation is unrolled.

gx :: Exp Word8 -> Exp Float
gx x = P.foldl (+) 0

$ P.zipWith (*) [toFloat (getNeighbor2D x a b)
/ 255

| (a,b) <- s1] coeffs
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gy :: Exp Word8 -> Exp Float
gy x = P.foldl (+) 0

$ P.zipWith (*) [toFloat (getNeighbor2D x a b)
/ 255

| (a,b) <- s2] coeffs

The helper functions convertToWord8 and clamp take care of converting
floats between 0 and 1 to bytes between 0 and 255, and of clamping floating point
values into the 0 to 1 range.

convertToWord8 :: Exp Float -> Exp Word8
convertToWord8 x = toWord8 $ (clamp x) * 255

clamp :: Exp Float -> Exp Float
clamp x = max 0 (min x 1)

The complete kernel, the program that is to be executed at every index of the
image, is given below. The earlier parts are brought together into a function that
transforms one Word8 into another.

kernel :: Exp Word8 -> Exp Word8
kernel x = convertToWord8 $ body x

where
body x = sqrt (x’ * x’ + y’ * y’)
where

x’ = gx x
y’ = gy x

In order to execute the kernel, an ArBB map is used.

sobel :: Exp (DVector Dim2 Word8)
-> Exp (DVector Dim2 Word8)

sobel image = map kernel image

The implementation of sobel is pleasingly simple and concise in this setting.
Despite the fact that this is a small example, the value of being able to use Haskell
lists and operations is already becoming obvious.
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Figure 4.11: The image on the right shows the result of applying the sobel edge
detection filter to that on the left.

Image filtering

The blur operation, which is a kind of spatial linear filter, shows another way to
implement a stencil operation. The mapStencil function used is a composite
function in the EmbArBB library; it is not provided as a primitive from the ArBB
VM.

blur :: Exp (DVector Dim2 Word8)
-> Exp (DVector Dim2 Word8)

blur image = vec2DToWord8 (res ‘div‘ all16)
where

all16 = constVector2D (getNRows image)
(getNCols image)
16

res = mapStencil (Stencil [1,2,1
,2,4,2
,1,2,1] (Z:.3:.3))

image’

image’ = vec2DToWord32 image
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In Repa, similar mapStencil functionality is present but using Template Haskell
to give a safer way to specify the stencil. In our version there is no protection agains
mischievous stencil specification. This guarantees only that if the programmer says
the stencil is two dimensional then it can only be applied to two dimensional vectors.
Applying similar Template Haskell based extension here as well is probably quite
easy now that Repa has shown how.

Sparse matrix multiplication

A sparse matrix can be represented by three vectors, one (cidx) containing column
indices, one (offsets) indicating indices in the vector of values at which the first non-
zero element of each row appears, and one containing the values themselves. This
is known as the Compressed Sparse Row (CSR) format. Given such a matrix and a
dense vector, the relevant elements of the dense vector can be gathered into a new
vector using the column indices. The resuting vector is multiplied pointwise by the
vector of non-zero values from the sparse matrix. All that remains, then, is to divide
the result into rows and sum each one. The offsets vector points to where the division
should happen. The code in EmbArBB is as follows:

smvm :: Exp (Vector USize)
-> Exp (Vector USize)
-> Exp (Vector Float)
-> Exp (Vector Float)

smvm mval cidx os vec = addReduceSeg nps
where

ps = mval * gather1D cidx 0 vec
nps = applyNesting offsets os ps

The multiplication acts pointwise on the elements of vals and the vector (of
the same length) containing relevant elements of the dense vector (produced using
gather1D). The function applyNesting produces a nested vector of rows. The
function addReduceSeg sums each of the rows (or segments) in that array, pro-
ducing the non-zero elements of the result vector. Note that there is irregular data
parallelism here because the rows may have different lengths. We would hope to get
parallelism both in the individual summations and between summations. This is a
well known algorithm that can be traced back to Blelloch [Ble96].

4.2.6 Implementation
EmbArBB is a deeply embedded language. There is a constructor for every opera-
tion that ArBB can perform. A deep embedding is useful when there is need to apply
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optimisations or transformations to the AST before executing the operations. How-
ever, EmbArBB currently relies entirely on ArBB to perform optimisations to the
program. The only optimisation performed on the EmbArBB side is sharing detec-
tion. Detecting sharing reduces the number of calls into the ArBB C library. Should
we add a GPU backend to EmbArBB, further GPU specific optimisations of the AST
will likely become necessary.

Vectors

EmbArBB has support for one, two and three dimensional dense vectors, represented
by a datatype called DVector.

import qualified Data.Vector.Storable as V

data DVector d a
= Vector {vectorData :: V.Vector a,

vectorShape :: d}

The payload data in a DVector is stored in a vector from the Data.Vector
library. There is also a d parameter that specifies the shape of the DVector.

The d parameter is used for a type level representation of the dimensionality of
a vector, as in the Repa library [KCL+10]. The dimensionality is encoded using the
following types together with the Int type.

data a :. b = a :. b
infixl :.

data Z = Z

The dimensions zero to three are represented as follows:

type Dim0 = Z
type Dim1 = Dim0 :. Int
type Dim2 = Dim1 :. Int
type Dim3 = Dim2 :. Int

For example in the reduction functions provided by EmbArBB the output vector
is of a dimensionality one less than the input vector used. Below is the type of
addReduce to illustrate this.
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addReduce :: Num a
=> Exp USize
-> Exp (DVector (t:.Int) a)
-> Exp (DVector t a)

A somewhat unfortunate side effect of this is that currently EmbArBB has two
kinds of scalars, Exp (DVector Dim0 a) and Exp a. The result of reducing a
one-dimensional vector is a zero-dimensional vector. An operation called index0
converts from zero-dimensional vectors to scalars.

Irregular container, in ArBB called Nested vectors, are represented in EmbArBB
by the type NVector. Currently there are no versions of the copyIn, copyOut
or new functions for nested vectors. The programmer must transfer dense vectors
into the ArBB heap and then apply nesting to them as part of the computation to
perform thereupon. This means that having a concrete representation for a NVector
is currently not useful. In the hope of being able to implement some of the transfer
functions, even without direct support from the ArBB VM, we represent NVectors as
a vector of dense data together with a vector containing segment lengths.

data NVector a =
NVector { nVectorData :: V.Vector a

, nVectorNesting :: V.Vector USize}

As part of the interface between Haskell and EmbArBB there are also mutable
vectors, of a type called BEDVector. These are vectors that reside in the ArBB
heap and are represented only by an integer identifier with which the actual data can
be accessed from ArBB. These are used to store the inputs and outputs of calls to
execute on a captured function.

data BEDVector d a =
BEDVector { beDVectorID :: Integer

, beDVectorShape :: d}

New BEVectors are created using the function new. The function copyIn
copies a DVector from Haskell to the ArBB heap and there is a function copyOut
to retrieve data from ArBB.

The language

The EmbArBB language is implemented as a set of library functions, operating on
an expression datatype:



227

data Expr = Lit Literal
| Var Variable

| Index0 Expr
| ResIndex Expr Int

| Call (R GenRecord) [Expr]
| Map (R GenRecord) [Expr]

| While ([Expr] -> Expr)
([Expr] -> [Expr])
[Expr]

| If Expr Expr Expr
| Op Op [Expr]

Most of the ArBB functionality is taken care of by the Op constructor. The datatype
Op used to represent operations has over 120 constructors, so only a selection is
shown in figure 4.12. Having all these 120+ operations taken care of by one construc-
tor in the expression datatype simplifies the implementation of the backend, since all
of these operations are handled in a very similar way. The few remaining special
ArBB capabilities such as loops, and function mapping and calling are handled by
their own cases, discussed below. There are also some implementation specific de-
tails that result in their own constructors in the Expr type, namely Index0 for
turning a zero dimensional DVector into a scalar, and resIndex that helps with
implementing operations that have more than one result. An example of an such an
operation is SortRank, which returns both the sorted result of an input vector and a
vector of indices that specifies a permutation that would have sorted the input vector.

The Expr type also has constructors for the call and map functionality. To call
a function means to apply it to input data. The map operation specifies element-
wise application of a function over vectors, like NESL’s apply-to-each [Ble96], so
it corresponds to Haskell’s map and zipWith. Both Call and Map take a (R
GenRecord). This is inspired by the delayed expressions that enable the imple-
mentation of vapply in Nikola [MM10]. The R is the reification monad used to
create DAGs (directed acyclic graphs) from embedded language functions. These
DAGs are part of a GenRecord that contains all information that the ArBB code
generator needs to generate the ArBB function.

The While loop is represented using higher order abstract syntax, that is using
functions to represent the condition and body. The state is represented by a list of
expressions; this needs to be generalised somewhat in order to support loops with
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data Op =
-- elementwise and scalar
Add | Sub | Mul | Div | Max | Min

| Sin | Cos | Exp
...

-- operations on vectors
| Gather | Scatter | Shuffle | Unshuffle
| RepeatRow | RepeatCol | RepeatPage
| Rotate | Reverse | Length | Sort
| AddReduce | AddScan | AddMerge
...

Figure 4.12: ArBB scalar, elementwise and vector operations, which are handled by
the Op constructor in the Expr datatype. This is just a selection from the more than
120 different operations ArBB provides.

general tuples in the state. Something more structured than a list is needed for this.
The expression data type used in EmbArBB is untyped (not using a GADT). A

typed interface to the language is supplied using the same phantom types method as
used in pan [EFdM03] and many other Haskell embedded languages since then. The
choice to use an untyped Expr datatype was based on the wish to keep the backend
(ArBB code generation) as simple as possible.

-- Phantom types
type Exp a = E Expr

As an example, the operation addReduce, which reduces a vector across a
specified dimension, is implemented as follows in the EmbArBB library:

addReduce :: Num a
=> Exp USize
-> Exp (DVector (t:.Int) a)
-> Exp (DVector t a)

addReduce (E lev) (E vec) =
E $ Op AddReduce [vec,lev]
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Interfacing with Haskell and Code generation

The interface between ArBB and Haskell consists of the DVector, NVector,
BEDVector and BEScalar types, the capture, and execute functions, and
the ArBB monad with its withArBB “run”-function. This section describes what
happens when the programmer captures an embedded language function, and when
execute is called on a captured function.

Capture and execution of functions takes place in the ArBB monad, which man-
ages state of type ArBBState:

data ArBBState =
ArBBState

{ arbbFunMap :: Map.Map Integer
ArBBFun

, arbbVarMap :: Map.Map Integer
VM.Variable

, arbbUnique :: Integer }

type ArBBFun = (VM.ConvFunction, [Type], [Type])

This state contains a map from function names to ArBB functions and their input
and output types. The VM.ConvFunction is how ArBB functions are represented
by the ArBB-VM bindings. There is a map from vector and scalar IDs to their cor-
responding ArBB variables. The last item in ArBBState is an Integer that is used
to generate new function names and variable IDs as the programmer captures more
functions or creates new arrays on the ArBB heap. Now, the ArBB monad is defined
as:

type ArBB a = StateT ArBBState VM.EmitArbb a

VM.EmitArbb is also a concept from the virtual machine bindings. It man-
ages low-level functions (the VM.ConvFunction functions) and implements an
interface to the low level ArBB-VM API. EmitArBB is the ArBB code generating
monad from the arbb-vm bindings. For more or less everything that can be done with
the arbb-vm bindings, there is a function of the form

f :: arg1 -> ... argn -> EmitArBB out

For example, for generating an operation node (such as +) in the ArBB IR, there is a
function of type
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op_ :: Opcode
-> [Variable]
-> [Variable]
-> EmitArbb ()

while the function for generating a while loop in the ArBB IR has type

while_ :: (EmitArbb Variable)
-> EmitArbb a
-> EmitArbb a

The details of the translation are omitted for brevity, as the approach is standard.
When a function f of type

Exp tin1 -> ... -> Exp tinN -> Exp tout

is captured, it is first applied to expressions that represent variable names. For each
of the inputs, (tin1,..,tinN), a variable is created. The result is an expression
(or expressions) representing the function f. On this expression, sharing detection
is performed, and a directed acyclic graph (DAG) is created. The method of sharing
detection used is based on the StableNames method [Gil09].

Then, the code generation is implemented using a very direct approach; no ex-
tra optimisations or transformations are applied. This is a reasonable choice, since
the whole point of ArBB is that the built-in JIT compiler knows and performs ar-
chitecture specific optimisations. Sharing detection on the Haskell side makes sense
because code generation for each node in the DAG results in at least two calls into
the ArBB-VM API, which means going through the FFI and incurring the associated
cost. Detecting the sharing already in the host language should give a smaller work-
load for the ArBB JIT compiler, thus reducing the time spent on JITing. It remains
to be seen how important JIT cost will be in practice, however, as we expect it to
be amortised over a large number of executions of the JITed code. We will need
to conduct experiments with a suite of larger examples in order to decide if sharing
detection on the Haskell side is worthwhile.

Applying capture to a function gives an object of type

type FunctionID = Integer

data Function i o = Function FunctionID

The i and o parameters to Function represent the input and output types of
the captured function. As an example, capturing
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f :: Exp (DVector Dim1 Word32)
-> Exp (DVector Dim1 Word32)

results in an object of type

Function (BEDVector Dim1 Word32)
(BEDVector Dim1 Word32)

This is just phantom types placed over a function name that is just a String, but it
does offer a typed interface for the capture and execute functions.

The execute function that launches a captured function takes a Function i
o object, inputs of type i and outputs of type o. The function name is looked up in
the ArBB environment (the monad). The inputs and outputs are also looked up in the
environment and then the function is executed.

execute :: (VariableList a, VariableList b)
=> Function a b -> a -> b -> ArBB ()

execute (Function fid) a b =
do

(ArBBState mf mv _) <- S.get
case Map.lookup fid mf of

Nothing -> error "execute: Invalid function"
(Just (f,tins,touts)) ->

do
ins <- vlist a
outs <- vlist b

liftVM$ VM.execute_ f outs ins

The vlist function goes through the heterogeneous list of inputs or outputs
and looks up each of the elements in the arbbVarMap; the result is a Haskell list
of VM.Variable. The function VM.execute_ is part of the virtual machine API
bindings, and corresponds directly to a C function in that library.

4.2.7 Benchmarks
In this section, matrix multiply, Sobel edge detection and an image blur algorithm
are used as benchmarks in comparing sequential C++ code, ArBB, EmbArBB, and
a Haskell library called Repa. Repa provides regular shape polymorphic arrays; it
permits parallel execution of the resulting code, making use of multiple cores, but
not of SIMD parallelism [KCL+10]. The Repa versions of the benchmarks used in
the comparison come from the repa-examples-3.2.1.1 package on Hackage.
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Figure 4.13: Shows in a log-scale the execution time of matrix-matrix multiplication
comparing ArBB, EmbArBB, Repa and sequential C++. The ArBB and EmbArBB
lines are indistinguishable.

The processor used for all measurements is a four core Intel Core-I7 930 at
2.80Ghz.

matrix-matrix multiplication

The matrix multiplication benchmarks consist of square matrices of sizes 256x256,
384x384, 512x512, 640x640 and 768x768. Figure 4.13 shows the runtimes for the
four implementations being compared, using the best settings in numbers of cores
or threads found by previous experiments. The sequential C++ and ArBB versions
come directly from the ArBB distribution.

Sobel edge detection

In the Repa Sobel code, only the applications of the stencils are timed. This part is
defined as follows
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gradientX :: Monad m => Image -> m Image
gradientX img

= computeP
$ forStencil2 (BoundConst 0) img

[stencil2| -1 0 1
-2 0 2
-1 0 1 |]

gradientY :: Monad m => Image -> m Image
gradientY img

= computeP
$ forStencil2 (BoundConst 0) img

[stencil2| 1 2 1
0 0 0

-1 -2 -1 |]

A corresponding EmbArBB code to use in this comparison was implemented.

gx :: Exp (DVector Dim2 Float)
-> Exp (DVector Dim2 Float)

gx = mapStencil
(Stencil [-1,0,1

,-2,0,2
,-1,0,1] (Z:.3:.3))

gy :: Exp (DVector Dim2 Float)
-> Exp (DVector Dim2 Float)

gy = mapStencil
(Stencil [ 1, 2, 1

, 0, 0, 0
,-1,-2,-1] (Z:.3:.3))

We compare these two examples, in which only the applications of the stencils
are timed; we also time the complete Sobel implementation in EmbArBB (shown in
section 4.2.5). The Sobel benchmark is run om images of sizes 256x256, 512x512,
1024x1024, 2048x2048 and 4096x4096. Again, Figure 4.14 shows that EmbArBB
performs well. As we had expected, the Haskell embedding, once a function is cap-
tured, seems to impose little or no overhead compared to the C++ implementation.
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Figure 4.14: Shows in a log-scale the execution time of a key part of the sobel edge
detection program. The chart compares EmbArBB to REPA and also displays for ref-
erence the execution times of the full sobel program as implemented in section 4.2.5,
called EmbArBB* in the chart.
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Figure 4.15: Shows the execution time of a 7x7 blur filter applied to images of vari-
ous sizes.

Blur

The blur benchmark is performed using an algorithm similar to the example code
in section 4.2.5 but with the following changes. The image used is in RGB color.
This means that the stencil needs to be applied three times, once to each color plane.
Also the image is converted into a form where each color intensity is represented by
a Double.

Here as well as in the sobel case the Repa code from
repa-examples-3.2.1.1 times only the actual computational kernel (the ap-
plication of the stencils) including conversion to Doubles. The corresponding Em-
bArBB part was broken out and timed separately as well. The chart 4.15 shows com-
parison of runtime for the key part of the computation but also adds the full execution
time of the EmbArBB version (called EmbArBB* in the chart). The full EmbArBB
implementation of the blur filter including conversion into Doubles, image decom-
position into R,G and B planes, application of the stencil and reconstructing a planar
RGB image in the end.
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256x256 512x512 1024x1024 2048x2048
Repa 3x3 12 27 72 190
EmbArBB 3x3 1 2 20 77
EmbArBB* 3x3 2 9 33 153
Repa 5x5 13 32 87 254
EmbArBB 5x5 1 5 28 105
EmbArBB* 5x5 3 12 46 204
Repa 7x7 20 48 119 368
EmbArBB 7x7 2 10 46 176
EmbArBB* 7x7 4 17 63 270

Table 4.1: The table shows execution times (rounded to ms) for various image and
stencil size combinations in both Repa and EmbArBB.

About the numbers

This section presents three benchmarks, two of which compare to Repa only and
one that compares to Repa, ArBB in C++ and sequential C++ code. In all of these
comparisons, JIT compilation time is excluded.

The comparison to ArBB in C++ shows that the Haskell embedding does not
impose any extra overhead (at least not in this benchmark); this matched our ex-
pectations. More comparisons to the C++ version of ArBB are needed to confirm
these first impressions about overhead in the Haskell embedding. If future directions
of EmbArBB development develop techniques (such as size inference) that impose
a runtime overhead, then the comparison in execution to the C++ version becomes
more important.

The comparisons to Repa all show that the performance of EmbArBB compares
favourably. This can be attributed to the way in which ArBB’s developers at Intel
have incorporated vectorisation and threading.

4.2.8 Future Work

The C++ embedding of ArBB allows for dense containers of structs in some cases.
The operations on vectors supplied by the ArBB virtual machine are exclusively over
vectors of scalar types. So the C++ embedding must be performing a AOS to SOA
(Array of Struct to Struct of Array) transformation. The Haskell embedding does not
implement any similar transformation. This is an important addition that would for
example make implementing functions on complex numbers easier.

We stress that this paper presents first steps in the implementation of EmbArBB.
Our benchmarks, while promising, are very limited. We must devote effort to devel-



237

oping a suite of interesting, larger data parallel programs for use in benchmarking
EmbArBB. It is particularly important to explore the nested vectors, and the effects
of the limitation to one level of nesting in ArBB. Those parts of ArBB that support
nested vectors seem to be less well developed than those supporting dense vectors,
as evidenced by the sample applications distributed with ArBB, none of which uses
nesting. We expect ArBB to become more complete, and perhaps we will be able to
contribute interesting examples both in the C++ and Haskell embeddings.

Having exercised EmbArBB more thoroughly, we will assess the results of the
benchmarking and experiments with programming idioms, and decide on future re-
search directions. We expect to focus on ways to provide users with an interface that
is more functional in style than the current C++ oriented one.

4.2.9 Conclusion

We have shown that Intel’s Array Building Blocks (ArBB) provides an interface that
is well suited to functional programming. The programs are quite close to mathemat-
ical specifications, in the style of NESL [Ble96]. We have only just completed the
embedding of the part of ArBB that deals with nested vectors, and we need to tackle
many more case studies. In our case studies using dense vectors, ArBB seems to do
a good job of efficiently using parallel hardware resources – both cores and vector
units. By embedding ArBB, we can, with little implementation effort, provide quite
an attractive data parallel programming language in Haskell. Our benchmarks are
preliminary and small, but they show very good performance. Once we have com-
pleted the ArBB embedding, we will have an interesting platform on which to exper-
iment with and develop new programming idioms that exploit the fact that we have a
data parallel programming language embedded in an expressive, strongly typed host
language. We feel that work in this area (as distinct from implementation methods)
is overdue. We would be happy to receive suggestions for interesting case studies or
collaborations.
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