
�����������	�
��	������������������

�������������������������������

�������������

������� �����

! �∀��#��� �

∃���������%����������&���&�����������������

������������	��
�������������������
���������

�# �!������
����
∋∀��(�∋��#�����∀

��
����
∋∀��(���∋#��)���

�∗�����+��,����+�−./.

∋�&0��&�	���������1�−./.�./

��������������������

�

�����������	�
��	���

���	��2������

����	��2�������−./.

������������������������

���������&���&�����������������

∋�&0��&�	����������−./.�./

�����������/34−56−37

�0�	��������2����8��%�∋�&0��	��8������∗���������2����8

��59/−�63��∗�����

�,����

∋�	��0����:93�;.<=/5>>−�/.�..

∃���������%����������&���&�����������������

�∗�����+��,�����−./.

GPGPU Kernel Implementation using an

Embedded Language: a Status Report

Joel Svensson, Koen Claessen, Mary Sheeran
Chalmers University of Technology

412 96 Gothenburg, Sweden

January 22, 2010

1

Abstract

Obsidian is a domain specific language for general purpose compu-
tations on graphics processing units (GPUs) embedded Haskell. This
report present examples of GPU kernels written in Obsidian as well
as parts of the current implementation of Obsidian.

The goal with Obsidian is to raise the level of abstraction for the
programmer while not scarifying performance. The kind of decisions
and tradeoffs considered by a GPU kernel implementer should be easy
to make and change in Obsidian.

2

1 Introduction

Multicore and manycore processors are becoming more and more common.
Modern graphics processing units (GPUs) are examples of manycore pro-
cessors, today GPUs come with hundreds of processing elements capable of
managing thousands of threads [17].

Obsidian is a domain specific language for general purpose programming
on GPUs (GPGPU), capable of generating code for modern NVIDIA GPUs.
The Obsidian project is about exploring ways to program these new multicore
and manycore machines.

GPU design is driven by the performance demands of graphics applications.
The kind of processing that is common in graphics falls in the data-parallel
category [20]. One example of a computation from graphics is the transfor-
mation of vertices between different coordinate systems. That is, each vertex
is multiplied by the same transformation matrix, fitting the data-parallel
paradigm perfectly.

1.1 NVIDIA GPUs and CUDA

Starting with the 8000 series of GPUs (the G80 architecture), NVIDIA’s
GPUs came with a unified architecture, unified meaning that all the process-
ing elements on the GPU are of the same kind. This was different from the
previous generation’s GPUs, where there usually were two kinds of processing
elements. There was one kind of processor designed to process fragment/pixel
programs and another to process vertex data. Now these two kinds of pro-
cessors are replaced by a single kind with capabilities surpassing both of
the old ones. This new unified architecture together with development tools
for GPGPU (General Purpose computations using GPUs) programming go
under the name CUDA (Compute Unified Device Architecture) [18, 1, 17].
CUDA offers the GPGPU programmer a C compiler and libraries for CUDA
enabled GPUs (NVIDIA 8000 series and above).

Figure 1, shows a conceptual picture of a CUDA enabled GPU. The GPU
has a number of Multiprocessors (MP in the picture). These MPs contain a
number of small processing elements called Streaming Processors (SP). These
SPs operate in an SIMD fashion. All SPs in a given MP execute the same
instruction each clock cycle.

Each MP is capable of maintaining a large number of threads in flight at
the same time. A group of threads running on an MP is referred to as a
block. A block can contain more threads then there are processing elements,

3

today a block can hold up to 1024 threads. There is a scheduler mapping
these threads over the SPs available. Threads are scheduled in groups called
warps (a word borrowed from the textile industry) consisting of 32 threads.
A Warp is executed in SIMD fashion on the MPs. There are however, more
threads in a warp then there are SPs, so the SPs are switching threads to
work on between every instruction. This means that conditionals that take
different paths within a warp have a negative effect on performance, the two
diverging paths will in fact be executed sequentially [19].

The MPs also have some local memory that is shared between all the SPs of
that MP and thus referred to as Shared Memory in the figure. The shared
memory can be used to exchange information between threads running on
the SPs. It can also be used as a software managed cache.

Threads within a warp can safely communicate using the shared memory
without the need for any synchronisation. Threads from different warps
however, need to use a synchronisation primitive to ensure a coherent view
of the shared memory. In CUDA C this primitive is called syncthreads().
The syncthreads() primitive provides a barrier that all threads of a block
must reach before any is allowed to proceed.

The Global memory is located off chip and is accessible by all MPs. In current
GPUs accesses to this memory are uncached.

1.1.1 CUDA example program

As an example of CUDA programming, this section outlines the implemen-
tation of an algorithm for summing up an array of integers on the GPU.
Summing up the elements of an array can be done in many different ways.
The first is of course to sequentially add the elements up using for example
a single for loop, which is how it may be done in a single processor system.
But, since addition is associative, it is possible to choose between many other
approaches. On a GPU it is important to split the work of summing up the
array in a way that makes use of the GPU’s resources in a good way.

In this example, the choice made is to divide the array into parts of length
256. These parts will be summed up potentially in parallel on the MPs.
Each MP is capable of managing about a thousand threads in flight but it is
recommended to stay below that. This is so that each MP can be in charge of
running more than one block, which is useful to hide memory latencies. The
256 element sub-arrays will be added up using 256 threads. This number
of threads is chosen to give a direct relationship between thread IDs and
indices.

4

Figure 1: Conceptual image of a CUDA enabled GPU.

The following CUDA C code listing shows the kernel used to sum up a 256
element sub array. A kernel is a program that can be executed on an MP by
a block of threads. Kernels are the building blocks of larger GPU programs.
The algorithm used in this example is an adaptation of an sum algorithm
described in [10]. Figure 2 illustrates how the algorithm computes the sum.

__global__ void sum(int *input, int *output){

extern __shared__ int smem[];

int tid = threadIdx.x;

int blockoffset = blockIdx.x * blockDim.x;

smem[tid] = input[blockoffset + tid];

for (int i = 1; i <= blockDim.x; i *= 2){

__syncthreads();

if ((tid + 1) % (2*i) == 0)

smem[tid] += smem[tid - i];

}

if (tid == 0) output[blockIdx.x] = smem[blockDim.x - 1];

}

5

The kernel above is also applicable to other array sizes, as long as the size is
a power of two.

A number of CUDA concepts are used in the kernel. For example there are
a number of, from a thread’s point of view, constants:

• threadIdx: the identity of a thread within a block. This is a three
dimensional vector.

• blockIdx: the identity of a block within a grid. This is a two dimen-
sional vector.

• blockDim: the dimensions of a block. This is also a three dimensional
vector.

The smem array used in the kernel resides in shared memory. The size of this
array is set when the kernel is started. That is, it is set by the controlling
C program running on the computer’s CPU. In currently available CUDA
enabled GPUs the shared memories offer 16KB of storage.

The kernel computes the sum of its sub-array by reading it into shared mem-
ory. The program then goes into a for loop that first of all performs a
synchtreads(). In the first iteration this synchronisation ensures that all

the data is read into shared memory before any thread attempts to access it.
In the following iterations the synchronisation ensures that all the threads
have completed their operation and that they will all have access to a cor-
rectly updated shared memory. When the summation is done the result is
stored in the result array by a single thread.

Kernels are started on the GPU from a controlling program running on the
CPU. CUDA adds new syntax to C for instantiating these computations on
the GPU. Invoking a computation using a kernel called myKernel on the
GPU looks like this:

myKernel<<<griddim,blockdim,size_smem>>>(arg1, ... , argn);

This starts the kernel myKernel on the GPU with grid dimensions specified
by griddim. The number of threads is specified by blockdim. The size of
shared memory that the kernel is allowed to use is given by size smem.

It is also possible to supply the griddim and blockdim as scalars in the
case where one dimensional grids and blocks are desired. As an example, to
execute the sum kernel to sum up an array of 256 elements this is what the
call would look like:

6

Figure 2: Computing the sum of an array.

sum<<<1,256,256*sizeof(int)>>>(input,output);

In order to use the kernel to sum up 220, (roughly one million), elements this
approach would work:

sum<<<4096,256,256*sizeof(int)>>>(input,output);

sum<<<16,256,256*sizeof(int)>>>(output,output);

sum<<<1,16,16*sizeof(int)>>>(output,output);

This requires that the output array is large enough to hold 4096 elements.
The output array is then reused in the following kernel launches. After com-
pleting the execution of these kernels the result will be found in output[0].

The kernel described in this section is not optimised at all. A first step in
optimising the given kernel could be to unroll the loop, this also means that
a particular array size must be chosen. The kernel uses 256 threads, which
gives a simple relation between thread IDs and indices. However, at no point
is more than 128 threads really needed to perform the summation. Halving
the number of threads gives a more efficient usage of the resources but also
results in slightly more arithmetic in the index calculations.

1.2 Aims of Obsidian

The goal of Obsidian is to simplify the development of GPU kernels, the
building blocks of larger GPU programs. When implementing an algorithm
in CUDA, what to compute and how to compute it becomes codependent.

7

Choices such as how many elements the kernel operates on and how many
threads it uses to do that affect each other greatly. Once a kernel is designed
with a particular number of elements per thread these parameters become
hard to tweak.

Obsidian provides an environment where it is easier to experiment with differ-
ent partitionings and choices when implementing an algorithm. In Obsidian
it is possible to write a simple running first prototype version of your kernel
without thinking about architectural details. The prototype implementation
can then be refined into a more efficient implementation.

The aim of Obsidian is to raise the level of abstraction for the GPGPU
programmer, to relieve the programmer of details such as laying things out
in memory. Performance affecting decisions should be easy to make and
change without major rewrites of the code.

2 Programming in Obsidian

Obsidian is a language for GPGPU programming embedded in Haskell. Many
of the language features resemble those of Lava, a hardware description and
verification language [3]. The justification to use language constructs similar
to that of a hardware description language came from the observation that
GPGPU algorithms often were explained using circuit-like pictures, see for
example [16].

Obsidian can be used to describe hardware like algorithms. These are al-
gorithms where the number of inputs and outputs are fixed, not dependent
on the values of inputs. There are a large number of algorithms falling into
this category. For example, there are numerous sorting algorithms (sorting
networks) and parallel prefix algorithms implementable in this way. Also,
there are examples in the literature where GPGPU programmers implement
their kernels to operate on very specific array sizes [16]. In a later stage,
when the kernels are composed into algorithms on large arrays, support for
variable length arrays (with length a multiple of that supported by kernel)
is introduced.

Obsidian can be explained as two sub languages. First there is a language of
arrays and operations on arrays, and second, a language enables mapping of
the array language programs onto the GPU.

8

2.1 Array Language

Arrays in Obsidian do not, like in C, name an area of memory. Instead, an
array is represented by the computation that gives its elements. The array
type consists of two parts, a function from indices to elements and an integer
representing its length:

data Arr a = Arr (IndexE -> a) Int

The length of the array is static, known at compile time, and is represented
by an Int. The elements of an array can be Int, Float or Bool valued
expressions, represented by the types IntE, FloatE and BoolE. Arrays can
also contain arrays and tuples as elements.

Obsidian provides a number of functions on this array type. For example, a
function can be mapped over an array using fmap, see figure 3:

fmap :: (a -> b) -> Arr a -> Arr b

The array type is also an instance of Foldable, so there is a function foldr

defined on arrays:

foldr :: (a -> b -> b) -> b -> Arr a -> b

Two other basic functions on arrays that are available are pair and unpair:

pair :: Arr a -> Arr (a,a)

unpair :: Choice a => Arr (a,a) -> Arr a

The function pair takes an array and returns an array of pairs where the
first element of the input array is paired up with the second, the third with
the forth and so on. the unpair function does the opposite, see figure 4.

The Choice class contains those types that have an ifThenElse function
defined on them:

ifThenElse :: Choice a => BoolE -> a -> a -> a

These three functions pair, unpair and fmap can be used to define a function
evens that applies a function over pairs on an array. Normal Haskell function
composition is used here:

9

evens :: (Choice a) => ((a, a) -> (a, a)) -> Arr a -> Arr a

evens f = unpair . fmap f . pair

In turn, evens together with a two-sorter, gives a useful building block for
implementing sorting networks, see for example [8]:

cmp :: (Ordered a, Choice (a, a)) => (a, a) -> (a, a)

cmp (a,b) = ifThenElse (a <* b) (a,b) (b,a)

sort2 = evens cmp

Given an array, sort2 rearranges it so that the elements at index 0 and 1
are sorted, the elements at 2 and 3 are sorted and so on. For example if the
input array is {1,0,4,5,3,2} the result is {0,1,4,5,2,3}.

In section 4 there are examples of sorting algorithms expressed in Obsidian.

The Ordered class provides the usual comparison functions:

(<*) :: Ordered a => a -> a -> BoolE

(<=*) :: Ordered a => a -> a -> BoolE

(>*) :: Ordered a => a -> a -> BoolE

(>=*) :: Ordered a => a -> a -> BoolE

Related to evens is the function odds that behaves very similarly. The odds

function passes the first element through unchanged and then behaves like
evens on the rest of the elements. That is, it pairs the second element with
third and so on. Then the operation is performed on these pairs followed by
unpairing them. The odds function is also useful to implement sorters, see
section 4.

Another example of a function given in the array library is zipp:

zipp :: (Arr a, Arr b) -> Arr (a, b)

This function performs on arrays what the normal Haskell zip does on lists.
However, the input to zipp is a pair of arrays, see figure 5.

Here, zipp is used together with fmap to implement a function called replace.
The replace function takes an element and a pair of arrays as input. It re-
places each occurrence of the given element in the first array by the element
at the corresponding index in the second array. Elements of types that are
in the Equal class can be tested for equality using (==*):

10

Figure 3: The functions fmap and rev.

Figure 4: The functions conc, halve, pair and unpair

replace :: (Equal a, Choice a) => a -> (Arr a, Arr a) -> Arr a

replace i = fmap f . zipp

where

f (a,b) = (a ==* i) ?? (b,a)

Inspired by the (? :) operator in C, the ?? operator makes a choice between
the two elements of a pair depending on a boolean. It is implemented using
ifThenElse.

Array programs like those described here make up the building blocks used
to form larger GPU programs. How to create a GPU program from these is
shown in the following section.

11

Figure 5: The functions zipp, unzipp, riffle and unriffle

fmap :: (a -> b) -> Arr a -> Arr b

foldr :: (a -> b -> b) -> b -> Arr a -> b

pair :: Arr a -> Arr (a,a)

unpair :: Choice a => Arr (a, a) -> Arr a

halve :: Arr a -> (Arr a, Arr a)

conc :: Choice a => (Arr a, Arr a) -> Arr a

zipp :: (Arr a, Arr b) -> Arr (a, b)

unzipp :: Arr (a, b) -> (Arr a, Arr b)

riffle :: Arr a -> Arr a

unriffle :: Arr a -> Arr a

singleton :: a -> Arr a

chopN :: Int -> Arr a -> Arr (Arr a)

Figure 6: A selection of functions from the array API

(??) :: Choice a => BoolE -> (a, a) -> a

(==*) :: Equal a => a -> a -> BoolE

(<*) :: Ordered a => a -> a -> BoolE

Figure 7: Example functions on elements

12

2.2 GPU Programs

The second layer of Obsidian offers a data type that represents a GPU pro-
gram taking an a as input and producing a b:

data a :-> b = ...

The details of a :-> b are shown in section 3. Informally we can think of
a :-> b as representing programs that operate as illustrated in figure 8. This
figure shows a program that performs some computation using a number of
threads followed by a barrier synchronisation, and so on. The contents of the
boxes marked with Pure can be thought of as containing an array program,
such as those in section 2.1.

One way to create a GPU program is by using the function pure:

pure :: (a -> b) -> a :-> b

For example the array language program, fmap (+1), that increments every
element of an array can be lifted to a GPU program like this:

incr :: Arr IntE :-> Arr IntE

incr = pure $ fmap (+1)

GPU programs such as incr can be executed on the GPU from a GHCI
session using a function called execute:

execute :: (Flatten a, Flatten b) =>

(Arr a :-> Arr b) -> [a] -> IO [b]

The class Flatten will be explained in detail in section 3, but instances of
Flatten are all the types that we can store in the GPU memory. Examples
of types that are in Flatten are IntE, FloatE, BoolE. Arrays and pairs of
things that are in Flatten are also instances of Flatten.

Here, execute is used in order to run an instance of the incr program on
the GPU:

*Obsidian> execute incr [0..9]

[1,2,3,4,5,6,7,8,9,10]

13

Figure 8: A GPU program, an object of type a :-> b, can be thought of as

some pure computations interspersed by syncs.

The elements of the Haskell list given to execute are used to create an input
array to the kernel. Following this, the kernel is executed on the GPU and
the result is read back and presented as a Haskell list.

In the example above, the execute function generates the following kernel
corresponding to the given GPU program:

__global__ void generated(word* input,word* result){

unsigned int tid = (unsigned int)threadIdx.x;

extern __shared__ unsigned int s_data[];

word __attribute__((unused)) *sm1 = &s_data[0];

word __attribute__((unused)) *sm2 = &s_data[0];

ix_int(result,tid) = (ix_int(input,tid) + 1);

}

The generated kernel has two arguments, an input array of words and an
output array of words. Words represent 32-bit quantities that can be either
floating point or integer valued. This particular kernel does not use any
shared memory; the incremented values are stored directly into the result
array that resides in global memory.

Given two GPU programs, f :: a :-> b and g :: b :-> c a composite
GPU program can be created by passing the output of f to the input of g.
In Obsidian this is done using the composition operator (->-):

(->-) :: (a :-> b) -> (b :-> c) -> (a :-> c)

The following illustrates the use of (->-) by implementing a program that
increments every element of an array but also reverses it:

14

increv :: Arr IntE :-> Arr IntE

increv = pure (fmap (+1)) ->- pure rev

*Obsidian> execute increv [0..9]

[10,9,8,7,6,5,4,3,2,1]

The code generated from the increv program is very similar to that of inc
but the indexing is reversed:

__global__ void generated(word* input,word* result){

unsigned int tid = (unsigned int)threadIdx.x;

extern __shared__ unsigned int s_data[];

word __attribute__((unused)) *sm1 = &s_data[0];

word __attribute__((unused)) *sm2 = &s_data[0];

ix_int(result,tid) = (ix_int(input,(9 - tid)) + 1);

}

The code generated for the incr and increv examples use 10 threads to
compute the resulting array. By default the result will be computed using a
number of threads equal to the number of elements in the return array.

The GPU program increv could also have been specified as:

increv :: Arr IntE :-> Arr IntE

increv = pure $ rev . fmap (+1)

In fact, when both arguments to (->-) are implemented using pure alone,
(->-) is defined using Haskell functional composition. However, increv

can also be specified with an explicit storing of intermediate values between
the rev and the fmap (+1). This is accomplished using a primitive GPU
program called sync:

sync :: Flatten a => Arr a :-> Arr a

increv :: Arr IntE :-> Arr IntE

increv = pure (fmap (+1)) ->- sync ->- pure rev

This version of increv computes the same result as the previous one. How-
ever, it does so by computing fmap (+1) on the array, storing the intermedi-
ate result in shared memory followed by computing the reverse. The CUDA
C code for this version of increv looks like this. Notice how the shared
memory is used and the call to syncthreads():

15

__global__ void generated(word* input,word* result){

unsigned int tid = (unsigned int)threadIdx.x;

extern __shared__ unsigned int s_data[];

word __attribute__((unused)) *sm1 = &s_data[0];

word __attribute__((unused)) *sm2 = &s_data[8];

ix_int(sm1,tid) = (ix_int(input,tid) + 1);

__syncthreads();

ix_int(result,tid) = ix_int(sm1,(7 - tid));

}

2.2.1 Sync and parallelism

In the previous examples, incr and increv, all parallelism is implicit. The
following examples show how sync can be used to guide the introduction of
parallelism.

In order to illustrate how sync can be used to guide the code generation, a
number of implementations of a sum program will be used. The first version,
mySum1, sums up the elements of an array using a single thread:

mySum1 :: Int -> Arr IntE :-> Arr IntE

mySum1 0 = pure id

mySum1 n = pure op ->- mySum1 (n-1)

where

op = fmap (uncurry (+)) . pair

The mySum1 program uses pair to pair up the first element of the array with
the second, the third with the fourth etc. On the resulting array uncurry (+)

is applied to each pair, giving an array of half the length. This is composed,
(->-), with a recursive call to mySum1 that continues the summation until
only a single element is left. Hence, this algorithm for summing up the
elements of an array only works for arrays with a length a power of two. The
generated code is single threaded because the length of the output array is
one.

The direct approach to parallelising the mySum1 program is to do the fol-
lowing: if given an array of length 2n, pair the elements up giving an array
of length 2n−1 then in parallel apply (+) to these pairs using 2n−1 threads.
Then proceed with the recursion, in the next stage using 2n−2 threads, until
the sum is found. In Obsidian this version of the summation program is
obtained by simply adding a sync at a suitable place:

16

__global__ void generated(word* input,word* result){

unsigned int tid = (unsigned int)threadIdx.x;

extern __shared__ unsigned int s_data[];

word __attribute__((unused)) *sm1 = &s_data[0];

word __attribute__((unused)) *sm2 = &s_data[0];

ix_int(result,tid) =

(((ix_int(input,(tid << 3)) +

ix_int(input,((tid << 3) + 1))) +

(ix_int(input,(((tid << 2) + 1) << 1)) +

ix_int(input,((((tid << 2) + 1) << 1) + 1)))) +

((ix_int(input,(((tid << 1) + 1) << 2)) +

ix_int(input,((((tid << 1) + 1) << 2) + 1))) +

(ix_int(input,(((((tid << 1) + 1) << 1) + 1) << 1)) +

ix_int(input,((((((tid << 1) + 1) << 1) + 1) << 1) + 1)))));

}

Figure 9: Code generated from the sequential version of mySum

mySum2 :: Int -> Arr IntE :-> Arr IntE

mySum2 0 = pure id

mySum2 n = pure op ->- sync ->- mySum2 (n-1)

where

op = fmap (uncurry (+)) . pair

The sync primitive signals that at this point the array should be computed
and stored in memory. The computation of the array is performed using one
thread per element. Using sync also enables sharing of the computed values
between threads in the future. The addition of a sync here does however not
have any effect on the semantics of the program, only on the performance of
the generated code. Figures 9 and 10 show the code that is generated from
the two different versions of mySum.

This is an example of executing mySum2 on the GPU.

*Obsidian> execute (mySum2 3) [0..7]

[28]

17

__global__ void generated(word* input,word* result){

unsigned int tid = (unsigned int)threadIdx.x;

extern __shared__ unsigned int s_data[];

word __attribute__((unused)) *sm1 = &s_data[0];

word __attribute__((unused)) *sm2 = &s_data[4];

ix_int(sm1,tid) = (ix_int(input,(tid << 1)) +

ix_int(input,((tid << 1) + 1)));

__syncthreads();

if (tid < 2){

ix_int(sm2,tid) = (ix_int(sm1,(tid << 1)) +

ix_int(sm1,((tid << 1) + 1)));

}

__syncthreads();

if (tid < 1){

ix_int(result,tid) = (ix_int(sm2,(tid << 1)) +

ix_int(sm2,((tid << 1) + 1)));

}

}

Figure 10: Code generated from the parallel version of mySum, mySum2.

It is also possible to sum up an array using a combination of sequential and
parallel computation. One way to do this is the following:

mySum3 :: Int -> Arr IntE :-> Arr IntE

mySum3 0 = pure id

mySum3 n = pure op ->- (if (n <= 3)

then sync

else pure id) ->- mySum3 (n-1)

where

op = fmap (uncurry (+)) . pair

Here, a normal Haskell conditional is used to decide whether to sync or not.
If code is generated from this Obsidian program for 32 elements, chunks of 4
elements would be summed up in sequence giving an array of length 8. The
array of length 8 is then summed up using the parallel method.

Another program that accomplishes the same thing is the following:

mySum4 :: Int -> Arr IntE :-> Arr IntE

mySum4 n = pure ((fmap (foldr (+) 0)) . chopN 4) ->-

sync ->- mySum2 n

18

The program chops the array up into an array of arrays where the inner
arrays are of length 4. The inner arrays are then folded using (+). The
program then proceeds by letting the parallel mySum2 program sum up the
resulting array. The Int argument to mySum4 tells how many stages the
parallel summation should consist of. So to sum up an array of 32 elements
this argument should be 3, because 32 divided by 4 is 8 and summing up 8
elements needs 3 stages. Running this version of the program on the GPU
gives the following result:

*Obsidian> execute (mySum4 3) [0..31]

[496]

The code generated from this program looks like this. Notice how four el-
ements are summed up sequentially in each thread before proceeding as in
mySum2:

__global__ void generated(word* input,word* result){

unsigned int tid = (unsigned int)threadIdx.x;

extern __shared__ unsigned int s_data[];

word __attribute__((unused)) *sm1 = &s_data[0];

word __attribute__((unused)) *sm2 = &s_data[8];

ix_int(sm1,tid) =

(ix_int(input,(tid << 2)) +

(ix_int(input,((tid << 2) + 1)) +

(ix_int(input,((tid << 2) + 2)) +

ix_int(input,((tid << 2) + 3)))));

__syncthreads();

if (tid < 4){

ix_int(sm2,tid) = (ix_int(sm1,(tid << 1)) +

ix_int(sm1,((tid << 1) + 1)));

}

__syncthreads();

if (tid < 2){

ix_int(sm1,tid) = (ix_int(sm2,(tid << 1)) +

ix_int(sm2,((tid << 1) + 1)));

}

__syncthreads();

if (tid < 1){

ix_int(result,tid) = (ix_int(sm1,(tid << 1)) +

ix_int(sm1,((tid << 1) + 1)));

}

}

19

2.2.2 Grouping of work

The sync primitive can also be used to group work together. This can be
used to lower the number of threads needed to perform a certain task by
having each thread do more work. The sync primitive signals that the array
supplied as input to sync should be computed and stored in memory. The
number of threads used to compute the array is equal to the number of
elements in the array. So, one way to halve the number threads used is to
sync on an array of pairs instead of syncing on an array. For example:

incrP :: Arr IntE :-> Arr (IntE,IntE)

incrP = pure (fmap (+1)) ->- pure pair ->- sync

The code generated from this Obsidian program increments all elements of
an array of length 2n using n threads:

*Obsidian> execute incrP [0..7]

[(1,2),(3,4),(5,6),(7,8)]

Of course, this means that the resulting array is an array of pairs and it is
left up to the user of the result to transform it into a suitable form.

2.2.3 Divide and conquer

In the divide and conquer paradigm problems are solved by splitting them
into smaller sub-problems that can be solved independently. The solutions
to the sub-problems are then fused together into a solution to the original
problem.

Obsidian provides a combinator called two:

two :: (Arr a :-> Arr b) -> Arr a :-> Arr b

The two combinator is a special case of parallel composition. It takes a
single GPU program as input and gives as result a new GPU program. The
resulting GPU program splits the input in the middle and applies the original
program to both halves, as shown in figure 11. This combinator is useful for
divide and conquer algorithms where the same program is used to solve both
subproblems.

For example, two can be used to find the minimum element of an array. First
the array is split in half and the minima of both halves are found recursively.
This is followed by simply selecting the smaller of the two minima as the
answer. In Obsidian, using two, this program is implemented as:

20

minimum :: Int -> Arr IntE :-> Arr IntE

minimum 0 = pure id

minimum n = two (minimum (n-1)) ->- pure min2 ->- sync

The array program min2 uses indexing, (!), and a function called singleton

:: a -> Arr a that creates a one element array:

min2 :: Arr IntE -> Arr IntE

min2 arr

| len arr /= 2 = error "wrong input"

| otherwise = singleton $ ifThenElse (a <* b) a b

where

a = arr ! 0

b = arr ! 1

Below, the minimum program is executed on eight inputs:

*Obsidian> execute (minimum 3) [9,9,2,5,7,4,4,3]

[2]

The following listing shows code generated from the minimum program for
eight inputs. One thing to notice in the generated code is how the applica-
tions of two have been turned into bitwise operations on the indexes. The
implementation of two will be shown in section 3.

__global__ void generated(word* input,word* result){

unsigned int tid = (unsigned int)threadIdx.x;

extern __shared__ unsigned int s_data[];

word __attribute__((unused)) *sm1 = &s_data[0];

word __attribute__((unused)) *sm2 = &s_data[4];

ix_int(sm1,tid) =

((ix_int(input,((tid << 1) & 0x6)) <

ix_int(input,(((tid << 1) & 0x6) | 0x1))) ?

ix_int(input,((tid << 1) & 0x6)) :

ix_int(input,(((tid << 1) & 0x6) | 0x1)));

__syncthreads();

if (tid < 2){

ix_int(sm2,tid) =

((ix_int(sm1,((tid << 1) & 0x2)) <

ix_int(sm1,(((tid << 1) & 0x2) | 0x1))) ?

ix_int(sm1,((tid << 1) & 0x2)) :

21

ix_int(sm1,(((tid << 1) & 0x2) | 0x1)));

}

__syncthreads();

if (tid < 1){

ix_int(result,tid) =

((ix_int(sm2,0) < ix_int(sm2,1)) ?

ix_int(sm2,0) :

ix_int(sm2,1));

}

}

Another combinator related to two, is ilv. Instead of splitting the array
in the middle, ilv splits the array into one array of its odd elements and
another of its even elements. Then, just as in two, the same program is
applied to both of the arrays.

While two is a given primitive, ilv can be implemented using two, riffle
and unriffle, see figure 5:

ilv :: (Arr a :-> Arr b) -> Arr a :-> Arr b

ilv f = pure riffle ->- two f ->- pure unriffle

The ilv combinator can, for example, be used to implement mergers. A
merger is a useful building block in sorting algorithms. This usage of ilv
will be demonstrated in section 4.

2.2.4 Experimental features

In section 2.2.1, we saw how sync can be used to guide the code generation
and introduce parallelism and in section 2.2.2, sync was used to group work.
The example in section 2.2.2 showed only one way to group work. The work
was grouped by pairing neigbouring elements up and using one thread to
compute each pair. However, there are other ways you may want to be
able to group the work. The pure pair ->- sync approach lets a single
thread compute two neighbouring elements of an array. But what if a better
grouping of work is to let each thread compute element tid and tid + (n/2)
in an array of length n? This grouping of work is of course possible to
achieve, for example by pure (zipp . halve) ->- sync, see figure 12.
The drawback of this approach is twofold. First, the zipping and halving
of the array introduces extra computation in the indexing function that not
at all contributes to the computation of the result. Of course, grouping of

22

Figure 11: Divide and conquer combinator.

work will result in more arithmetic in the index calculations but it should be
kept to the minimum possible. Second, this approach results in movement
of data. When syncing on pairs the two parts of the pair are stored next to
each other in memory.

What is needed is a method to assign work to threads that does not introduce
unnecessary computation in the indexing function and that does not move
elements. In the current version of Obsidian there is an experimental solution
that has these two properties. Currently this solution is called syncHow.
syncHow is very similar to sync but it has an extra argument:

syncHow :: How -> Arr a :-> Arr a

The extra argument to syncHow holds information on how the array synced
upon should be written to memory. The information provided in the how
argument contains a mapping between thread IDs and indices.

The details of the How type are shown in section 3, but here is an example of
its use. For this example, let us assume that there is a function pairNth ::

Int -> How that takes an Int, n, and creates a How object that instructs
the synchronisation to let each thread tid compute and store element tid
and tid + n. Using pairNth and syncHow a new version of incrP can be
implemented:

incrP :: Arr IntE :-> Arr IntE

incrP = pure (fmap (+1)) ->- syncHow (pairNth 4)

23

Figure 12: Halve the array, zip the two halves together, then sync.

Now, one immediately apparent drawback is the hardcoded 4 which means
that this program is only correctly applicable to arrays of length 8. Future
work will focus on removing this limitation. Executing this version of incrP
on the GPU results in:

*Test> execute incrP ([0..7] :: [IntE])

[1,2,3,4,5,6,7,8]

In the generated code it can be seen how the How argument has been used in
the code generation. Each thread computes two values of the output array,
result. The thread with thread ID tid computes element tid and element
tid + 4:

__global__ void generated(word* input,word* result){

unsigned int tid = (unsigned int)threadIdx.x;

extern __shared__ unsigned int s_data[];

word __attribute__((unused)) *sm1 = &s_data[0];

word __attribute__((unused)) *sm2 = &s_data[8];

ix_int(result,tid) = (ix_int(input,tid) + 1);

ix_int(result,(tid + 4)) = (ix_int(input,(tid + 4)) + 1);

}

Another limitation of the sync primitive is that it always results in a corre-
sponding syncthreads() call in the generated code, even in cases where
a barrier synchronization is really not needed. Using the barrier synchroni-
sation is not necessary in the cases where all the communication that takes
place is between threads that belong to the same warp. For future versions of
Obsidian the decision to generate a syncthreads() or not will most likely

24

pure :: (a -> b) -> a :-> b

(->-) :: (a :-> b) -> (b :-> c) -> (a :-> c)

sync :: Flatten a => Arr a :-> Arr a

two :: (Arr a :-> Arr b) -> Arr a :-> Arr b

ilv :: (Arr a :-> Arr b) -> Arr a :-> Arr b

Figure 13: A selection of functions from the GPU Program API

be done automatically, but in the current version the programmer can ex-
periment with this directly by using another sync primitive called syncWarp.
This kind of sync does not generate a syncthreads() and it is up to the
programmer to decide if it is safe to exclude this barrier or not.

There is one last primitive, called syncIP, that fits in this category of more
experimental features. The generated code shown so far in this document
uses two shared memory arrays. One array acts as source and the other as
target and then their roles are exchanged. There is however a class of in-
place algorithms that do not need two memories to work. Instead the result
can be computed into the same space that is occupied by the source. The
syncIP primitive allows the programmer to express that the result should be
stored in the same place as the input is gathered from, making the algorithm
in-place in regard to shared memory.

The functions syncIP and syncWarp are also available with a How parameter,
called syncIPHow and syncWarpHow.

The experimental features described in this section will be shown in action
in section 4, where they are used to optimize the implementation of an algo-
rithm.

This section introduced Obsidian by showing language features using very
small examples. Section 4 applies Obsidian to some slightly larger case stud-
ies such as parallel prefix and sorting.

3 Implementation of Obsidian

This section describes the implementation of Obsidian starting with the base
types used in the language, IntE, FloatE and BoolE. Following this is an
exploration of the array language by giving the implementation of some of
the functions found there. The rest of the section explains GPU programs
and how code is generated from them.

25

3.1 Expressions

Now its time to take a closer look at the expression type. We have already
seen several kinds of expressions in use, IndexE, IntE, FloatE and BoolE.
These four types are all type synonyms:

type IntE = Exp Int

type FloatE = Exp Float

type BoolE = Exp Bool

type IndexE = Exp Word

The Exp a type is simply a wrapper around an untyped expression, DExp:

data Exp a = E DExp

Hence, all expressions in Obsidian are represented by the same DExp type.
This is an example of usage of Phantom types [11]. Phantom types can be
used to provide a typed interface to an untyped structure.

The type DExp represents expressions that can be Int, Float or Bool valued.
The DExp type models a subset of C’s expressions and can be used very
directly to output C code, see section 3.5:

data DExp = LitInt Int

| LitUInt Word32

| LitBool Bool

| LitFloat Float

| Op2 Op2 DExp DExp

| Op1 Op1 DExp

| If DExp DExp DExp

| Variable Name

| Index DExp DExp Type

The Op1 data type represents the unary operations for which there is support
on the GPU.

data Op1 = Not

| BitwiseComp

| Exp | Log | Sqrt

26

| Cos | Sin | Tan

| CosH | SinH | TanH

| ACos | ASin | ATan

| ACosH | ASinH | ATanH

The Op2 data type contains those binary operations that are supported.

data Op2 = Add | Sub | Div | Mul | Mod | Pow

| And | Or

| BitwiseAnd | BitwiseOr | BitwiseXor

| Lt | Leq | Gt | Geq | Eq

| Shl | Shr

| Min | Max

To make these expressions more pleasant to work with suitable instances of
Num, Integral, Fractional amongst others are created. It is also here that
optimisations are applied, for example (+) inspects its two arguments and
performs operations such as constant folding.

3.2 Array Language

In Obsidian, arrays are represented by a function from index expressions to
elements and an Int representing the length. That the length is a normal
Haskell Int is important and sometimes used in order to generate efficient
code.

data Arr a = Arr (IndexE -> a) Int

There are two functions len and (!) defined on Arr:

len :: Arr a -> Int

len (Arr _ n) = n

(!) :: Arr a -> IndexE -> a

(!) (Arr ixf _) ix = ixf ix

The len function simply returns the length. The indexing function (!)

applies the array’s index function to a given index. For example, these two
functions are used in the implementation of the rev function in the array
library:

27

rev :: Arr a -> Arr a

rev arr = Arr ixf n

where

ixf ix = arr ! (fromIntegral (n-1) - ix)

n = len arr

An array is reversed by creating a new array whose indexing function is
looking up index n − 1 − ix in the original array, n is the length of the
original array.

Let us look at the implementation of a few more array functions, for example
the function pair is implemented as follows in the Obsidian libraries:

pair :: Arr a -> Arr (a,a)

pair arr | odd (len arr) = error "Pair: Odd n"

| otherwise = Arr (\ix -> (arr ! (ix * 2),

arr ! ((ix * 2) + 1))) nhalf

where

n = len arr

nhalf = div n 2

The pair function requires the input array to be of even length. If the input
array is of even length, an array of pairs is created. An element of the array
of pairs is found by indexing in the original array at ix ∗ 2 and ix ∗ 2 + 1.

Going back from an array of pairs to an array is also useful:

unpair :: Choice a => Arr (a,a) -> Arr a

unpair arr =

let n = len arr

in Arr (\ix -> ifThenElse ((mod ix 2) ==* 0)

(fst (arr ! (div ix 2)))

(snd (arr ! (div (ix-1) 2)))) (2*n)

The unpair function requires the elements of the array to be in the Choice

class. This is because it uses a conditional in the indexing function.

The functions pair, unpair, halve, conc, zipp and unzipp can be used to
inplement the two functions riffle and unriffle:

riffle :: Choice a => Arr a -> Arr a

riffle = conc . unzipp . pair

unriffle :: Choice a => Arr a -> Arr a

unriffle = unpair . zipp . halve

28

However, in an attempt to increase the performance of the generated code,
riffle and unriffle are also given a lower level implementation. This
implementation of riffle and unriffle is based on rotation of bits in the
index.

riffle’ :: Arr a -> Arr a

riffle’ arr | even (len arr) =

Arr (\ix -> arr ! (rotLocalR ix bits)) n

where

n = len arr

bits = fromIntegral $ intLog n

riffle’ _ = error "riffle’ demands even length"

unriffle’ :: Arr a -> Arr a

unriffle’ arr | even (len arr) =

Arr (\ix -> arr ! (rotLocalL ix bits)) n

where

n = len arr

bits = fromIntegral $ intLog n

unriffle’ _ = error "unriffle’ demands even length"

These two functions are a bit more limited though. The rotLocalL and
rotLocalR functions rotate the bits least significant bits one step. This
means that not only does the length need to be even, but to produce correct
results it also needs to be a power of two.

This section showed the implementation of a selection of the functions that
make up the array language. The other functions in this library are all
implemented in a similar way. The functions riffle and unriffle are
examples of functions that can be implemented using existing primitives but
are instead also given a primitive implementation for efficiency reasons. The
need for giving more low level implementations of certain functions may be
reduced by improved optimisation techniques.

3.3 GPU Programs

GPU Programs are represented by the a :-> b type. Currently this type
has two constructors, Pure and Sync.

data a :-> b = Pure (a -> b)

| Sync (a -> Arr FData) (Arr FData :-> b)

29

The function pure that creates a GPU program corresponds directly to the
constructor Pure of the (:->) type:

pure :: (a -> b) -> a :-> b

pure = Pure

The implementation of sync is not as direct as that of pure. This is what
the implementation of the sync function looks like:

sync :: Flatten a => Arr a :-> Arr b

sync = Sync (fmap toFData) (pure (fmap fromFData))

The type FData represents things that can be written to the GPU memory.
The class Flatten provides the two functions toFData and fromFData to
convert to and from a format storable in memory. There are instances of
Flatten for all the basic types, IntE, FloatE and BoolE as well as for arrays
and pairs of things that can be flattened.

The type FData is defined as follows:

data List a

= Nil

| Unit a

| Tuple [List a]

| For (Arr (List a))

type FData = List (DExp, Type)

A base type such as an Int valued expression, an IntE, is turned into FData
using the Unit constructor:

instance Flatten IntE where

toFData a = Unit (unE a, Int)

fromFData (Unit (a,Int)) = E a

the function unE :: Exp a -> DExp turns a typed expression into its un-
typed representation.

A pair is turned into FData by using the Tuple constructor. Arrays however,
are turned into FData by using the For constructor. This also results in a for
loop over that very array in the generated C code. This means that if you
sync upon arrays of arrays the elements of each inner array are computed
sequentially.

30

instance Flatten a => Flatten (Arr a) where

toFData a = For (fmap toFData a)

fromFData (For a) =

fmap fromFData a

The type, (:->), of GPU programs is very similar to normal Haskell lists.
There is a unit GPU program, created by Pure, corresponding to a list of
length one. A GPU program can also be a Sync of something that produces
an array of FData followed by a GPU program, this resembles the (:) op-
erator on lists. So in a sense a GPU program is a list of computations and
the idea is that these computations should be performed in sequence with a
barrier synchronisation in between.

With this idea in mind it is a good time to look at the implementation of
the composition operator (->-):

(->-) :: (a :-> b) -> (b :-> c) -> (a :-> c)

Pure f ->- Pure g = Pure (g . f)

Pure f ->- Sync g h = Sync (g . f) h

Sync f h1 ->- h2 = Sync f (h1 ->- h2)

Composing two GPU programs created with Pure is the same as Haskell
function composition. The next case, where Pure f is composed with Sync

g h, means that some more computation should take place before the sync,
ie. it means, perform g . f then sync and continue with h. The last case
is where something constructed using Sync is composed with anything else.
In this case (->-) proceeds recursively.

3.3.1 The two combinator

The two combinator is a bit special. The input to it is a single GPU program
and the output is a new GPU program. The input program is either Pure

f or constructed using Sync. In the case of Pure f a Pure f’ must be
constructed where f’ performs f on both halves of an array. In the Sync f g

case the scenario is just slightly more complicated. The same transformation
as in the Pure case must be performed on the function f but then it must
also be applied recursively to the GPU program g.

In the Pure f case, one way to accomplish the desired result is to let f’

= conc . (\(x,y) -> (f x, f y)) . halve, but the resulting code is
not efficient. Especially if two is used in an algorithm recursively (as it most
often will be), this ends up being very inefficient. This is mainly because of

31

the conditionals that conc introduces into the indexing function of the array.
Instead, a similar approach to that used in riffle’ and unriffle’ is used.
The conditionals are completely replaced by bitwise logic on the indices. It
is then up to a set of optimisations on bitwise logical expressions to generate
good code.

The following listing shows the implementation of two, it in turn uses the
function twoFF that performs the actual transformation of the array programs
between the syncs:

two :: (Arr a :-> Arr b) -> (Arr a :-> Arr b)

two (Pure f) = Pure $ twoFF f

two (Sync f g) = Sync (twoFF f) (two g)

The implementation of the twoFF function is obtained from f’ = conc .

(\(x,y) -> (f x, f y)) . halve by inlining the definitions of conc and
halve, the conditionals are then moved inwards as much as possible and
replaced by bitwise logic.

twoFF :: (Arr a -> Arr b) -> Arr a -> Arr b

twoFF f arr =

Arr (\i -> f (

Arr (\j -> arr ! ((sh bit bit2 (i .&. num2)) .|. j)) n2) !

(i .&. mask)) nl

where

n2 = (len arr) ‘div‘ 2 :: Int

bit = logInt n2

bit2 = logInt nl2

num2 = fromIntegral $ 2^bit2

mask = complement num2

nl = 2 * nl2

nl2 = (len (f (Arr (\j -> arr ! variable "X") n2)))

sh :: (Bits a) => Int -> Int -> a -> a

sh b1 b2 a | b1 == b2 = a

| b1 < b2 = a ‘shiftR‘ (b2 - b1)

| b1 > b2 = a ‘shiftL‘ (b1 - b2)

32

3.4 Experimental features

In order to support the experimental versions of the sync function. The type
(:->) is extended with some more information in the Sync case:

data a :-> b

= Pure (a -> b)

| Sync SyncInfo How (a -> Arr FData) (Arr FData :-> b)

The SyncInfo type holds information about whether or not to store data
in-place and if the code generator should insert a syncthreads or not:

data SyncInfo = SyncInfo {inPlace :: Bool,

inWarp :: Bool}

The How type is currently a Haskell function from an index to a list of indices:

type How = IndexE -> [IndexE]

The meaning of the How function is that, if given a thread ID as input the
output will contain a list of thread IDs that the given input thread shall
pretend to be. That is input is a “real” thread and outputs are “virtual”
threads.

Of course, representing the How argument in this way has some obvious risks.
The programmer is free to provide any function (that fits the type). For
example the function (\x -> [0]), that tells every thread to pretend to
be thread zero. There are some ideas on how to improve this situation,
description of these are defered to the future work section (section 5).

However, the syncHow approach is clearly worth exploring further. It decou-
ples the notions of “what to compute” and “how to compute it” even further,
which is desired.

3.5 Code generation

In order to generate C code from an Obsidian description it is first necessary
to gather some information about the program. Two important pieces of
information are the number of threads needed to compute the result and the
amount of shared memory needed to hold intermediate values.

33

Figure 14: A program alternately using the arrays sm1 and sm2 for storage.

A GPU program can be seen as a sequence of computations separated by
barrier synchronisations. The amount of shared memory that is needed for
a program in total is the maximum of the memory requirements of the com-
putations separated by synchronisations. The number of threads needed is
obtained in the exact same way. In order to get the shared memory require-
ments of the program an input of the desired size is needed, as indicated by
the pseudo code below:

sharedMemReq :: a :-> b -> a -> Int

sharedMemReq (Pure _) _ = 0

sharedMemReq (Sync f g) input =

maximum (memory_needed_for (f input))

(sharedMemReq g (f input))

A Pure computation needs no shared memory, the result is written directly
to the output in global memory. In the Sync case, enough memory to store
the result of f applied to the input is needed.

When the number of threads and amount of shared memory needed has been
computed it is time generate the actual code. When generating the Code for
a particular stage of the program the number of threads needed to compute
that stage is needed. If the number of threads needed for the program in total
is higher than the number of threads needed in a given stage, the code for
that stage will be enclosed in a conditional that disables a number of threads.
Examples of where this happens are the mySum programs from section 2.2.1.

The generated code uses two shared memory arrays to perform the computa-
tions, these arrays are called sm1 and sm2 and are used alternately. Figure 14
shows an example of how a program uses the two shared memory arrays.

Figure 15 indicates how code is generated for the following program given
functions f :: Arr IntE -> Arr IntE and g :: Arr IntE -> Arr IntE:

example :: Arr IntE :-> Arr IntE

34

example = pure (fmap f) ->- sync ->- pure rev ->-

sync ->- pure (fmap g)

If we overlook the extra how arguments to the Sync constructor, the datas-
tructure that represents the above program looks like this:

Sync f1 (Sync f2 (Pure f3))

Here f1, f2 and f3 are the functions:

f1 = fmap toFData . fmap f :: Arr IntE -> Arr FData

f2 = fmap toFData . rev . fmap fromFData :: Arr FData -> Arr FData

f3 = fmap g . fmap fromFData :: Arr FData -> Arr IntE

Given this datastructure, C code is generated by applying a symbolic array
as input to the function f1. Given the symbolic array Arr (\ix -> index

(variable ‘‘input’’) ix) n the result of this is an expression correspond-
ing to f(input[tid]). The result of this is supposed to be stored in the sm1
shared memory array followed by a barrier synchronisation giving:

sm1[tid] = f(input[tid]);

__syncthreads();

Following this an input must be created to be used as symbolic input to
the next function, f2. This symbolic input must represent an array located
in sm1: Arr (\ix -> index (variable ‘‘sm1’’ ix) n). This symbolic
array can be turned into an array of FData and supplied to f2 as input
giving an expression sm1[n-1-tid] as result. Now the result of this stage
should be stored into the sm2 array:

sm2[tid] = sm1[n-1-tid];

__syncthreads();

The same procedure is repeated for the last stage but here since we have
arrived at an instance of the Pure combinator we know we are at the end
of the program. the result of this computation should be written to an
array called output, giving a symbolic array Arr (\ix -> index (variable

‘‘output’’ ix) n) should be used here. It is also not necessary to add a
barrier synchronisation at this point.

35

Figure 15: A sketch of how code is generated for a program.

output[tid] = g(sm2[tid]);

The body of the program given by this procedure in total is shown below:

sm1[tid] = f(input[tid]);

__syncthreads();

sm2[tid] = sm1[n-1-tid];

__syncthreads();

output[tid] = g(sm2[tid]);

The code above looks slightly different from the examples of real generated
code shown on other places in this document. The difference is that the other
code shown uses a couple of macros for indexing. Instead of having sm1[tid]

this is written, using the macros, as ix int if the data is integers, ix float

if floating point numbers. The data itself is stored in arrays of 32-bit words.
The reason for this is that a choice was made to store the elements of a pair in
an array of pairs next to each other in memory. This means that the shared
memory array, sm1 for example, may contain interleaved floating point and
integer data.

This section showed an outline of how C code is generated given an GPU
program. Many details have been left out but the key ideas are present in
the description.

4 Case Studies

This section describes a few slightly larger Obsidian programs. One of the
case studies, on prefix networks, also contains some performance measure-

36

ments.

4.1 Reduction

Reduction is simply a generalisation of the mySum concept shown in sec-
tion 2.2. However, this highlights one of the strengths of a higher level
language compared to CUDA, where a similar abstraction would be harder
to express. It is possible that resorting to C++ and Templates would offer
the same capabilities to the CUDA programmer.

reduce :: Flatten a => Int -> (a -> a -> a) -> Arr a :-> Arr a

reduce 0 f = pure id

reduce n f = pure op ->- sync ->- reduce (n-1) f

where

op = fmap (uncurry f) . pair

This can be easily used to compute, for example sums, minimum and maxi-
mum:

*Obsidian> execute (reduce 3 (+)) ([0..7] :: [IntE])

[28]

*Obsidian> execute (reduce 3 min) ([0..7] :: [IntE])

[0]

*Obsidian> execute (reduce 3 max) ([0..7] :: [IntE])

[7]

Reduce can even be used to sum up an array of 3D vectors. The Vec3 type
is defined as follows:

type Vec3 a = (a,a,a)

An addition function on these vectors can be implemented like this:

vecPlus :: Num a => Vec3 a -> Vec3 a -> Vec3 a

vecPlus (x1,y1,z1) (x2,y2,z2) = (x1+x2,y1+y2,z1+z2)

And reduce is applicable without change:

*Obsidian> let input = replicate 8 (1,1,1) :: [Vec3 IntE]

*Obsidian> execute (reduce 3 vecPlus) input

[(8,8,8)]

37

4.2 Mergers

Mergers are components that are capable of taking two sorted sequences and
turning them into one sorted sequence. These mergers can then be used to
implement sorting algorithms. This section describes the implementation of
two different mergers, one based on the butterfly network and one called the
odd-even merger [8].

The butterfly merger , bfly, is capable of merging two sequences correctly
if the first one is sorted and the second is sorted in the reversed order. The
actual bfly program will take these two sequences as a single array. Figure 16
illustrates the access pattern of an 8 input butterfly.

The Obsidian program below that implements the butterfly takes a function
from pairs to pairs as argument. As argument the desired compare and swap
function should be supplied:

bfly :: (Choice a, Flatten a) =>

Int -> ((a,a) -> (a,a)) -> (Arr a :-> Arr a)

bfly 0 f = pure id

bfly n f = ilv (bfly (n-1) f) ->- sync ->- pure (evens f)

The Int parameter to the merger should be the log of the array length
desired.

In order to run the merger a compare and swap function is needed:

cmp :: (Ordered a, Choice (a, a)) => (a, a) -> (a, a)

cmp (a,b) = ifThenElse (a <* b) (a,b) (b,a)

This compare and swap function will be used in the following examples of
mergers and also in the next section about sorters.

The butterfly merger can be executed on the GPU:

*Obsidian> let input = ([1,3,5,7,6,4,2,0] :: [IntE])

*Obsidian> execute GPU (bfly 3 cmp) input

[0,1,2,3,4,5,6,7]

*Obsidian> let input = ([2,2,2,2,1,1,1,1] :: [IntE])

*Obsidian> execute (bfly 3 cmp) input

[1,1,1,1,2,2,2,2]

38

Figure 16: The Butterfly network and the Odd-Even merging network.

The next merger is called Bathcher’s Odd-Even merger, this merger merges
two sorted sequences [2]. This is different from the butterfly merger which
required one of the sequences to be sorted in the reversed order. Figure 16
shows the data access pattern of this merger.

mergeOE :: (Choice a, Flatten a) =>

Int -> ((a,a) -> (a,a)) -> (Arr a :-> Arr a)

mergeOE 1 f = pure (evens f)

mergeOE n f = ilv (mergeOE (n-1) f) ->- sync single ->-

pure (odds f)

Using the same compare and swap component as in the previous example,
executing this merger on the GPU works as follows:

*Obsidian> let input = ([1,3,5,7,2,4,6,8] :: [IntE])

*Obsidian> execute GPU (mergeOE 3 cmp) input

[1,2,3,4,5,6,7,8]

4.3 Sorting Networks

Sorting is a popular function to place on the GPU, see [22, 7, 21]. This
section describes two different sorting algorithms known as Odd-Even sort
and Bitonic sort.

Odd-Even sort uses the Odd-Even merger shown previously. The algorithm
follows a divide and conquer approach, using two. The array is split in two
halves and recursively sorted. Following this, the two sorted sub-arrays are
merged using the Odd-Even merger.

sortOE :: Int -> (Arr IntE :-> Arr IntE)

39

sortOE 0 = pure id

sortOE n = two (sortOE (n-1)) ->- sync ->-

mergeOE n cmp

*Obsidian> execute GPU (sortOE 3) [6,0,1,3,4,2,5,7]

[0,1,2,3,4,5,6,7]

The next example of a sorting network is Bitonic sort. Bitonic sort uses the
butterfly merger instead and needs to reverse one of the sub-arrays before
merging them. Besides that, the algorithms follow similar recursive decom-
positions.

sortB :: Int -> (Arr IntE :-> Arr IntE)

sortB 0 = pure id

sortB n = two (sortB (n-1)) ->- pure reverseHalf ->-

sync ->- bfly n cmp

where reverseHalf arr = let (a1,a2) = halve arr

in conc (a1,rev a2)

*Obsidian> execute GPU (sortB 3) [6,0,1,3,4,2,5,7]

[0,1,2,3,4,5,6,7]

4.4 Parallel Prefix

This subsection shows the implementation of a parallel prefix (also called
scan) kernel, known as sklansky after J. Sklansky [23]. This kernel will then
be optimised step-by-step using Obsidian.

The prefix sums of a sequence, s = s0, s1, . . . , sn, given an associative binary
operator ⊕ is a new sequence a such that:

a0 = s0

a1 = s0 ⊕ s1

a2 = s0 ⊕ s1 ⊕ s2

. . .
an = s0 ⊕ ... ⊕ sn

Since the operator ⊕ is associative the prefix sums can be computed in many
different ways. For more information on prefix networks see for example [4].

Figure 17 shows the recursive decomposition of the sklansky parallel prefix
network. The sklansky parallel prefix algorithm is implemented by splitting

40

Figure 17: The sklansky parallel prefix network.

the inputs in two halves and recursively applying sklansky to both halves.
The two sub-results are then joined by applying the operation between the
maximum of the first sub-result to all the elements in the second sub-result,
this is done using a function called fan:

fan op arr = conc (a1, (fmap (op c) a2))

where (a1,a2) = halve arr

c = a1 ! (fromIntegral (len a1 - 1))

The sklansky function is now implemented using two and fan:

sklansky :: (Flatten a, Choice a) =>

Int -> (a -> a -> a) -> (Arr a :-> Arr a)

sklansky 0 op = pure id

sklansky n op = two (sklansky (n-1) op) ->- pure (fan op)

->- sync

If sklansky is used to generate code for an array size of 512 elements, it
will use 512 threads to calculate the prefix sums. However, the number of
applications of the op operator that is needed in any stage of the algorithm
is only 256. This indicates that a more efficient usage of the GPU’s resources
would be to use only 256 threads to compute the result.

Since the code generated by Obsidian is not by default in-place with regard
to shared memory, each thread in the 256 threaded program needs to both
perform the operation between two elements and copy one value unchanged.
This is desired because it would mean that each thread performs the exact

41

same operations which means that there is no risk for divergence within a
warp.

This perfect division of labour is not obtainable with the current implemen-
tation of the How argument to sync. However, one division of the work that
has experimentally been shown to perform well, see table in next section, is
to let each thread tid perform the work of tid and tid + 256. This program
is show below:

sklansky1 :: (Flatten a, Choice a) =>

Int -> (a -> a -> a) -> (Arr a :-> Arr a)

sklansky1 0 op = pure id

sklansky1 n op = two (sklansky1 (n-1) op) ->- pure (fan op)

->- syncHow (pairNth 256)

Another optimisation to apply to the sklansky algorithm is the removal of
unnecessary syncthreads() calls from the generated code, this is done by
using syncWarp. It is up to the programmer to ensure that it is safe to use
syncWarp. For a sklansky network of size 32, it should be safe to leave out
the syncthreads since all of the communication stays within a warp. Using
this information leads to the following code where the sklansky networks of
size 32 or smaller use syncWarpHow.

sklansky2 :: (Flatten a, Choice a) =>

Int -> (a -> a -> a) -> (Arr a :-> Arr a)

sklansky2 0 op = pure id

sklansky2 n op = two (sklansky2 (n-1) op) ->- pure (fan op)

->- if n <= 5

then syncWarpHow (pairNth 256)

else syncHow (pairNth 256)

A last tweak to apply is to use the in-place version of sync. In code this
looks as follows:

sklansky3 :: (Flatten a, Choice a) =>

Int -> (a -> a -> a) -> (Arr a :-> Arr a)

sklansky3 0 op = pure id

sklansky3 n op = two (sklansky3 (n-1) op) ->- pure (fan op)

->- if (n < 5)

then syncIPWarpHow (pairNth 256)

else syncIPHow (pairNth 256)

42

4.4.1 Parallel Prefix Sums on large arrays

The Sklansky kernels given above can be used in an algorithm that computes
the parallel prefix of a large array. This is done through an approach similar
to that used in the summation of a large array as shown in section 1.1.1. The
large array is split up into chunks of 512 elements, each of these are scanned
using the kernel. The kernels needs to be slightly modified so that they also
output their maximum to a separate array of block maximums. The array
of block maximums are then scanned recursively and the results of that are
distributed to the chunks of the large array, see figure 18.

Figure 18: The large array is divided into chunks. Each chunk is scanned using

the small parallel prefix kernel. The maximum values are stored in a separate

array that is in turn scanned and then distributed over the chunks.

The table below shows the results of using the different parallel prefix kernels
from above in an algorithm for computing the prefix sums of 220 elements.

Kernel In-place Sync in Warp Threads ms
Hand Optimised Yes No 256 0.74
sklansky No yes 512 1.06
sklansky1 No yes 256 0.89
sklansky2 No No 256 0.86
sklansky3 Yes No 256 0.79

The table above shows the running times of five different Sklansky kernels.
The one labeled as Hand Optimised was written directly in CUDA. This

43

kernel was the result of two afternoons of optimisation effort by two people.
The four other kernels sklansky to sklansky3 are generated from the given
Obsidian programs. Even the very first version, sklansky1 performs very well
but by using the experimental features the performance can be pushed quite
close to the hand coded version.

5 Future work

Obsidian is work in progress and as such it changes a lot. This document also
described some experimental features of Obsidian. Future work will consist
of evaluating these experimental features and maybe integrating them more
thoroughly into the language.

The experiments with a How parameter, even though the current approach
has many problems, shows a path to decoupling the notions of what to com-
pute and how to compute it even further. This is something that must be
considered for future versions. The How parameter must also be made more
safe and compositional. One possible approach to that is to make the How

argument an array and move it into the GPU program, it currently exists
outside of the program in question. In the datatype below, the array that
is suposed to be written to memory is zipped with an array of identities of
threads. Each element is written to memory by the thread it whose ID it is
paired up with:

data a :-> b =

Pure (a -> b)

| Sync (a -> (Arr (IndexE,FData))) (Arr FData :-> b)

Since the length of arrays are known, the same information that the How as
a function provided can be derived from the (Arr (IndexE,FData)).

Another possibility is to replace the How parameter by more constructors
in the a :-> b type. These new constructors could have different meaning
in regard to division of work. In this setting Sync could mean; compute
the array and write it to memory using one thread per element. Another
constructor Parl could take two programs and compute the first program
on one array using threads 0 to n and compute the second program using
threads n+1 to m. Which of these two approaches, How as an array or more
constructors, that will work out best needs to be explored.

Section 4 on case studies showed that it is possible to generate quite efficient
code from Obsidian programs. The current version generates efficient code

44

for very specific uses of the two combinator, for example the kind used in
the sklansky parallel prefix network. This is depending on a set of compiler
optimisations on bitwise logical expressions. The set of optimisations in use
now produces efficient code for certain uses of two but is of limited value
for the ilv combinator. More work need to be done in order to find a good
way to produce efficient code more reliably. It is also clear in some of the
examples that common sub-expression elimination could be worth exploring.
However, some care must be taken to strike a balance between recomputation
and register use.

Obsidian can only be used to generate kernel code. That is, the small building
blocks used to form larger GPU algorithms. As future work, methods of
describing kernel coordination in a high level fashion will be investigated.

6 Related work

GPUs are becoming more and more interesting to use in non-graphical ap-
plications. A modern GPU is a manycore machine with, today, hundreds of
processing elements. The question of how to program these machines arises,
NVIDIA’s answer is CUDA [18]. CUDA supplies a slightly extended version
of C in which the programmer can specify GPU kernels and the controlling
CPU program in the same language. There are a number of other C/C++
based languages that target GPGPU programmers, for example Brook[6]
and RapidMind[15]. Brook, CUDA and RapidMind are major improvements
from what was previously available for the programmer interested in general
purpose computations on the GPU. Before these, the GPGPU programmer
only had the graphics API to work with and needed to translate his or her
programs into graphics vocabulary in order to use the GPU.

Higher level approaches are also being investigated. PyGPU embedds a
GPGPU programming language in Python[14]. PyGPU makes use of Python’s
introspective abilities to generate efficient code.

Like Obsidian, GPUGen is embedded in Haskell [13]. GPUGen however, is
higher level language than Obsidian. Where the purpose of Obsidian is to
implement basic algorithmic building blocks such as reductions and prefix
sums, GPUGen provide these building blocks as primitives.

Vertigo is another GPU programming language embedded in Haskell[9]. How-
ever, Vertigo is targeting graphical applications.

There are also many examples of languages that do not specifically target
GPUs but experiment with new methods and ways of parallel programming.

45

In this category we have Sequoia, where the memory hierarchy is in focus.
Sequoia programs can for example be compiled to the Cell BE architecture.
Data-Parallel Haskell extends Haskell with parallel arrays and operations on
parallel arrays[12]. Data-Parallel Haskell implements the nested data-parallel
paradigm and is in that sense following in the path of NESL[5].

7 Conclusion

Obsidian is work in progress and there are many loose ends to tie up and paths
left to explore. In section 4, the strengths of Obsidian show; it is possible
to express quite complex algorithms using short and elegant programs. The
case studies also show that it is possible to generate quite efficient code from
these high level descriptions. However, this needs more work in order to more
reliably produce efficient code, not just generate efficient code for very specific
uses of certain combinators. This indicates that more work needs to be done
in optimising generated code, or maybe that another set of combinators with
properties different from those currently available is needed.

Another benefit of a higher level language such as Obsidian compared to
CUDA is the ability to reuse code. There is an example of this too in the
case studies section where a single reduction program can be used to generate
code to compute the maximum, minimum and sum very easily.

In Obsidian it is easy to describe an initial prototype solution to a problem,
such as for example the mySum kernels in section 2.2.1. It requires no deep
knowledge of the GPU architecture but works out of the box. The proto-
type implementation can be tweaked into a more efficient implementation by
performing small changes to the Obsidian code that often lead to quite large
differences in the generated C code. An example of this is mySum1 against
mySum2 where adding a single sync leads to a radically different C program.

In order to get to the quite efficient version of the sklansky kernel in the
case studies section, the experimental How function was needed. As stated in
section 5, this needs to be explored further. How as it is today, any function
IndexE -> [IndexE], offers too much freedom and with that risk to intro-
duce errors. Hopefully some elegant model for expressing how and what to
compute will evolve over time.

One drawback of the hardware like approach used with Obsidian is that we
cannot describe algorithms where the size of the output is data dependent.
An example of such a data dependent algorithm is filter. The filter func-
tion takes a sequence of elements and a predicate and produces a sequence

46

of those elements for whom the predicate holds.

Obsidian offers the GPGPU programmer a higher level language while trying
not to sacrifice too much performance. When Programming in CUDA C the
indexing arithmetic often gets quite complex, see section 1.1.1. This is a
common trait of data-parallel programming in C like languages. One Goal
of Obsidian is to be able to express these algorithms without the complex
index manipulations; instead the data access pattern is captured in the use of
functions such as pair and two or in the recursive structure of the Obsidian
program.

Obsidian is also an improvement over CUDA in the area of code reuse. The
reduce function from section 4 is an example of this. Obsidian is also com-
positional in another way than CUDA. Reusing kernels as building blocks in
other kernels is in CUDA not realistic, while in Obsidian it is the prefered
way to write programs. Take as an example of this the mergers and sorters in
section 4. In CUDA you would design one kernel from scratch implementing
the merger and sorter simultaneously.

This paper presented Obsidian an embedded language for GPGPU program-
ming that offers higher level of abstraction compared to languages such as
CUDA. Obsidian allows the programmer to think more of the algorithm and
less of architectural details of the GPU. The contributions of Obsidian to the
GPGPU field is a higher level programming environment that eases experi-
mentation.

47

References

[1] NVIDIA CUDA. http://www.nvidia.com/cuda.

[2] K. E. Batcher. Sorting networks and their applications. In AFIPS
’68 (Spring): Proceedings of the April 30–May 2, 1968, spring joint
computer conference, pages 307–314, New York, NY, USA, 1968. ACM.

[3] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: Hardware
Design in Haskell. In International Conference on Functional Program-
ming, ICFP, pages 174–184. ACM, 1998.

[4] Guy E. Blelloch. Prefix sums and their applications. Technical Report
CMU-CS-90-190, School of Computer Science, Carnegie Mellon Univer-
sity, November 1990.

[5] Guy E. Blelloch. NESL: A Nested Data-Parallel Language. Technical
Report CMU-CS-93-129, April 1993.

[6] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fata-
halian, Mike Houston, and Pat Hanrahan. Brook for GPUs: stream
computing on graphics hardware. ACM Trans. Graph., 23(3):777–786,
August 2004.

[7] Daniel Cederman and Philippas Tsigas. GPU-Quicksort: A practi-
cal Quicksort algorithm for graphics processors. J. Exp. Algorithmics,
14:1.4–1.24, 2009.

[8] Koen Claessen, Mary Sheeran, and Satnam Singh. The design and ver-
ification of a sorter core. In Proc. of Conference on Correct Hardware
Design and Verification Methods (CHARME), Lecture Notes in Com-
puter Science. Springer Verlag, 2001.

[9] Conal Elliott. Programming graphics processors functionally. In Pro-
ceedings of the 2004 Haskell Workshop. ACM Press, 2004.

[10] W. Daniel Hillis and Guy L. Steele Jr. Data parallel algorithms. Com-
mun. ACM, 29(12):1170–1183, 1986.

[11] Ralf Hinze. Fun with phantom types. In Jeremy Gibbons and Oege
de Moor, editors, The Fun of Programming, pages 245–262. Palgrave
Macmillan, 2003. ISBN 1-4039-0772-2 hardback, ISBN 0-333-99285-7
paperback.

48

[12] Simon Peyton Jones, Roman Leshchinskiy, Gabriele Keller, and Manuel
M T Chakravarty. Harnessing the multicores: Nested data parallelism
in haskell. In Ramesh Hariharan, Madhavan Mukund, and V Vinay,
editors, IARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS 2008), volume 2 of
Leibniz International Proceedings in Informatics, Dagstuhl, Germany,
2008. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

[13] Sean Lee, Manuel M. Chakravarty, Vinod Grover, and Gabriele
Keller. GPU Kernels as Data-Parallel Array Computations in Haskell.
http://www.cse.unsw.edu.au/ chak/papers/gpugen.pdf, 2009.

[14] Calle Lejdfors and Lennart Ohlsson. Implementing an embedded GPU
language by combining translation and generation. In SAC ’06: Proceed-
ings of the 2006 ACM symposium on Applied computing, pages 1610–
1614, New York, NY, USA, 2006. ACM.

[15] Michael D. McCool. Data-parallel programming on the Cell BE and the
GPU using the RapidMind Development Platform. 2006.

[16] Hubert Nguyen. GPU Gems 3. Addison-Wesley Professional, August
2007.

[17] NVIDIA. Technical brief: Nvidia geforce 8800 gpu architecture overview.
2006.

[18] NVIDIA. NVIDIA CUDA Programming Guide 2.0. 2008.

[19] NVIDIA. NVIDIA CUDA Best Practices Guide, July 2009.

[20] Matt Pharr and Randima Fernando. GPU Gems 2: Programming Tech-
niques for High-Performance Graphics and General-Purpose Computa-
tion (Gpu Gems). Addison-Wesley Professional, 2005.

[21] N. Satish, M. Harris, and M. Garland. Designing efficient sorting algo-
rithms for manycore GPUs. In Parallel & Distributed Processing, 2009.
IPDPS 2009. IEEE International Symposium on, pages 1–10, 2009.

[22] Erik Sintorn and Ulf Assarsson. Fast parallel GPU-sorting using a hybrid
algorithm. J. Parallel Distrib. Comput., 68(10):1381–1388, 2008.

[23] J. Sklansky. Conditional sum addition logic. Trans. IRE, EC-9(2):226–
230, June 1960.

49

	Joel Svensson

