Getting Started with OpenCL on the ZYNQ

Bo Joel Svensson Rakesh Tripathi
bo. joel.svensson@gmail.com rakesht@chalmers.se
Guide version 0.5
Last edited October 12, 2018
Board compatibility zyngberry
Tested Vivado versions 2015.4, 2018.2

Disclaimer

All content provided in this document is for informational purposes only. The authors makes no
guarantees as to the accuracy or completeness of any information within this document.

The authors will not be liable for any errors or omissions in this information nor for the availability
of this information. The authors will not be liable for any losses, injuries, or damages from the display
or use of this information.

1 Introduction

This document attempts to provide a complete walk through of the entire OpenCL HLS work
flow using Xilinx Vivado. The Board we target in this version (0.5) of the document is the
Trenz ZyngBerry. In future versions we will try to highlight the parts that differ when using a
ZedBoard.

This document is work in progress and new versions will be posted as we refine the procedure
and gain a deeper understanding of all the details.

All feedback, hints, tips, corrections and explanations of details we are vague upon, would
be greatly appreciated and acknowledged in future revisions.

1.1 Initial setup for the zyngberry

The procedure outlined in this document has been tested against a ZynqBerry board [] The
version of this board that we use is the 128MB variant “TE0726-02” which has now been
superseded by the “TE0726-02M” variant with more memory. While we do not have access
to an “TE0726-02M” board and we cannot test, we assume the procedure explained in this
document will apply with minimal changes.

In order to make the description of the procedure as complete as possible we are not basing
this guide on an existing (vendor supplied) example Vivado project. Only one piece of data is
taken from a reference design provided by Trenz, the so called “board files”. We copy the board
files available in the “test board” reference design [J Under linux these board files are copied

thttp: //www.trenz-electronic.de/products/fpga-boards/trenz-electronic/te0726-zynq.html
2http://www.trenz-electronic.de/download/d0/Trenz_Electronic/d1/TE0726/d2/Reference%20Designs/d3/
2015.4/d4/test_board.html

Getting Started with OpenCL on the ZYNQ Version: 0.5

to directory Xilinx/Vivado/2015.4/data/boards/board_files of your Xilinx vivado install tree.
If these board files have been added correctly it will be possible to select the ZyngBerry as a
target for Vivado.

1.2 Guide structure

This guide is split into three parts that goes through: first writing a simple OpenCL program
and synthesizing it using Vivado HLS, second designing a system (in Vivado) that interfaces
the hardware generated by HLS in step 1 with the processing system and the memory system in
the Zynq chip, finally we show how to develop software (in the SDK) for the processing system
that starts computations in the OpenCL generated hardware.

2 Part 1: Vivado HLS and OpenCL

In this section we develop an OpenCL program for vector addition (vadd). This vadd com-
putation is given pointers to three vectors (arrays), two inputs and one output, and performs
element wise addition of the inputs into the output.

2.1 Creating a Vivado HLS project

Start Vivado hls and create project using the following steps:

e stepl: Create a project and name it “vadd_OpenCL”, see figure [I}

e step2: Now you are asked to provide a name for the top level function. This is the function
that specifies the interface to the generated hardware. Name the top level function (vadd).
This step is outlined in figure [2]

e step3: We are not adding a testbench file. See figure

e stepd: Now it is time to configure the solution details. We can leave the solution name
unchanged (“solutionl”) and then we select the device:

— Family: Zynq
— Package: clg225
— Speed grade: -1

There should now be just one available selection “xc7z010clg225-1". See figure [3|

Now project configuration is done and we can hit finish and enter into the development envi-
ronment. This should look like the left part of figure [4]

Getting Started with OpenCL on the ZYNQ Version: 0.5

I+] vivado HLS Welcome Page =kl Project Configuration &
] Create Vivado HLS project of selected type &
VIVADQ! XILINX T
HLS AL PROGRAUMABLE. * Project name: [vadd_OpencL| |
Quick Start Recent Projects
Location: | /home/joels/Vivado Browse...
\ =7
Create New Project Open Project Open Example Project
Documentation
ﬁ k’ 4 N@w
Tutorials User Guide Release Notes Guide
<Back _ Next> Cancel Finish

Figure 1: Project creation and naming

New Vivado HLS Project € New Vivado HLS Project

Add/Remove Files dhp— Add/Remove Files dhp—
Add/remove C-based source files (design specification) Add/remove C-based testbench Files (design test)

TestBench Files

Top Function: [vadd|] Browse
G Eil Name CFLAGS Add Files...
Design Files S St
Name CFLAGS Add Files... NewFile...
NewFile... Add Folder...

Remove

<Back { Next> J Cancel <Back L MNext> J Cancel

Figure 2: Identification of the Top function and addition of testbench file. We are not providing
any testbench.

Getting Started with OpenCL on the ZYNQ

Version: 0.5

4 New Vivado HLS Project o Device Selection Dialog

Solution Configuration

€ Part must be specified. 5

select: | @ Parts| | B Boards

RTL Tool Filter
Solution Name: _solutlon'l Auto | v | Product Category: All = | Package: clg225 v
Clock)
2 o Family: zynq * | Speed grade: -1 h 4
Period: |10 Uncertainty: = —
: Sub-Family: All ~ | Temp grade: |All v
Part Selection e :
: [Please select part]
il Rarg Reset All Filters
Search: «
Part Family Package Speed SLICE FF DSP BRAM

<Back Cancel

Cancel

Figure 3: Solution configuration. Select the “xc7z010clg225-1" device.

2.2 Writing a simple OpenCL kernel

The example kernel used in this guide is very simple and is outlined in total below. Add a
new source file to the project. Right click “source” in the Ezplorer under “vadd OpenCL” and
select “New file”. Name the file “vadd.cl”. The file extension is important “.cl”.

#include <clc.h>

__kernel void __attribute__ ((reqd_work_group_size(128,1,1)))
vadd(__global int *a, __global int *b, __global int *c) {

int i = get_global_id(0);

c[i] ali]l + bl[il;

After creating the new file type in the OpenCL code as above.

[vedd.cl |

Namn:

o Vivado HLS - vadd_OpencCL (/home/joels/Vivado/vadd_OpencL)

x RiEeb %8 ol - o Q 35 ebug [(Jsynthesis| 6 Analysis | Sparaimappen: | «| @joels vivado | vadd_openct. | source Skapamapp

(3 Explorer % $ =B

= O (g outline & . O Directive = i

platser

v Qsk
@ Tidigare anvanda

@ joels

Namn » storlek Andrad
v 5 vadd_OpencCL
» & Includes

£ source

Anoutline s not available.
s Test Bench B skrivbord
B Filsystem
B enhetc

i@ Dokument
i Musik

i@ Bilder

i@ video

&3 Hameningar

» ¢ solution1

@ console X . @) Errors
Vivado HLS Console

& warnings % i = mB-pOveg =0

vadd_OpencL

avbryt | (ORI

Figure 4: IDE view and source file creation.

Getting Started with OpenCL on the ZYNQ Version: 0.5

2.3 Synthesize the OpenCL code

After writing the OpenCL, synthesis and exporting the IP remains in order to conclude the
part of the work that takes place in vivado hls. If the code has been entered correctly this
should go through synthesis without problems. Hit the green “synthesis” button in the toolbar.
sewbeia 0@ v e

As the synthesis finishes a post synthesis report is brought up.

Vivado HLS - vadd_OpencL (/home/joels/Vivadofvadd_OpencCL)

R B OIR B8 % i e Oy @A g & %5 Debug | [+*|Synthesis | & Analysis
[t5 Explorer &8 ¢ = O ||[@vadd.cd |2l Synthesis(solutiont) 52 = 0 | B= outline 2 . [Directive =0
¥ &% vadd_OpencCL Synthesis Report for 'vadd' &
¥ il Includes] General Information
=] L Inf 4 i
» = Source General Information |¥ E5 Performance Estimates
fi= Test Bench Date; Sat Apr 23 19:48:322016 B Timing (ns)
» = solutionl Version: 2015.4 (Build 1412921 on Wed Nov 18 09:58:55 AM 2015) B Latency (clock cycles)
Project: vadd_OpenCL v [utilization Estimates
Solution: solutiont E summary
Product family: zynq Detail
Target device: xc7z010clg225-1 v [Interface
Performance Estimates T EummREy
= Timing (ns)
E Summary
Clock Target Estimated Uncertainty -
v
B console 5 . @) Errors| & Warnings Rk = M B+ g = O

|vivado HLS Console

/@I [WSYSC-381] Generating RTL SystemC for ‘vadd'. =
|@L [WVHDL-3084] Generating RTL VHDL for ‘'vadd'.

@I [WVLOG-387] Generating RTL Verilog for ‘vadd'.

/@I [HL5-112] Total elapsed time: 4.175 seconds; peak memory usage: 59.4 MB.

Now export the generated hardware description into the IP catalog. This step makes our
vadd hardware unit available for use in Vivado. Click the “Export RTL” button in the toolbar.
Eeweiaole- @)

The choices we make in the “Export RTL” dialog are shown in figure [ff We choose “IP

Catalog” and VHDL as the desired language. One can also provide identification details using
“Configuration” button but we leave these settings unchanged.

© © 1P identification Dialog

Export RTL =
o) Configuration
i
Format Selection
IP Catalog - | | configuration... Vendor: “
Options Library:
] Evaluate |VvHDL 2]
Version:
Description:

Display Name:

Taxonomy:

r Cancel J OK |

[} Do not show this dialog box again.

Cancel OK

Figure 5: The “Export RTL” dialog.

We are now done with vivado hls and will start up Vivado.

Getting Started with OpenCL on the ZYNQ Version: 0.5

2.4 Programming Interface Generated by HLS

After synthesizing hardware from the OpenCL code new directories appeared called “impl”
and “syn” containing VHDL code. Within one of these files we find information that is im-
portant to keep in mind later when writing the software that interfaces with the generated
hardware, this information will be used in section The information we seek, is located in
the “vadd control s axi.vhd” file and shows the layout of the memory mapped interface for
communication with the vadd hardware unit:

-- 0x00 : Control signals

- bit 0 - ap_start (Read/Write/COH)

- bit 1 - ap_done (Read/COR)

- bit 2 - ap_idle (Read)

- bit 3 - ap_ready (Read)

- bit 7 - auto_restart (Read/Write)

-- others - reserved

-- 0x04 : Global Interrupt Enable Register

- bit 0 - Global Interrupt Enable (Read/Write)
- others - reserved

-- 0x08 : IP Interrupt Enable Register (Read/Write)

- bit 0 - Channel O (ap_done)

- bit 1 - Channel 1 (ap_ready)

- others - reserved

-- 0xOc : IP Interrupt Status Register (Read/TOW)

- bit 0 - Channel 0 (ap_done)

- bit 1 - Channel 1 (ap_ready)

-= others - reserved

-- 0x10 : Data signal of group_id_x

- bit 3170 - group_id_x[31:0] (Read/Write)

-- 0x14 : reserved

-- 0x18 : Data signal of group_id_y

- bit 3170 - group_id_y[31:0] (Read/Write)

-- Oxlc : reserved

-- 0x20 : Data signal of group_id_z

- bit 3170 - group_id_z[31:0] (Read/Write)

-- 0x24 : reserved

-- 0x28 : Data signal of global_offset_x

- bit 3170 - global_offset_x[31:0] (Read/Write)
-- 0x2c : reserved

-- 0x30 : Data signal of global_offset_y

- bit 3170 - global_offset_y[31:0] (Read/Write)
-- 0x34 : reserved

-- 0x38 : Data signal of global_offset_z

- bit 3170 - global_offset_z[31:0] (Read/Write)
-- 0x3c : reserved

-— 0x40 : Data signal of a

- bit 3170 - a[31:0] (Read/Write)

-- 0x44 : reserved

-- 0x48 : Data signal of b

-- bit 3170 - b[31:0] (Read/Write)

—-- Ox4c : reserved

-— 0x50 : Data signal of c

- bit 3170 - c[31:0] (Read/Write)

-- 0x54 : reserved

-- (SC = Self Clear, COR = Clear on Read, TOW = Toggle on Write, COH = Clear on Handshake)

This gives us the “offsets” from some base address to where each of the register used by
the vadd hardware is located. Later, in vivado, a complementary step will provide us with the

Getting Started with OpenCL on the ZYNQ Version: 0.5

base address, see section [3.3]
The directly important pieces of information here is the control register, the group id
registers and the a,b and ¢ data registers.

e Control: using this register we can start computations in the vadd hardware unit and
also poll for the done signal.

e Group id: group id_ x, group id y, group id =z specifies a three dimensional work-
group id. Since the OpenCL kernel we use is meant for one dimensional “NDRanges”
only group_id_x is of importance. This value (group_id_x) is changed between invoca-
tions of vadd if the data we operate upon is larger than what can be computed by one
workgroup instance (the only valid value for the others is zero).

e Argument pointers: pointer to memory where the vadd hardware can fetch and store
data should be written to the a,b,c register.

Getting Started with OpenCL on the ZYNQ Version: 0.5

3 Part 2: Vivado

This section presents step by step instructions on how to integrate the OpenCL kernel IP-block
designed earlier into a Zynq base system.

3.1 Creating a Vivado project

Begin by starting Vivado. This presents you with the view shown in figure [6] Select “Create
New Project” and click “Next”.

° Vivado 2015.4 0 New Project

Eile Flow Tools Window Help

Create a New Vivado Project
/ / This wizard will guide you through the creation of @ new project.
VIVADO! o uoton. XILINX VIVADO!
AL PROGRAMMADLE- To create a Vivado project you will need to provide a name and a location for your project
5 files, Next, you will specify the type of flow you'll be working with, Finally, you will specify your

Quick Start Recent Projects project sources and choose a default part.

A £

=
Create New Project Open Project Open Example Project

Tasks

i e @

V=4 - =

Manage IP Open Hardware Manager Xiinx Tel Store
cantar & G
Tl Console _oex

o[st o
wl !
m

W &

o

=l To continue, click Next.

<gack |[Nest=]| Enish | [_cancel

Figure 6: Vivado project creation wizard.

Choose a name and location for the project, in this case “ZynqOpenCL” and a directory
called “Vivado”. Click “Next”. In the next window select “RTL Project” and check “Do not
specify sources..”. This part of the procedure is shown in figure [7]

0 New Project 0 New Project

Project Name Project Type
Enter a name for your project and specify a directory where the project data files will be stored ' Specify the type of project to create. '
Froject name: [ZyngOpencL] @® RTL Froject
== You will be able to add sources, create block designs in IP Integrator, generate IP, run RTL analysis, synthesis,
Project location: [/ vado I[-] implementation, design planning and analysis.

[Do net specify sources at this time
[4 create project subdirectory = iy
© Post-synthesis Project: ou will be able to add sources, view device reseurces, run design analysis, planning and

Project will be created at: /home/joels/vivado/ZyrgopencL implementation

[Do net specify sources at this time

© Vo Planning Project
Do not specify design sources. You will be able to view part/package resources.

O Imported Project
Create a Vivado project from a Synplify, XST or ISE Project File,

© Example Project
Create a new Vivado project from a predefined template.

[=gack || mew> || Erisn | [cancel | <gack || met> || Ansh | [cancel

Figure 7: Project name and project type.

Now it is time to select the “Default Part” to use as target platform. Click “Boards”. If
the steps in section has been performed there should be an option “ZYNQ-7 TE0726-02”
for the zyngberry board. Select the suitable board then click “Next” and then “Finish’

Getting Started with OpenCL on the ZYNQ Version: 0.5

> New Project 0 New Project

Default Part

Choose a default Xilin part or board for your project. This can be changed later. ' New Project Summary

/’
VlVADO @ A new RTL project named 'ZyngOpencL' will be created.
Select: @ Parts

4 Filter @ The default part and pracuct family for the new project
- — Default Board: ZYNQ-7 TE0726-02
i Default Part: xc72010¢lg225-1
Display Hame _ Froduct: Zyng-7000
Family: Zync-7000
Board Rew: Package: clg225
—_—— Speed Grade: -1
| Reset anFiters &

Search: [=
Display Name ‘ ‘endor ‘ Board Rev‘ Part ‘uo Pin Cuum‘FHe ver

& zedBoard Zyng Evaluation and Developrent Kit em.aunet.com d @ 1e72020clgaB4-l 484 13

B ZvNQ-7 TED726-01 trenz biz 0.1 @ xc72010clg225-1 225 1.0

@ ZYNQ-7 TED726-02 trenz biz 0.2 @ Hc72010clg225-1 225 i1

8 2YNQ-7 TED726-02M trenz biz 0.2M @ xc72010clg225-1 225 i)

H Artie7 AC701 Evaluation Platform il com 11 @ 1e7a200tfhg676-2 676 189

@ zvNQ-7 ZC702 Evaluation Board silin, com 1.0 @ xc72020clg4B4-1 484)

[pLLERb L To create the project, click Finish

[<Back || mest> | Frish | [cancel | <Back || met= [Finish | [cancel

Figure 8: Project configuration wizard board selection.

This concludes the project configuration procedure.

3.2 Designing the system

Now we have entered Vivado and are presented with a “Project Manager” view, a “Project
Summary” and the “Flow Navigator”. In the Flow Navigator select “Create Block Design”
The default name “design 17 is fine and we can keep it and just hit “OK”. This should bring
up a “Block Diagram View” as is shown in figure [0

Ele Edit Flow Tools Window Layout \iew Help

BX 0> b6 X E6Evmzn XS N[O

3 8o
Flow Navigator «| | Block Design - design_1 2%
aze Design — 0 x || = Diagram x oo x
Q Z[EE= 3] & design_1
4 Project Manager 1 g
design_1
& Project Settings
&% Add sources X
) Language Templates a

£F I catalog

| 1P integrator
7 Create Block Design
5% Open Block Design
& Generate Block Design

4 simulation
& Simulation Settings
(@ run simulation

4+ RTL Analysis

3 Elaboration Settings
> @* Open Elaborated Design

This design is empty. Press the § buitton to add IP

ACRBQAR G BHAIOTES L

& Sources H Design & Signals B Board

4 synthesis
& Synthesis Settings Elaneyics = (B
& Run Synthesis b <13

> @) Open Syrthesized Design

+ Implementation
& Implementation Settings
[» Run Implementation

b @F Open Implemented Design Selechen coleckiosee Pronetles

4 Program and Debug
& Bitstream Settings
%] Generate Bitstream

> ¥ Open Hardware Manager

Tel Console Sl
=z [start_gui &
i | 7create_project zyngopencL /hone/joels/Vivado/ZyngOpencL -part xc72010c19225-1

1| 1NFo; TIP_Flow 19-234] Refreshing TP repositories

01| INFO: [IPFlow 19-1704] No user IP repositories specified
gi| | INF0: TP Flov 19 2313] Loaded Vivado 1P repusitory /none/joels/opt ki Linx/Vivado/2015, a/datarip:
@| | create_project: Tine (s): cpu = 00:08:13 ; elapsed = 00:00:05 . Memory (MB): peak = 5802.816 ; gain = 58.582 ; free physical = 2044 ; free wirtual = 31021
[3| set_property board_part trenz.biz:te6726-02:parto:1 e _project]
|| = oronerty target Languags WL [curvant. projact]
create_bd_design "dasign_)
Wrote /hnme/]nels/V)vzdn/ZyanpenCL/ZyanpenCL srcs/sources_1/bd /design_1/design 1. bdx
0 [
[[

T \ a Tcl connand here
Td Console | © Messages Ellog [Reports 3 Design Runs

Figure 9: Vivado Block Diagram view.

In the Diagram view “design 1”7 we click the add IP button. The shape of this button
should now be shown in the middle of the diagram view but can later be found in the vertical
toolbar next to the diagram view. Click “add IP” and enter “zynq” into the search field. Select
the “ZYNQT Processing System”

Getting Started with OpenCL on the ZYNQ Version: 0.5

Search: |2 zyng | 2 matches)

iF ZYNQ7Y Processing System
iF ZYNQ7 Processing System BFM

EMNTER to select, ESC to cancel, Ctrl+0Q for IP details

The diagram view should now contain a Zynq processing system as shown in figure [I0] Not
that there is a “Run Block Automation” link within the block diagram at this point. Hit this
link and mark “All Automation” and then click Ok. The block automation dialog is shown in

figure [11]

I=Diagram x M Address Editor X [m}
3] & design_ 1

¢ (@ Designer Assistance available. Run Block Automation

[
X

o

w

[

% processing_system7_0

= DR+]|
- = FIXED_104 |||
e M_AXI_GPO_ACLK M_AXI_GPO4 fif
i ZYNO FCLK_CLKO
= FCLK_RESETO_N

E 3

-@ ZYNQ7 Processing System

Lo

B

el

L 3

Figure 10: Vivado Block Diagram view with ZYNQ processing system.

o Run Block Automation

Automatically make connectiens in your design by cheeking the beses of the blocks to connect. Select a block on the left to display its
configuration options on the right. ¢

- All Automation (1 out of 1 selected)
f: 7)1 processing_system7_0 Description

This option sets the board preset on the Processing System. All current

properties will be overwritten by the board preset. This action is NOT

undoable. zync7 block automation applies current board preset and generates

external connections for FIXED_IC, Trigger and DDR interfaces.

NOTE: Apply Board Preset will diseard exdsting IP corfiguration - please uncheck
this bo, If you wish to retain previous configuration,

Instance: /processing_system?_0

Options
Make Interface External: FIXED_IO, DDR
Apply Board Preset: W

Cross Trigger In:
Cross Trigger Out:

| o [cancel

Figure 11: Block automation dialog for the Processing System.

10

Getting Started with OpenCL on the ZYNQ Version: 0.5

After allowing the block automation for the processing system to apply the default settings,
the block diagram should look as in figure

5= Diagram x & Address Editor X | mFER
3] # design_1
o
a
:‘ processing_system7 0
b
i DDR =R DDR
= FIXED IO , FIXED_IO
bect uaRT_0+4- ||
i‘_ nc_o4-{]]
= - USBIND_0 - ||]
= ZYNQ TTCO_WAVEQ_OUT =
& T TTCOD WAVEL OUTE
= TTCO_WAVE2_OUT =
B FCLK_CLKO
[1 FCLK_CLK1
% FCLK_RESETO_N

NQ7 Processing System

ZYNQT P g 5y

el
«m

Figure 12: Block automation dialog for the Processing System.

Now it is time to add the vadd IP block to the design but before doing that we need to point
out to Vivado where that IP can be found. Find the “IP settings” button in the toolbar within
the Diagram view and click it. Then click the “Repository Manager” tab and the plus (+)
symbol. Find the “impl” directory of the vadd OpenCL vivado hls project and click select.
This process is outlined in figure [13]

Clicking “Select” should bring up the “Add Repository” dialog. Just click “OK” and then
we are back to the list of IP Repositories, but now augmented with our recently added IP. Click
“OK”.

11

Getting Started with OpenCL on the ZYNQ

Version: 0.5

x Project Settings
@ P

General Repository Manager Packager |P Cache
General
Core Containers
@
Simulation

[J Use core Containers for IP

% Sirmulation Seript Generation

[Automatically Generate Simulation Scripts for P

Bitstream

&

P

[o

] [_cancel][apply

x Project Setktings
@ P

General

E)

Simulat

on

&

Elsboraf

on

v

0
=
ES
5
@

is

Imples

3

entation

Bitstream

&

P

General Repository Manager | Packager |P Cache

@ £dd directories to the list of repositories, You may then add additional IP to a
selected repository. If an IP is disabled then a tool+ip will alert you to the reason.
IP Repositories

+

1
+

Press the [4f] button to #dd Repository

Add Repository

| Refreshan

[][carcel J[appl |
0 IP Repositories
Becent: |’§i‘ufh0mefjoelsNiuad0

) vadd opencL

Directary; |fhomefjoeIsNivaduf".fadd_OpenCUsuluticnlfimpl

| 2OBBEAROES

&-) solutionl

Sy

Figure 13: Outline of how to add our custom vadd IP to the IP repository.

| Select “ Cancel

L OR[>

x Project Setktings
@ P

General
> Add Repository

0. 1 repository was added to the project
4

General | Repository Manager = Packager |P Cache

@ £dd directories to the list of repositories, You may then add additional IP to a
= selected repository. If an IP is disabled then a tool+ip will alert you to the reason.
®\ IP Repositories
Simulation 4 'home/joelsivivadoivadd_OpenCLisolutionl fimpl (Project)
Elaboration 1
Repository % +
impl {fhome/joelsfvivadofvadd_OpenClizolutionl) Synthesis
IP2:l Interfaces:0

Implementation

Bitstream

&

P

| Refreshan

[ox__J [cancel [apply

Figure 14: Outline of IP repository configuration continues.

12

Getting Started with OpenCL on the ZYNQ Version: 0.5

With the IP repository configured we can add the vadd IP to the design. Click the “Add
IP” button in the toolbar in the Diagram view. Type “vadd” in the search field and the “Vadd”
IP should appear in the list window. Select it.

Search: [Cl-vadd] | (1 match)
FEVadd]

ENTER to select, ESC to cancel, Ctrl+Q for IP details

After adding the Vadd IP the block Diagram should look as in figure [I5] Now we need to
connect the Vadd unit to the processing system but in order to that we need to go into the pro-
cessing system block and reconfigure it. If you look at the Vadd 0 unit it has a “s_axi_control”
interface and a “m_axi gmem” interface. These interfaces needs to be connected (as well as
the clock and reset). Luckily much of this connecting can be done for us automatically, if only
we configure the processing system block correctly.

%= Diagram X [Address Editor X owe x|
#[% design_1
¢
a
I processing_system7_0
L] DDR 4 ||} DDR
() FIXED_10 4 ||} FIXED_IO
a, uarT 04|
= lic_o<e f|]
T =4 USBIND_0 < |||
= TTCO WAVED OUT
i ZYNQ TTCO_WAVEL OUT
L TTCO_WAVE2_ OUT
E 3 FCLE_CLKD
& FCLK_CLK1 vadd 0
FCLK_RESETO_N b i control [vwade=ris 1
B - - G ::5;?:'_(0“ ol |v o X omen
@} ZYNQ7 Processing System . ‘ interrupt
@ AR o
s

Vadd (Pre-Production)

Figure 15: Outline of IP repository configuration continues.

Double click on the ZYNQ7 Processing system in the in the diagram view. This should
bring up a view of the internals of the processing system as below:

13

Getting Started with OpenCL on the ZYNQ

Version: 0.5

D Re-customize IP

ZYNQ7 Processing System (5.5)

@ Documentation &% Presets (5 IP Location & Import XPS Settings

/

Page Navigator «|| zyng Block Design Summary Report
Zynq Block Design
1| —=mill
10 Peripherals]
ESEL Gorfigipation settings Application Processor Unlt (APU)
[ERoT]
Peripheral l/0 Pins Emg’ e v
e ARM CortexA9 ARM Cortex™A9
MIO Configuration System Level (=1} cpu
Control Regs
Clock Configuration i;‘b
L) et ACP
DDR Configuration e +— Ge $noop Control unit | B
{s! —v{ o ! 5128 12 Cache ana Controler | Ports
SMC Timing Calculation
ocm 256 kB
Interrupts CoreSight Interconnect | SRAM
el Components 2
Bankl Interconnect
MO 1
(5316) one |
Memory Interfaces
 — Programmable DDR2/3LPDDR2
-y e] || e Ceniare
SMC Timing ot onoacr
Caleuiation
oMa byne [T
= ol |
cl o o o | Processing System(PS)
hesets | \ Generation o
11l 2 pyepges PELEE [aobgn || 32bGR | ohngy, | contig | RO | Hion performamee xAnC
N (h oy DS e S 7 e AXi 32b/645 Slave
Clock Ports. Master Slave SHA. Ports
pots || Pons —
Programmable Logic(PL)

and configure according to the left side of figure

the right side of figure [16]

oK [cancel]

There are two interfaces that needs to be configured inside the processing system. the “32b
GP AXI Master Ports” and the “32b GP AXI Slave Ports”. Double click on the Master ports

™ @ Re-customize IP

ZYNQ7 Processing System (5.5)

Documentation @ Presets (23 P Location @ Import XPS Settings
Page Navigator
2ynq Block Design

[PSPL Configuration

« || Ps-PL Configuration

€ Searcn

Name |

Select |
General

4

Report

Then do the same for the Slave ports and

™ @ Re-customize IP

4

Beport

ZYNQ7 Processing System (5.5)

Documentation @ Presets I3 P Location @ Import XPS Settings
Page Navigator
2ynq Block Design

[PSPL Configuration

« || Ps-PL Configuration

€ Searcn

Description
Peripheral I/0 Pins
A Non Secure Enablement

Enable AXI Non Secure Transaction
§- GP Master AX Interface
| iM AXI GPO interface @
M AXI GP1 interface o
& GP Slave AXIInterface
& HP Slave AXI Interface
& ACP Slave AX Interface
& DMA Controller
&-PS-PL Cross Trigger interface o

M0 Configuration

Enables General purpose AXI master interface 0
Enables General purpose AX master interface 1

Clock Configuration
DDR Configuration
SMC Timing Calculation

Internupts Enables PL cross trigger signals to PS and vice-versa

Name | select |

Description

& General

21 Non Secure Enablement [Enable A Non Secure Transaction

- GP Slave AXI Interface

| |5 axaGpointerface. @
S AX GP1 interface o

& HP Slave AXIInterface

& ACP Slave A¥ Interface

& DMA Controller

-PS-PL Cross Trigger interface =]

Peripheral /0 Pins

MIO Configuration

Enables General purpose 32-bit AXI Slave interface 0
Enables General purpose 32-bit AXI Slave interface 1

Clock Configuration
DDR Configuration
SMC Timing Calculation

Enables PL cross trigger signals to PS and viceversa
Interrupts

Figure 16: Configuration of the AXI Master/Slave ports.

When this configuration of the processing system is completed the ZYNQ Processing System
in the diagram view should show the newly added interfaces. Compare to figure [I7}

14

Getting Started with OpenCL on the ZYNQ Version: 0.5

i=Diagram X M Address Editor X o x
3 #& design_1

Q. (@ Designer Assistance available, Run Conneaction Automation

DDR
FIXED_IO

vadd 0

Zldhs axi control [vwado s B

5 Ik m_axi_gmemsdf £
ap_c]
a:irst 5 ‘ interrupt

Vadd (Pre-Production)

cRsQL AR BHALODR|ER

Figure 17: Block diagram view after configuration of the processing system.

Most important here is to note that this change makes the “Run Connection Automation”
link to appear at the top of the block diagram view. Click this link and make the following
selections:

Run Connection Automation

Automatically make comnactions in your design by checking the boxes of the interfaces to connect. Selact an Interface on the lsft to
display its configuration options on the right. ¢

@ - Al Automation (2 out of 2 selected)
¢ 1F processing_system? 0
L 5_2x1_GPO
LFvadd_0
L@k 5_axi_control

i H

Select an interface pin on the left panel to view its options

At this point the diagram view should look similar to figure [I§] Notice how two AXI
interconnects have been automatically added to the design and connects to the processing
system and to the vadd unit. One of these interfaces connect to the control port on the vadd
unit and is used to program the vadd unit control registers. The other interface is used by the
vadd unit for memory accesses.

15

Getting Started with OpenCL on the ZYNQ Version: 0.5

5= Diagram x M Address Editor X Ov x
3] & designl »
&
B processing_system?_0
axi_mem_intercon
o FIXEnggg pDR
= UART 04 FIXED_10
Q IC_0db 5 Bl
== . 3
= §ns_Ax_GPO < i 500_ACLK D%D MOD_ANIs el
=] M_axiGPoACLE 7NN S Pt B
SR - TTCO_WAVED_OUTp=
= S_AXI_GPO_ACLK s MO0_ACLK
= = MOD_ARESETN
= TTCO_WAVEZ_OUTh= =
FCLK_CLKOp=—s vadd_0
E 3 = = AX| Interconnect
3 A St e ieis_axi_cantrol [vimco" His
ol FCLK_RESETO N B m axi_grmemn g Hi—
ﬁ T i p_clk e 8
= . - ' interrupt|
@ ZYNQ7 Processing System p_rst_n
é!’ Vadd (Pre-Production)
<
rst_processing_system?_0_50M processing._system?_0_axi_periph
| _sync_clk mb_resetm
ext_reset_in bus_struct_reset(0:0]m
m—au_reset_in peripheral_reset[0:0]m ETN [[l |
=mh_debug_sys _rst intercannect_aresetn(0:0] S00_ACLK EIESE MOD_AXIgs
=—dcm_locked peripheral_aresetn[0:0]] SO0_ARESETN <>
—={M00_ACLK -
Processor System Reset 00 ARESETN

AXI Interconnect

£} [] DS

Figure 18: Block diagram view after configuration of the processing system.

At this stage the design is mostly complete. We do, however, need to go into the “Address
editor” and do some small tweaks. Within the Address editor some address ranges are listed
as excluded, we need to set these as included.

S Disgram X 8 Address Editor X oex = & Address Edit oe
ISiove ntertacel 6ase ame | Offset Address | fange | _tigh Address a [Siave nerface] EaseName | Offset Address | Range | _tigh Address
—_ = .
SmqGPo GRODDRLO. OCONO GO0 126M - GROTFE FFFE L SANGPO GPOODRIO.. OG0 128M - GROTEE FRFE
SAMGPO GPOLQSPLUN.. OFCOOG00 16M - GRECHE FFFE SANGPO GRDOLQSPLUN.. OCOOGON0 l6M - GiECEFFEE
s - SaGPo GROIP | OO0 aM - CaEoorFREE

5.A0.GRO am oo FEE = SANGPO GPOMAM.GPO 0400010000 16~ OXIFFELFFFE

P00 =050 g
SANGRO GPOMANGPO 0:000000 16 TR PR

Now it is time to go through the process that in the end results in a bitstream that we can
use to program the Zynq FPGA. This procedure is outlined below, in text, and following this
in pictures:

e Validate the design: In the tools menu, click Validate design. This should finish with a
message saying “Validation successful”.

e Create HDL wrappers: This is done in the sources window by right clicking on “design 1”
and selecting “Create HDL Wrappers”.

e Save and run synthesis: In the flow navigator under synthesis, click run synthesis.
e Synthesis completed: In this dialog choose “Run Implementation”.

e Implementation completes: Potentially reporting a great number of critical warnings.
Fortunately these can be ignored. One should however check where the warnings come
from. If there are warnings directly in relation to the IP you developed yourself it may
be important.

16

Getting Started with OpenCL on the ZYNQ Version: 0.5

e Implementation Completed dialog: Choose “Generate Bitstream”

e After generation of bitstream one can take a look at the implemented design.

Validate Design

= ‘\alidation successful. There are no errors or critical warnings in this design.

Fle Edt Flow Tools Window Layout View Help
BEBE2RX @D DX S K| T E [Eoefaul Layout e x|® Ready
Flow Navigator <« | Block Design - design_1 * x|
QZTH Sources — O X | E-Diagram x M Address Editor X owe x
. Az =E|=2e 3] & design 1 »
4 Project Manager
- Design Sources (1)
& Project Settings &4, design_1 (design_1.bd) (5)
% Add Sources = Constraints
ps > Simulation Sources (1)
)
é Language Templates p ol processing_system?_0 | e
IP Catalog o _mem i
DDR
| 1P integrator] bt Xt FIXED_IO|
— T o) UART 045
% create Block Design = ICog o
> .
5= OpenBlock Desion o fs AXLGPO o e ACLK D%D M00_Ax1 g fi—]
& Generate Block Design = Ak 7NN 1rco v oo ——=500_ARESETN(0:0)
= AXI_GPO_ACLK d SlE) ACLK
4 simulation 2 F TICO_ WAVEL OUT)
4 Simulation Settings ES PEEIINANE L) &
FCLK CLKO)
(@ Run Simulation * e AXI Interconnect
4 RITL Analysis & FCLK_RESETO_N
& Elaboration Settings ® TYNGT Processng System
» & Open Elaborated Design | | Hierarchy [P Sources Libraries Compile Order @
& Sources | B Design | ® signals | @ Board ol
4 synthesis @
Source File Properties _oex
Synthesis Settings P i i peri
§Ry e 9 5 e AT processing_system?_0_axi_periph
un Synthesis e
> B Oper Syrthesized Design | | % design. sync_clk mb_resed
lext_reset_in bus struct_reset{0:0] JacLk
) P Location: /home/jo elsvadorZyndopencLZyno) S peripheral_reset{0:0] Bl
] Run Implementation Part «c72010clg225-1 —fem locked peripheral J:\ncﬁsm[o,uxg
b ¥ Open Implemented Design| |[| Si=: 1.4x8 Processor System Reset e
Modified: Today at 20:43:40 PM
2 Pm;;m and Debug Copiedto <Project Directory=/ZyngopencL.src: AXI Interconnect
Bitstream Settings
% Generate Bitstream
General Properties o)) Gk
Open Hardware Manager
Tel Console NS

[INFO: [BD 41-1051] The usage <register> of peripheral </processing_systen7_0/S_AXI_GPO/GPO_M_AXI_GPO> does not match the usage <nemory> of master </vadd_0/Data_n_axi_gnen> and will be excluded using sparse comnectivity from its [
= |« Excluding </processing_systen7_0/5_AXI_GPO/GRO_W_AXI_GPO» from </vadd_0/Data_n_axi_gnen=
| apply_bd_autonation -rule xilinx.con:bd_rule:axid -config {Master */processing_systen7_0/M AXI_GPO* Clk *Auto” } [get_bd_intf pins vadd_0/s_axi_control]
Il | </vadd_6/s_axi_control/Reg> is being mapped into </processing_systen7_0/Data> at <0x43C00000 [64K 1>
endgrou
@] includebd_addr_seq [get_bd_addr_seqs -excluded vadd_0/Dsta n_axi_gnen/SEG | et i
Including </processing_systen7_0/5_AXI_GPO/GPO_IOP> into </vadd_G/Data_n_axi_gnen:
include_bd_addr_seq [get_bd_addr_segs -excluded vadd_0/Data_n_axi_gnen. prn(essmg fetmaleolliala
Including </processing_systen7_0/5_AXI_GPO/GPO_M_AXI_GPO» into </vadd_0/Data_n_axi_gne g

validate_bd_design

[T Il | D]

Type a Tcl connand here
5 Td Console

© Messages [Hlog [Reports 3 Design Runs

Create HDL Wrapper

You can either add or copy the HOL wrapper file to the project. Use copy
option if you would like to modify this file, ‘

Options

() Copy generated wrapper to allow user edits

@ Let Vivado manage wrapper and auto-update|

(0]4 Cancel

17

Getting Started with OpenCL on the ZYNQ Version: 0.5

Starting Design Runs

H Generate IP ‘design_ 1 _processing system7 0 0'..,
| L |

| Background ‘

File Edit Flow Tools Window Layout \iew Help
28 wenhx[3P> %@ K E GEmran X er]® Ready
Flow Navigator </ [Block Desian _design 1 * I
e [Run Synthesis (FL1)}
o= T Yources — O X | i=Diagram x & AddressEdtor x e x
s QAT = Wt 3] & design.1 »
4+ Project Manager
& Design Sources (1 a
& Project Settings &2 design_1_wrapper - STRUCTURE -
¥ add sources onstraints
§ Language Fempletes 7 Smultion Soures (1) Y processing_system?_0 |
£F P catalog = § | axi_menm_intercon s
; FIXED.
[inteqrator 7 & G e FIXED_IO|
% create Block Design Q\ IC_0e i
2
5% Open Block Design . USBIND 0 .|
= 5 AXLGRO. - S ACLK EEE moo_an
) Generate Block Design = it om0 acte 7NN LAXL oo arESETN(O:01
= AXLGPO_ACLK L o] Ak
4 Simulation @ SRR TTCO_WAVEL OUT
& Simulation Settings =, TTCO_WAVE2_OUT
&) FCLK_CLKOJ
(@, Run Simulation * Fouk cual AXI Interconnect
4 RIL Analysis 54 Y
& Elsboration Settings &l 0] 8 ZYNG7 Frocessing System
» & Open Elaborated Design | | Hierarchy [P Sources Libraries Compile Order @ o
& sources | H Design | 8 signals | B Board ¢
4 Synthesis -
Source File Properties _Oex
Synthesis Settings
ﬁpj e rst_processing_system?_0_SOM processing.systein 0_axi peripli
un Synthesis e
» @ Open Syrthesized Design | | % design_1.bd lowest_sync_clk mb_resel) AXI
lext_reset_in bus._struct reset{0:0] lACLK
+ Implementation Location: Ihomefjoels/vivadosZyngOpencLiZyndol e peripheral_rese{0:0) mon
@ mplementation settings | || TyPe: Biock Designs] || —mb_ debug_sys.rst_interconnect _AcLK = Mo0_axi<3
—dem_locked peripheral_: _ARESETN(0:0]
[» Run Implement ation Part: #C72010c19225-1 —
v ¥ Open Implemented Design | || Stze: 68,5 K8 Processor System Reset L oo aresernioo)
Modified: Today at 21:11:22 PM
4 Program and Debug Copied to <Project Directory=/ZynqOpencL.srcsfs AXI Interconnect
@ Bitstream Settings
% Generate Bitstream Genoral e e
> ¥ Open Hardware Manager e Of m DL
Tcl Console = E

o | | INFO: [BD 41-1662] The design 'design 1.bd’ is already validated. Therefore parameter propagation
- WARNING: [BD 41-235] Width mismatch when c
00| | wARNING: [BD 41 Width mismatch when ting pin nen_in

22 [nake_wrapper -files [get_files /home/joels/Vivado/ZynqOpenCL/ZynqOpencL.srcs/sources L /bd/design_1/design 1.bdl -top

order bits vill
bits will

auty

uplers_to_: 00K (2) - only Low
06_couplers_to_aut

ock' (2) - Only L

/500_couplers/au

75

- en nen_ /500_c pc/s_axi_awlock’
)| VPDL Dutput written o : /home.joels Vivado,/ZyngOpencl /2ynqOpencL. srcs/Sources /bd/design 1/idl /desion 1.vhd

VHDL Output written to : /home/joels/Vivado/ZynqOpencL/ZynqopencL.srcs/sources_L/bd/desian_1/hd1/design 1_vrapper. vhd
Wrote : </hone/joels /Vivado/ZynqOpencL/ZynqopencL. sres/sources_L/bd/design_1/design_1. b

add_files -norecurse /home/joels/Vivado/ZynqOpenCL/ZynqOpenCL. srcs/sources_1/bd/design_1/hdl/design_1_wrapper.vhd

update_conpile_order -fileset sources 1 Q

update_conpile order -fileset sin_1

K1 1 D]

Type a Tcl connand here

5 Td Console | Messages Elog [Reports B Design Runs

Run synthesis on your project source files

Synthesis Completed

Launch Run cal Messages

} There were 76 critical warning messages launching implementation run,

ﬁ Synthesizs successfully completed,
e

M ext Messages

@ [Common 17-55] 'set_property’ expects at least one object.
I T [fhomefjoelsfiivadofZyngOpenCl/ZyngOpencL sres/sources 1/bdf
@ [BLin Im I3 | ermentatio ﬂl design_l/ipidesign_1_processing_system7_0_O/design_1_processing_system7_0_(
Resolution: If [get_<value=] was used to populate the object,
check to make sure this command returns at least one valid
(O Open Synthesized Design object
@ [Common 17-55] 'set_property’ expects at least one object.
[fhomefjoelsfiivado/ZyngOpenCl/ZyngOpentL sres/sources 1/bd/
i design_lJipfdesign_1_processing_system7_0_O/design_1_processing_system7_0_(
D HIEW Hepﬂrtg Resolution: If [get_<value=] was used to populate the object,
check to make sure this command returns at least one valid
ohject.
@ [Common 17-551 'set property' expects at least one obiect,

DQDﬂ't Shﬂwthia d|a|0g again 0K I| Cancel Run H Open Messages View

[(0] | Cancel

Figure 19: Synthesis completed and an example of critical warnings.

18

Getting Started with OpenCL on the ZYNQ Version: 0.5

Implementation Completed

Bitstream Generation Completed

@ Implementation successfully completed, o J :
@ Bitstream Generation successfully completed.

MNext Mest

) open Implemented Design @ [Open implemented Design
@ Generate Bitstream) View Reports

O Wiew Reports O 0Open Hardware Manager

[Don't show this dialog again
[l Den't show this dialog again = S

| (=14 | | Cancel

| 0K || Cancel |

Figure 20: Implementation complete and Bitstream generation completed

Fle Edt Flow Tools Window Layout View Help [Search commands]
5, @[S D %[5 GO B K|L @[Eoskutiaor <] F &) write bitstream Complete
Flow Navigator <« [implemented Design -xc72010clg225-1 (active) x
AT S Netlist -0 x L Project Summary X @ Device X owe x

4 Project Manager 8 Gesign. L wrapper,

& Project Settings - et
&% Add Sources {4 design_1_i

¥

¥ Language Templates
4F IP catalog
4+ 1P Integrator
Create Block Design
;¥ Open Block Design
5 Generate Block Design
4+ simulation
5 simulation Settings

(@, Run Simulation

4 RIL Analysis
3 Elaboration Settings

> g% Open Synthesized Design

+ Implementation

I,
> @® Open Elaborated Design #g
4+ Synthesis & Sources 3 Netlist =
) Synthesis Settings Properties — Oz x 8
=

=Y
@ Run Synthesis g
=}
=
B
=
=}

5 Implementation Settings
> Run implementation
+ [implemented Design Select an objec

£, Constraints Wizard

{4, Edit Timing Constraints
& Report Timing Sumrmary|
1, Report Clock Networks

& Report Clock Interactior

Timing - Timing Summary - impl_1 a5
@ Report DRC

. ATS e+ Deshaling S,
) Report Utilzation @ Thisisa_saved report % Setup Hold Pulse Width
w2 —General Information -
2 Report Power [rimer Settings Worst Negative Slack (WNS): 11,493 ns Worst Hold Slack (WHS) 0.037ns Worst Pulse Width Slack (WPWS):
e s Total Negative Slack (THS): 0,000 ns Total Hold Slack ¢THS) 0,000 ns Total Pulse Width Negative Slack (TPWS): 0,
. [Clock Summary (2
IR] 5 Chack Timing & Nurmber of Falling Endpoints: 0 Nurber of Falling Endpoints: 0 Number of Falling Endpoints o
f’ Bltstream settings $¥matio pin Total Number of Endpoints: 6702 Total Mumber of Endpoints: 6702 Total Number of Endpoints: 2823
] Generate Bitstreamn (—Inter-Clock Paths
= ¢~Other Path Groups All user specified timing constraints are met.
@* Open Hardware Manager User Ignored Paths

LUnconstrained Paths
Timing Summary - impl 1 x avm
5 7Tcl Console © Messages GlLlog 5 Reports Package Pins | Design Runs G Timing

At this point we have completed the part of this guide that takes place in Vivado. The next
step is to go into the file menu and select “Export Hardware” (include the bitstream) and then
to “Launch SDK”.

19

Getting Started with OpenCL on the ZYNQ Version: 0.5

e Launch SDK
% Export Hardware

Launch software developrment tool,

Export hardware platform for software ‘
development tools,

SO Exported location: |o'= =Local to Project= - |
M Include bitstream|
Export to: |& <Local to Projects - | Workspace; | <Local to Project>- z
| ok || cancel |
| (0] 4 I | Cancel

Figure 21: Export hardware and launch the SDK

3.3 Important details from the Address Editor

Before going into the part of the guide that takes place in the SDK we want to point out some
details from the Address Editor. Make a note of the address mentioned for the s axi control.
In this case this address is 0x43C00000. It is on this address and onwards that the control
registers for the vadd hardware unit is mapped into the address space.

Address Editor T
a, cell | Slave Interface| Base Name | Offset Address | Range | High Address |
= §-iF processing_system7_0
g ‘?—ﬂ Data (32 address bits : Ox40000000[1G 1)
= L e vadd O 5 _axi_control Reg 0x43C0_0000 64K - Ox4300_FFFF
= iF vadd_0
&= ®-H Data m_axi_gmem (32 address bits : 43)
= processing_system?_0 S_AX] GPO GPO_DDR _LO... 0Gx0000 0000 128M = OxQ7FF_FFFF
= processing_system7_0 S_AX| GPO GPO_QSPI_LIN... 0xFCO0_0000 16M = OxFCFF_FFFF
= processing_system?7_0 S_AX| GPO GPO_IOP OxED00_0000 4M ~ OxEQ3F FFFF
== processing_system?_0 S _AX| GPO GPO_M_AX| GPO 0x4000 0000 1G ~ Ox7FFF_FFFF

4 Part 3: Xilinx SDK

When the Xilinx SDK has launched (after launching it from the File menu in Vivado) we are
presented with a view like the left part of figure P2 Here we just click the “File” menu and
“New” “Application Project”. In the right part of figure 22| we name our application project
“HelloOpenCL” and click next and select “hello world” then “Finish” .

Now we need to perform one key piece of configuration to the Board Support Package,
the “system.mss” file of the “HelloOpenCL_bsp”. The configuration we need to change is the
stdin/stdout under “Overview”, “Standalone”. Both stdin and stdout should be pointed to
“ps7 uart 1”7 and not to uart 0 as per default.

Next we go into the Xilinx tools menu and clicks “Generate linker script”. Here we want to
make the heap larger. Find the “Heap Size” box and enter for example 33554432 (for 32mb).
The default setting of 1KB will not be enough for what we are going to do.

Now it is time to write the C code that talks to the vadd unit. Edit the “helloworld.c” file
in the “HelloOpenCL” project as listed in figure 25]

After writing the code we can right click on the “HelloOpenCL” project in the “Project
Explorer” and choose “Debug as” and “Debug Configuration”. In the debug configuration

20

Getting Started with OpenCL on the ZYNQ Version: 0.5

sign_1_wrapper_hw_platform_0/system.hdf

J New Project

[miR g cueRlEEDE-& - HF -0 QRS Application Project
Q I[ﬁ | ®c/cH+| Create a managed make application project. @
B Project Explorer 33 = O ||[& system.hdf % = p|[Fo %[@m [- O
|An outline is not available. Project name: [HelloGpencL]]
B & ¥ Y| design_1 wrapper_hw_platform_0 Hardware Platform
¥ (& design_1_wrapper_hw_platform Specification se default location
» = drivers

Design Information
@ design_1_bd.tel —_—

[design_1_wrapper.bit
[& ps7_init_gpl.c
(&l ps7_i apl.h
[dl ps7_i

Target FPGA Device: 7z010
Created With: Vivado 2015.4
Created On: SatApr2321:12:56 2016

05 Platform: | standalone 2
Address Map for processor ps7_cortexad_0 —

B ps7] ps7_inte_dist_0 o Target Hardware
@ ps7.inlthem| ps7_gpio_0 0xe0 Hardware Platform: | design_1_wrapper_hw_platform_0 2| [New...
@ ps7_init.tcl ps7_scutimer_0 Cx: he ey
|3 system.hdf ps7_sler_o ox: Processor: ps7_cortexag_0 -
ps7_scuwdt_0 0x
ps7_l2cachec_0 ox:
Pps7_scuc_0 0Ox: Target Software
Pps7_gspi_linear_0 ox: -
ps7_pmu_ 0x Language: @cC O Cer

ps7_afi_1 ox:
ps7_afi_0 0x£80080

-, i Board support Package: @ Create New |HelloopencL_bsp
4 Target Connections | = A |[E pr., 8| &Ta.. BCo.. EPr. |Bs. | = O |Esoklog B = 0O
£ = :22:12 INFO : Launching XSDB server: xsdb
» (= Hardware Server Sitems INFO : XSDB server has started suce
* 5 Linux TCF Agent Gaceriftion = 13 INFO : Processing command line opt:

> & QEMU TcfGdbClient

@

Next> Cancel L Finish J

Figure 22: Left: SDK just started. Right: new application project.

New Project €/C++ - HelloOpenCL_bsp/system.mss - Xilinx SDK

Templates . o - b P REREDE S G O

Create one of the available templates to generate a fully-functioning @ & v

application project.

Avallable Templates: | Project Explorer 5 = A ||Egsystemhdf |G system.mss 5€

e = | ; Anoutline is not available.

Dhrystone Let's say 'Hello World' inC. B % ¥ 7 | HelloOpenCL_bsp Board Support Package

Empty Application | design_1_wrapper_hw_platform N

Hello world > = drivers | Modify this BSP's Sektings| | Re-generate BSP Sources

IwiP Echo Server @ design_1_bd.tcl 5

Memory Tests [design_1_wrapper.bit TaserIAaEatEy.

OpenAMP echo-test [@ ps7_init_gpl.c This Board Support Package is compiled to run on the following target.

OpenAMP matrix multiplication Demo [8 ps7_init_gplL.h Hardware Specification: /home/joels/Vivado/ZynqOpencL/ZynqOpenCL.sdk/desi(|
OpenAMP RPC Demo [ps7_init.c Target Processor: ps7_cortexad_0

Peripheral Tests ps;_!n!::t \ Operating System

icati @ ps7_init.htm| =

RSA Authentication App e ::57’im wi Board Support Package OS.

Zynq DRAM tests Bt Bdf Name: standalone

Zyng FSBL e

Version: 5.3
Description: Standaloneis a simple, low-level saftware layer. It provides acces |
caches, interrupts and exceptions as well as the basic Features of
input and output, profiling, abort and exit.
Documentation: standalone v5_3

» = HelloOpencL
|» il HelloopencL_bsp

Peripheral Drivers

Overview| Source

4 Target Connections X| = O

EiPr. % |@Ta.. B co.. BPr. [Bs. | = O ||[EsDKLog & BR®R =0

& ¥ || ©9:22:12 INFO : Launching XSDB server: xsdb

> & Hardware Server e ©9:22:13 INFO : XSDB server has started suc
» G Linux TCF Agent eetiion | ©9722:13 INFO: Processing comand Line opt

> = QEMU TcfGdbClient

@ <Back Cancel Finish 7_

Figure 23: Board support package configuration.

select “Reset entire system” and “Program FPGA” then “Apply”.

Now to start the application in Debug mode right click on “HelloOpenCL” select “Debug
as” and “Launch on hardware”. The ZynqgBerry should now be connected and its LEDs will be
on while the device is being programmed. The SDK will automatically enter into Debug mode
and you can press “Resume” (F8) button to run. In order to see any output from the device
you need to have a terminal link to it. On linux using the screen command works well: screen
/dev/ttyUSB1. This part of the procedure is shown in figure

21

Getting Started with OpenCL on the ZYNQ Version: 0.5

Board Support Package Settings Generate a linker script

Board Support Package Settings & Generate linker script "
0
Control various settings of your Board Support Package. Controlyour application’s memory map. h g
* Overview i &
ConfigurationFor OS: standalone Output setfings Basic | Advanced
standalone Project: HelloopencL
~ drivers Name value Default Type Descriptior Output Script: Place Code Sections in: |ps7_ddr_0_S_AX|_BASEADDR | v
ps7_cortexad_0 stdin |:pEZiuart:q none peripheral __ stdinperipl nCL/ZynqOpencL.sdk/HelloOpencL/src/lscript.Id| | Browse | | Place Data Sectionsin: |ps7_ddr_0_S_AXI_BASEADDR | v
stdout none peripheral stdout per T o) —
& n False boolean: Enable:Mic) Modify project build settings as follows: Place Heap and stack in: | ps7_ddr_0_S_AXI_BASEADDR | v
> false boolean Enable S/W Set generated script onall project build configurations 2 J| | yeyp ize: 3554432
Hardware Memory Map Sincine T
Memory Base Address Size

ps7_ddr_0_S_AXI_BASEADDF 000100000 | 127 MB:
i_linear_0_S_AXI_BA! OXFCO00000 | 16 MB.

)_S_AXI_BASEADD 0x00000000 | 192 KB

PS7_ram_1_S_AX|_BASEADD} OXFFFFO000 | ~63,5KB

» Fixed Section Assignments

® cancel | [0K @ cancel Generate

Figure 24: BSP Uart settings and the linker script

#include <stdlib.h>

#include "platform.h" *a_addr = (unsigned int)a;

*b_addr = (unsigned int)b;

#include "xil_mmu.h" *c_addr = (unsigned int)c;

#include "xil_cache.h"

#include "xil_cache_1.h" /* set the workgroup identity */

*ug_y = 0;
void print(char *str); xug_z = 0;
*wg_x = 0;
volatile char *control = (volatile charx)0x43C00000;
*o_x = 03
volatile int *wg_x = (volatile int*)0x43C00010; *o_y = 0;
volatile int #wg_y = (volatile int*)0x43C00018; *0_z = 0;
volatile int *wg_z = (volatile int*)0x43C00020;
volatile int *o_x = (volatile int#*)0x43C00028;
volatile int *o_y = (volatile int*)0x43C00030; print("Status of control register: \n\r");
volatile int *o_z = (volatile int*)0x43C00038; unsigned int con = *control;
for (i = 0; i < 8; i ++) {
volatile int *a_addr = (volatile intx)0x43C00040; if (con & (1 << i)) {
volatile int *b_addr = (volatile int*)0x43C00048; print("1");
volatile int *c_addr = (volatile int*)0x43C00050; } else {
print("0");

}
#define WG_SIZE_X 128

#define WG_SIZE Y 1

print ("\n\r");
#define WG_SIZE_Z 1

print("Starting OpenCL kernel execution\n\r");

int main() *control = *control | 1; /* start */

{
init_platform();
/* more initialization */
Xil_SetTlbAttributes(0x43c00000,0x10c06); /* non cacheable */

/* waiting for hardware to report "done" */
while (! ((*control) & 2));
print ("DONE!\n\r") ;

int *a;
int *b; Xil_DCacheInvalidate();
int *c;
J:.nt i; for (i = 0; i < WG_SIZE_X; i ++) {
int ok = 1; if (c[i] !'= 3) ok = 0;
}
a = (int*)malloc(WG_SIZE_X *sizeof (int));
b = (int*)malloc(WG_SIZE_X *sizeof (int)); if (ok) {
¢ = (int*)malloc(WG_SIZE_X *sizeof(int)); print("Success!\n\r");
))) } else {
print("Generating input data: \n\r"); print ("Error: Something went wrong!\n\r");
for (i = 0; i < WG_SIZE_X; i ++) { }
al[il = 1;
b[%] =2; cleanup_platform();
clil = 0; return 0;
s ¥

Xil_DCacheFlush();

Figure 25: C code for interfacing with the OpenCL generated hardware.

22

Getting Started with OpenCL on the ZYNQ

Version: 0.5

[} Debug Configurations

Create, manage, and run configurations

L

start Performance Analysis using System Debugger

Name: |HelloOpenCL Debug

© = 5 ATG C ®- Arguments| B8 Environment| s
v E Performance Analysis
[HelloopenCL Debug Debug Type: | Standalone Application Debug 2
[Target Communication Fram: ||| Connection: | Local < || New
& xilinx c/c++ application (GDE
& xilinx c/c++application (Syst ||| Hardware platform: | design_1_wrapper_hw_platform_0 =

£ Xilinx c/C++ application (Sys!

Bitstream file: design_1_wrapper.bit Search...| | Browse...| | Generate...
Initializationfile: |ps7_init.tcl Search...| | Browse...

FPGA Device: select...

PS Device: Select..

Summary of operations to be performed

Following operations will be performed before launching the debugger.
1. Resets entire system. Clears the FPGA fabric (PL).

2. Program FPGA fabric (PL).

3. Runs ps7_inil

4. Runs ps7_post_config. Enables level shifters from PL to PS.
(Recommended to use this option only after system reset or board power

& [Reset entire system
@ Program FPGA

& Run ps7_init

& Runps7_post_config

Filter matched 6 of 16items Apply Revert
® Close Debug |

° /C++ - HelloopencLsrc/helloworld.c - Xilinx SDK

i v BrA&-acesREE TEBYE G H O ALY NS
s Q ‘D Bic/cH+
(& Project Explorer & = O [G@systemhdf [systemmss |2 helloworld.c 3 = oo oM [=8
T @+ Copyright (C) 2009 - 2014 Xilinx, AlL rights reserved.| 2% R e %
» @ design_1_wrapper_hw_platform . =
v & HelloopencL helloworld.c est application R

> 4 Binaries

This application configures UART 1 o platform.h
> gincludes * PS7 UART (2 initialized by since # print(char*) : void
boofron/bsp con o main():int

rm_configh
> (2 platform.c
> [platform.h
R script.ld
> i HelloOpenCL_bsp

> @ platfor
urable only in HW design
configured by bootron/

#include <stdio.h>
#include "platforn.h”

void print (char *str);
int main()
init_platforn();

8 Target Connections 2| = & |[

Eipr. 2 @Ta. | Bco.. Epr. | Bs. = O |[EsbkLog X BR =0

= < || 9:22:12 INFO : Launching XSDB server: xsdb

» > Hardware Server Oitems 09:22:13 INFO : XSDB server has started suct
b e Ter Aok 09:22:13 INFO : Processing command Line opt
= o Description Re:| 09:28:48 INFO : Refreshed build settings on

> & QEMU TcfGdbClient

[& /HelloopencL/src/helloworld.c

Figure 26: Debug configuration and screen interaction with the ZynqBerry.

Debug - HelloopencL/src/helloworld.c - Xilinx SDK

- wECoDEED 2| @ > MW BT O TR O P
e aQ [B @c/c++ | 35Debug
35 Debug % i* ¥ = O ||®Vari.. 8 % Bre... #itRegi.. @XM... @ XSD... =\ Mod. = e
v $ System Debugger on Local HelloOpencL.elf (Local) P o
v &@aru i
. - Name Type Value |
¥ & ARM Cortex-A9 MPCore #0 (Breakpoint: main) |
>wa int* ©x00101978 |
0x00100578 main(): ./src/helloworld.c, line 81 E | | |
= 0x001013¢8 _start(): xil-crt0.s, line 133 i 1900130510
>»c int* 0x02108460
» i ARM Cortex-A9 MPCore #1 (Suspended)
& xc72010
@ system.hdf W, system.mss. [@ helloworld.c 22| [d _exit.c = 0O | 8 outline 2 =0
5 5 s -
int main() e 1
c{ o stdioh
> init_platforn(); o stdlibh
* more initialization * . %
Xil_SetTlbAttributes(0x43c00000,0x10¢06); /* non cacheable u platform.h |
o xil_mmuh
int *a; .
e 4 xil_cacheh
o xil_cache_Lh
int i; # print(char*) : void
int ok = 1; @ control: char*
= (imeximallaciu CTIE ¥ teizanéline)): ® icint
BTor. % = 0O |Bco. Esp. |Epr. |QEx. OMe.| = O |[EsdKlog R BR =0
£ B v % v | 10:01:01 INO ---XSDB Script (Af
targets -set -nocase -filter {name =~ "ARM*#9" &

> & Hardware Server || TCF Debug Virtual Terminal - ARM Cortex-A9 MPCore #1
> G Linux TCF Agent

> & QEMU TcfGdbClic

con

-End of Script--

joels@Goku: ~

Generating input data:
Status of control register:
00100000

Starting OpencL kernel e»
DONE!

Success!

ecution

Figure 27: Debug the software and screen interaction.

23

Getting Started with OpenCL on the ZYNQ Version: 0.5

4.1 C Code Walkthrough

Note that the code shown in figure [25| and gone through in this section, contains the line:

Xil_SetTlbAttributes (0x43c00000,0x10c06); /* non cacheable */

in the hope that this would make all read and writes to control registers bypass the cache.
Newer versions of the Xilinx libraries have defined a set of names (in xil_mmu.h) for these
attribute bit patterns. There the following definition can be found:

#define NORM_NONCACHE Ox11DE2

So let’s for now assume that the correct way to set the registers as non-cacheable is the following:
and that the values used in the ¢ code listings are incorrect:

Xil_SetTlbAttributes(CONTROL, NORM_NONCACHE) ;

If anyone know the details of this in depth and want to share the knowledge, please write an
email to bo. joel.svensson@gmail.com.

The code for interfacing with the generated hardware is given in full in figure [25| but is here
given a step by step explanation.
The code starts out by including some headers. This is just shown here for completeness.

#include <stdlib.h>
#include "platform.h"

#include "xil_mmu.h"
#include "xil_cache.h"
#include "xil_cache_1.h"

void print(char *str);

The code below, declares names for the programming registers. The base address was for
this was found in section [3.3] and the offsets to each specific register is found in section

volatile char *control = (volatile charx*)0x43C00000;

volatile int *wg_x = (volatile int*)0x43C00010;
volatile int *wg_y = (volatile int*)0x43C00018;
volatile int *wg_z (volatile int*)0x43C00020;
volatile int *o_x (volatile int*)0x43C00028;
volatile int *o_y (volatile int*)0x43C00030;
volatile int *o_z (volatile int*)0x43C00038;

(volatile int*)0x43C00040;
(volatile int*)0x43C00048;
(volatile int*)0x43C00050;

volatile int *a_addr
volatile int *b_addr
volatile int *c_addr

24

Getting Started with OpenCL on the ZYNQ Version: 0.5

The workgroup size is 128 (in the x direction). This means that each “run” of the generated
hardware will perform 128 element wise additions.

#define WG_SIZE_X 128
#define WG_SIZE_Y 1
#define WG_SIZE_Z 1

This also means that the smallest amount of additions we can perform using the vadd
hardware is 128 and that we can only perform multiples of 128 additions by repeatedly launching
work on the vadd hardware with different workgroup identities. This restriction comes the
use of the “reqd work group_size(128,1,1)” attribute used in the implementation of vadd
in vivado_hls. This attribute can be left out resulting in a more flexible (but less efficient)
hardware implementation with a more complicated interface.

The main function starts out by performing some standard initialization but we also add a
step that marks the range of memory containing the programming registers as “non cacheable”.

int main()
{
init_platform();
/* more initialization */
Xil_SetTlbAttributes (0x43c00000,0x10c06); /* non cacheable */

The following piece of code declares pointers and allocates memory for the input and output
to the vadd computation. It also declares a counter variable i (used in some loops later on) and
an ok status variable.

int *a;
int *b;
int *c;
int i;
int ok = 1;

=

a = (int*)malloc(WG_SIZE_X *sizeof(int));
b = (int*)malloc(WG_SIZE_X *sizeof(int));
(int*)malloc(WG_SIZE_X *sizeof(int));

O
Il

Generate some input data and flush the cache to ensure that all the data we generated has
been stored all the way to DRAM before launching the vadd computation.

print ("Generating input data: \n\r");
for (i = 0; i < WG_SIZE_X; i ++) {

alil] = 1;
bli] = 2;
c[i] = 0;

}
Xil_DCacheFlush();

The next step is to program the registers of the vadd unit and prepare for launching a
workgroup. The workgroup id is set to (0,0,0).

25

Getting Started with OpenCL on the ZYNQ Version: 0.5

*a_addr = (unsigned int)a;
*b_addr = (unsigned int)b;
*c_addr = (unsigned int)c;

/* set the workgroup identity */

*wg_y = 0;
*wg_z = 0;
*wg_x = 0;
*¥0_x = 0;
*o_y = 0;
*0_z = 0;

The next piece of code prints the contents of the control register. This serves no important

purpose for the application but only provides a way to visually inspect that the control status
(which should be “idle”).

print("Status of control register: \n\r");
unsigned int con = *control,;
for (1 = 0; 1 < 8; i ++) {
if (con & (1 << i)) {
print("1");
} else {
print("0");

+
print ("\n\r");

We instruct the vadd hardware to start computing by putting a one at bit position zero in
the control register.

print ("Starting OpenCL kernel execution\n\r");
xcontrol = *control | 1; /* start */

And then we wait for the hardware to report done in bit position two.

/* waiting for hardware to report '"done" */
while (! ((*control) & 2));
print ("DONE!\n\r");

Xil_DCachelInvalidate();

After the hardware reports to be done, we invalidate the cache of the processing system in order
to ensure that we will see the fresh data that the programmable logic has computed (without
any involvement of the cache hierarchy, so the changes in memory are not yet visible to the
ARM cores).

After that we can check the result for correctness.

26

Getting Started with OpenCL on the ZYNQ Version: 0.5

for (i = 0; i < WG_SIZE_X; i ++) {
if (c[i] !'= 3) ok = O;

+
if (ok) {
print ("Success!\n\r");
} else {
print ("Error: Something went wrong!\n\r");
+

And we are done.

cleanup_platform();
return O;

5 Conclusion

We hope that following this guide has allowed you to run OpenCL on a Zynq device. Please
send us feedback or questions.

27

	Introduction
	Initial setup for the zynqberry
	Guide structure

	Part 1: Vivado HLS and OpenCL
	Creating a Vivado HLS project
	Writing a simple OpenCL kernel
	Synthesize the OpenCL code
	Programming Interface Generated by HLS

	Part 2: Vivado
	Creating a Vivado project
	Designing the system
	Important details from the Address Editor

	Part 3: Xilinx SDK
	 C Code Walkthrough

	Conclusion

