
Getting Started with OpenCL on the ZYNQ

Bo Joel Svensson
bo.joel.svensson@gmail.com

Rakesh Tripathi
rakesht@chalmers.se

Guide version 0.5
Last edited October 12, 2018
Board compatibility zynqberry
Tested Vivado versions 2015.4, 2018.2

Disclaimer

All content provided in this document is for informational purposes only. The authors makes no
guarantees as to the accuracy or completeness of any information within this document.

The authors will not be liable for any errors or omissions in this information nor for the availability

of this information. The authors will not be liable for any losses, injuries, or damages from the display

or use of this information.

1 Introduction

This document attempts to provide a complete walk through of the entire OpenCL HLS work
flow using Xilinx Vivado. The Board we target in this version (0.5) of the document is the
Trenz ZynqBerry. In future versions we will try to highlight the parts that differ when using a
ZedBoard.

This document is work in progress and new versions will be posted as we refine the procedure
and gain a deeper understanding of all the details.

All feedback, hints, tips, corrections and explanations of details we are vague upon, would
be greatly appreciated and acknowledged in future revisions.

1.1 Initial setup for the zynqberry

The procedure outlined in this document has been tested against a ZynqBerry board 1. The
version of this board that we use is the 128MB variant “TE0726-02” which has now been
superseded by the “TE0726-02M” variant with more memory. While we do not have access
to an “TE0726-02M” board and we cannot test, we assume the procedure explained in this
document will apply with minimal changes.

In order to make the description of the procedure as complete as possible we are not basing
this guide on an existing (vendor supplied) example Vivado project. Only one piece of data is
taken from a reference design provided by Trenz, the so called “board files”. We copy the board
files available in the “test board” reference design 2. Under linux these board files are copied

1http://www.trenz-electronic.de/products/fpga-boards/trenz-electronic/te0726-zynq.html
2http://www.trenz-electronic.de/download/d0/Trenz Electronic/d1/TE0726/d2/Reference%20Designs/d3/

2015.4/d4/test board.html

1

Getting Started with OpenCL on the ZYNQ Version: 0.5

to directory Xilinx/Vivado/2015.4/data/boards/board files of your Xilinx vivado install tree.
If these board files have been added correctly it will be possible to select the ZynqBerry as a
target for Vivado.

1.2 Guide structure

This guide is split into three parts that goes through: first writing a simple OpenCL program
and synthesizing it using Vivado HLS, second designing a system (in Vivado) that interfaces
the hardware generated by HLS in step 1 with the processing system and the memory system in
the Zynq chip, finally we show how to develop software (in the SDK) for the processing system
that starts computations in the OpenCL generated hardware.

2 Part 1: Vivado HLS and OpenCL

In this section we develop an OpenCL program for vector addition (vadd). This vadd com-
putation is given pointers to three vectors (arrays), two inputs and one output, and performs
element wise addition of the inputs into the output.

2.1 Creating a Vivado HLS project

Start Vivado hls and create project using the following steps:

• step1: Create a project and name it “vadd OpenCL”, see figure 1.

• step2: Now you are asked to provide a name for the top level function. This is the function
that specifies the interface to the generated hardware. Name the top level function (vadd).
This step is outlined in figure 2.

• step3: We are not adding a testbench file. See figure 2.

• step4: Now it is time to configure the solution details. We can leave the solution name
unchanged (“solution1”) and then we select the device:

– Family: Zynq

– Package: clg225

– Speed grade: -1

There should now be just one available selection “xc7z010clg225-1”. See figure 3.

Now project configuration is done and we can hit finish and enter into the development envi-
ronment. This should look like the left part of figure 4.

2

Getting Started with OpenCL on the ZYNQ Version: 0.5

Figure 1: Project creation and naming

Figure 2: Identification of the Top function and addition of testbench file. We are not providing
any testbench.

3

Getting Started with OpenCL on the ZYNQ Version: 0.5

Figure 3: Solution configuration. Select the “xc7z010clg225-1” device.

2.2 Writing a simple OpenCL kernel

The example kernel used in this guide is very simple and is outlined in total below. Add a
new source file to the project. Right click “source” in the Explorer under “vadd OpenCL” and
select “New file”. Name the file “vadd.cl”. The file extension is important “.cl”.

#include <clc.h>

__kernel void __attribute__ ((reqd_work_group_size(128,1,1)))

vadd(__global int *a, __global int *b, __global int *c) {

int i = get_global_id(0);

c[i] = a[i] + b[i];

}

After creating the new file type in the OpenCL code as above.

Figure 4: IDE view and source file creation.

4

Getting Started with OpenCL on the ZYNQ Version: 0.5

2.3 Synthesize the OpenCL code

After writing the OpenCL, synthesis and exporting the IP remains in order to conclude the
part of the work that takes place in vivado hls. If the code has been entered correctly this
should go through synthesis without problems. Hit the green “synthesis” button in the toolbar.

As the synthesis finishes a post synthesis report is brought up.

Now export the generated hardware description into the IP catalog. This step makes our
vadd hardware unit available for use in Vivado. Click the “Export RTL” button in the toolbar.

The choices we make in the “Export RTL” dialog are shown in figure 5. We choose “IP
Catalog” and VHDL as the desired language. One can also provide identification details using
“Configuration” button but we leave these settings unchanged.

Figure 5: The “Export RTL” dialog.

We are now done with vivado hls and will start up Vivado.

5

Getting Started with OpenCL on the ZYNQ Version: 0.5

2.4 Programming Interface Generated by HLS

After synthesizing hardware from the OpenCL code new directories appeared called “impl”
and “syn” containing VHDL code. Within one of these files we find information that is im-
portant to keep in mind later when writing the software that interfaces with the generated
hardware, this information will be used in section 4.1. The information we seek, is located in
the “vadd control s axi.vhd” file and shows the layout of the memory mapped interface for
communication with the vadd hardware unit:

-- ------------------------Address Info-------------------

-- 0x00 : Control signals

-- bit 0 - ap_start (Read/Write/COH)

-- bit 1 - ap_done (Read/COR)

-- bit 2 - ap_idle (Read)

-- bit 3 - ap_ready (Read)

-- bit 7 - auto_restart (Read/Write)

-- others - reserved

-- 0x04 : Global Interrupt Enable Register

-- bit 0 - Global Interrupt Enable (Read/Write)

-- others - reserved

-- 0x08 : IP Interrupt Enable Register (Read/Write)

-- bit 0 - Channel 0 (ap_done)

-- bit 1 - Channel 1 (ap_ready)

-- others - reserved

-- 0x0c : IP Interrupt Status Register (Read/TOW)

-- bit 0 - Channel 0 (ap_done)

-- bit 1 - Channel 1 (ap_ready)

-- others - reserved

-- 0x10 : Data signal of group_id_x

-- bit 31~0 - group_id_x[31:0] (Read/Write)

-- 0x14 : reserved

-- 0x18 : Data signal of group_id_y

-- bit 31~0 - group_id_y[31:0] (Read/Write)

-- 0x1c : reserved

-- 0x20 : Data signal of group_id_z

-- bit 31~0 - group_id_z[31:0] (Read/Write)

-- 0x24 : reserved

-- 0x28 : Data signal of global_offset_x

-- bit 31~0 - global_offset_x[31:0] (Read/Write)

-- 0x2c : reserved

-- 0x30 : Data signal of global_offset_y

-- bit 31~0 - global_offset_y[31:0] (Read/Write)

-- 0x34 : reserved

-- 0x38 : Data signal of global_offset_z

-- bit 31~0 - global_offset_z[31:0] (Read/Write)

-- 0x3c : reserved

-- 0x40 : Data signal of a

-- bit 31~0 - a[31:0] (Read/Write)

-- 0x44 : reserved

-- 0x48 : Data signal of b

-- bit 31~0 - b[31:0] (Read/Write)

-- 0x4c : reserved

-- 0x50 : Data signal of c

-- bit 31~0 - c[31:0] (Read/Write)

-- 0x54 : reserved

-- (SC = Self Clear, COR = Clear on Read, TOW = Toggle on Write, COH = Clear on Handshake)

This gives us the “offsets” from some base address to where each of the register used by
the vadd hardware is located. Later, in vivado, a complementary step will provide us with the

6

Getting Started with OpenCL on the ZYNQ Version: 0.5

base address, see section 3.3.
The directly important pieces of information here is the control register, the group id

registers and the a,b and c data registers.

• Control: using this register we can start computations in the vadd hardware unit and
also poll for the done signal.

• Group id: group id x, group id y, group id z specifies a three dimensional work-
group id. Since the OpenCL kernel we use is meant for one dimensional “NDRanges”
only group id x is of importance. This value (group id x) is changed between invoca-
tions of vadd if the data we operate upon is larger than what can be computed by one
workgroup instance (the only valid value for the others is zero).

• Argument pointers: pointer to memory where the vadd hardware can fetch and store
data should be written to the a,b,c register.

7

Getting Started with OpenCL on the ZYNQ Version: 0.5

3 Part 2: Vivado

This section presents step by step instructions on how to integrate the OpenCL kernel IP-block
designed earlier into a Zynq base system.

3.1 Creating a Vivado project

Begin by starting Vivado. This presents you with the view shown in figure 6. Select “Create
New Project” and click “Next”.

Figure 6: Vivado project creation wizard.

Choose a name and location for the project, in this case “ZynqOpenCL” and a directory
called “Vivado”. Click “Next”. In the next window select “RTL Project” and check “Do not
specify sources..”. This part of the procedure is shown in figure 7.

Figure 7: Project name and project type.

Now it is time to select the “Default Part” to use as target platform. Click “Boards”. If
the steps in section 1.1 has been performed there should be an option “ZYNQ-7 TE0726-02”
for the zynqberry board. Select the suitable board then click “Next” and then “Finish’

8

Getting Started with OpenCL on the ZYNQ Version: 0.5

Figure 8: Project configuration wizard board selection.

This concludes the project configuration procedure.

3.2 Designing the system

Now we have entered Vivado and are presented with a “Project Manager” view, a “Project
Summary” and the “Flow Navigator”. In the Flow Navigator select “Create Block Design”.
The default name “design 1” is fine and we can keep it and just hit “OK”. This should bring
up a “Block Diagram View” as is shown in figure 9.

Figure 9: Vivado Block Diagram view.

In the Diagram view “design 1” we click the add IP button. The shape of this button
should now be shown in the middle of the diagram view but can later be found in the vertical
toolbar next to the diagram view. Click “add IP” and enter “zynq” into the search field. Select
the “ZYNQ7 Processing System”.

9

Getting Started with OpenCL on the ZYNQ Version: 0.5

The diagram view should now contain a Zynq processing system as shown in figure 10. Not
that there is a “Run Block Automation” link within the block diagram at this point. Hit this
link and mark “All Automation” and then click Ok. The block automation dialog is shown in
figure 11.

Figure 10: Vivado Block Diagram view with ZYNQ processing system.

Figure 11: Block automation dialog for the Processing System.

10

Getting Started with OpenCL on the ZYNQ Version: 0.5

After allowing the block automation for the processing system to apply the default settings,
the block diagram should look as in figure 12.

Figure 12: Block automation dialog for the Processing System.

Now it is time to add the vadd IP block to the design but before doing that we need to point
out to Vivado where that IP can be found. Find the “IP settings” button in the toolbar within
the Diagram view and click it. Then click the “Repository Manager” tab and the plus (+)
symbol. Find the “impl” directory of the vadd OpenCL vivado hls project and click select.
This process is outlined in figure 13.

Clicking “Select” should bring up the “Add Repository” dialog. Just click “OK” and then
we are back to the list of IP Repositories, but now augmented with our recently added IP. Click
“OK”.

11

Getting Started with OpenCL on the ZYNQ Version: 0.5

Figure 13: Outline of how to add our custom vadd IP to the IP repository.

Figure 14: Outline of IP repository configuration continues.

12

Getting Started with OpenCL on the ZYNQ Version: 0.5

With the IP repository configured we can add the vadd IP to the design. Click the “Add
IP” button in the toolbar in the Diagram view. Type “vadd” in the search field and the “Vadd”
IP should appear in the list window. Select it.

After adding the Vadd IP the block Diagram should look as in figure 15. Now we need to
connect the Vadd unit to the processing system but in order to that we need to go into the pro-
cessing system block and reconfigure it. If you look at the Vadd 0 unit it has a “s axi control”
interface and a “m axi gmem” interface. These interfaces needs to be connected (as well as
the clock and reset). Luckily much of this connecting can be done for us automatically, if only
we configure the processing system block correctly.

Figure 15: Outline of IP repository configuration continues.

Double click on the ZYNQ7 Processing system in the in the diagram view. This should
bring up a view of the internals of the processing system as below:

13

Getting Started with OpenCL on the ZYNQ Version: 0.5

There are two interfaces that needs to be configured inside the processing system. the “32b
GP AXI Master Ports” and the “32b GP AXI Slave Ports”. Double click on the Master ports
and configure according to the left side of figure 16. Then do the same for the Slave ports and
the right side of figure 16.

Figure 16: Configuration of the AXI Master/Slave ports.

When this configuration of the processing system is completed the ZYNQ Processing System
in the diagram view should show the newly added interfaces. Compare to figure 17.

14

Getting Started with OpenCL on the ZYNQ Version: 0.5

Figure 17: Block diagram view after configuration of the processing system.

Most important here is to note that this change makes the “Run Connection Automation”
link to appear at the top of the block diagram view. Click this link and make the following
selections:

At this point the diagram view should look similar to figure 18. Notice how two AXI
interconnects have been automatically added to the design and connects to the processing
system and to the vadd unit. One of these interfaces connect to the control port on the vadd
unit and is used to program the vadd unit control registers. The other interface is used by the
vadd unit for memory accesses.

15

Getting Started with OpenCL on the ZYNQ Version: 0.5

Figure 18: Block diagram view after configuration of the processing system.

At this stage the design is mostly complete. We do, however, need to go into the “Address
editor” and do some small tweaks. Within the Address editor some address ranges are listed
as excluded, we need to set these as included.

Now it is time to go through the process that in the end results in a bitstream that we can
use to program the Zynq FPGA. This procedure is outlined below, in text, and following this
in pictures:

• Validate the design: In the tools menu, click Validate design. This should finish with a
message saying “Validation successful”.

• Create HDL wrappers: This is done in the sources window by right clicking on “design 1”
and selecting “Create HDL Wrappers”.

• Save and run synthesis: In the flow navigator under synthesis, click run synthesis.

• Synthesis completed: In this dialog choose “Run Implementation”.

• Implementation completes: Potentially reporting a great number of critical warnings.
Fortunately these can be ignored. One should however check where the warnings come
from. If there are warnings directly in relation to the IP you developed yourself it may
be important.

16

Getting Started with OpenCL on the ZYNQ Version: 0.5

• Implementation Completed dialog: Choose “Generate Bitstream”.

• After generation of bitstream one can take a look at the implemented design.

17

Getting Started with OpenCL on the ZYNQ Version: 0.5

Figure 19: Synthesis completed and an example of critical warnings.

18

Getting Started with OpenCL on the ZYNQ Version: 0.5

Figure 20: Implementation complete and Bitstream generation completed

At this point we have completed the part of this guide that takes place in Vivado. The next
step is to go into the file menu and select “Export Hardware” (include the bitstream) and then
to “Launch SDK”.

19

Getting Started with OpenCL on the ZYNQ Version: 0.5

Figure 21: Export hardware and launch the SDK

3.3 Important details from the Address Editor

Before going into the part of the guide that takes place in the SDK we want to point out some
details from the Address Editor. Make a note of the address mentioned for the s axi control.
In this case this address is 0x43C00000. It is on this address and onwards that the control
registers for the vadd hardware unit is mapped into the address space.

4 Part 3: Xilinx SDK

When the Xilinx SDK has launched (after launching it from the File menu in Vivado) we are
presented with a view like the left part of figure 22. Here we just click the “File” menu and
“New” “Application Project”. In the right part of figure 22 we name our application project
“HelloOpenCL” and click next and select “hello world” then “Finish” .

Now we need to perform one key piece of configuration to the Board Support Package,
the “system.mss” file of the “HelloOpenCL bsp”. The configuration we need to change is the
stdin/stdout under “Overview”, “Standalone”. Both stdin and stdout should be pointed to
“ps7 uart 1” and not to uart 0 as per default.

Next we go into the Xilinx tools menu and clicks “Generate linker script”. Here we want to
make the heap larger. Find the “Heap Size” box and enter for example 33554432 (for 32mb).
The default setting of 1KB will not be enough for what we are going to do.

Now it is time to write the C code that talks to the vadd unit. Edit the “helloworld.c” file
in the “HelloOpenCL” project as listed in figure 25.

After writing the code we can right click on the “HelloOpenCL” project in the “Project
Explorer” and choose “Debug as” and “Debug Configuration”. In the debug configuration

20

Getting Started with OpenCL on the ZYNQ Version: 0.5

Figure 22: Left: SDK just started. Right: new application project.

Figure 23: Board support package configuration.

select “Reset entire system” and “Program FPGA” then “Apply”.
Now to start the application in Debug mode right click on “HelloOpenCL” select “Debug

as” and “Launch on hardware”. The ZynqBerry should now be connected and its LEDs will be
on while the device is being programmed. The SDK will automatically enter into Debug mode
and you can press “Resume” (F8) button to run. In order to see any output from the device
you need to have a terminal link to it. On linux using the screen command works well: screen
/dev/ttyUSB1. This part of the procedure is shown in figure 27.

21

Getting Started with OpenCL on the ZYNQ Version: 0.5

Figure 24: BSP Uart settings and the linker script

#include <stdlib.h>

#include "platform.h"

#include "xil_mmu.h"

#include "xil_cache.h"

#include "xil_cache_l.h"

void print(char *str);

volatile char *control = (volatile char*)0x43C00000;

volatile int *wg_x = (volatile int*)0x43C00010;

volatile int *wg_y = (volatile int*)0x43C00018;

volatile int *wg_z = (volatile int*)0x43C00020;

volatile int *o_x = (volatile int*)0x43C00028;

volatile int *o_y = (volatile int*)0x43C00030;

volatile int *o_z = (volatile int*)0x43C00038;

volatile int *a_addr = (volatile int*)0x43C00040;

volatile int *b_addr = (volatile int*)0x43C00048;

volatile int *c_addr = (volatile int*)0x43C00050;

#define WG_SIZE_X 128

#define WG_SIZE_Y 1

#define WG_SIZE_Z 1

int main()

{

init_platform();

/* more initialization */

Xil_SetTlbAttributes(0x43c00000,0x10c06); /* non cacheable */

int *a;

int *b;

int *c;

int i;

int ok = 1;

a = (int*)malloc(WG_SIZE_X *sizeof(int));

b = (int*)malloc(WG_SIZE_X *sizeof(int));

c = (int*)malloc(WG_SIZE_X *sizeof(int));

print("Generating input data: \n\r");

for (i = 0; i < WG_SIZE_X; i ++) {

a[i] = 1;

b[i] = 2;

c[i] = 0;

}

Xil_DCacheFlush();

*a_addr = (unsigned int)a;

*b_addr = (unsigned int)b;

*c_addr = (unsigned int)c;

/* set the workgroup identity */

*wg_y = 0;

*wg_z = 0;

*wg_x = 0;

*o_x = 0;

*o_y = 0;

*o_z = 0;

print("Status of control register: \n\r");

unsigned int con = *control;

for (i = 0; i < 8; i ++) {

if (con & (1 << i)) {

print("1");

} else {

print("0");

}

}

print("\n\r");

print("Starting OpenCL kernel execution\n\r");

*control = *control | 1; /* start */

/* waiting for hardware to report "done" */

while (! ((*control) & 2));

print("DONE!\n\r");

Xil_DCacheInvalidate();

for (i = 0; i < WG_SIZE_X; i ++) {

if (c[i] != 3) ok = 0;

}

if (ok) {

print("Success!\n\r");

} else {

print("Error: Something went wrong!\n\r");

}

cleanup_platform();

return 0;

}

Figure 25: C code for interfacing with the OpenCL generated hardware.

22

Getting Started with OpenCL on the ZYNQ Version: 0.5

Figure 26: Debug configuration and screen interaction with the ZynqBerry.

Figure 27: Debug the software and screen interaction.

23

Getting Started with OpenCL on the ZYNQ Version: 0.5

4.1 C Code Walkthrough

Note that the code shown in figure 25 and gone through in this section, contains the line:

Xil_SetTlbAttributes(0x43c00000,0x10c06); /* non cacheable */

in the hope that this would make all read and writes to control registers bypass the cache.
Newer versions of the Xilinx libraries have defined a set of names (in xil mmu.h) for these
attribute bit patterns. There the following definition can be found:

#define NORM_NONCACHE 0x11DE2

So let’s for now assume that the correct way to set the registers as non-cacheable is the following:
and that the values used in the c code listings are incorrect:

Xil_SetTlbAttributes(CONTROL, NORM_NONCACHE);

If anyone know the details of this in depth and want to share the knowledge, please write an
email to bo.joel.svensson@gmail.com.

The code for interfacing with the generated hardware is given in full in figure 25 but is here
given a step by step explanation.

The code starts out by including some headers. This is just shown here for completeness.

#include <stdlib.h>

#include "platform.h"

#include "xil_mmu.h"

#include "xil_cache.h"

#include "xil_cache_l.h"

void print(char *str);

The code below, declares names for the programming registers. The base address was for
this was found in section 3.3 and the offsets to each specific register is found in section 2.4.

volatile char *control = (volatile char*)0x43C00000;

volatile int *wg_x = (volatile int*)0x43C00010;

volatile int *wg_y = (volatile int*)0x43C00018;

volatile int *wg_z = (volatile int*)0x43C00020;

volatile int *o_x = (volatile int*)0x43C00028;

volatile int *o_y = (volatile int*)0x43C00030;

volatile int *o_z = (volatile int*)0x43C00038;

volatile int *a_addr = (volatile int*)0x43C00040;

volatile int *b_addr = (volatile int*)0x43C00048;

volatile int *c_addr = (volatile int*)0x43C00050;

24

Getting Started with OpenCL on the ZYNQ Version: 0.5

The workgroup size is 128 (in the x direction). This means that each “run” of the generated
hardware will perform 128 element wise additions.

#define WG_SIZE_X 128

#define WG_SIZE_Y 1

#define WG_SIZE_Z 1

This also means that the smallest amount of additions we can perform using the vadd
hardware is 128 and that we can only perform multiples of 128 additions by repeatedly launching
work on the vadd hardware with different workgroup identities. This restriction comes the
use of the “reqd work group size(128,1,1)” attribute used in the implementation of vadd
in vivado hls. This attribute can be left out resulting in a more flexible (but less efficient)
hardware implementation with a more complicated interface.

The main function starts out by performing some standard initialization but we also add a
step that marks the range of memory containing the programming registers as “non cacheable”.

int main()

{

init_platform();

/* more initialization */

Xil_SetTlbAttributes(0x43c00000,0x10c06); /* non cacheable */

The following piece of code declares pointers and allocates memory for the input and output
to the vadd computation. It also declares a counter variable i (used in some loops later on) and
an ok status variable.

int *a;

int *b;

int *c;

int i;

int ok = 1;

a = (int*)malloc(WG_SIZE_X *sizeof(int));

b = (int*)malloc(WG_SIZE_X *sizeof(int));

c = (int*)malloc(WG_SIZE_X *sizeof(int));

Generate some input data and flush the cache to ensure that all the data we generated has
been stored all the way to DRAM before launching the vadd computation.

print("Generating input data: \n\r");

for (i = 0; i < WG_SIZE_X; i ++) {

a[i] = 1;

b[i] = 2;

c[i] = 0;

}

Xil_DCacheFlush();

The next step is to program the registers of the vadd unit and prepare for launching a
workgroup. The workgroup id is set to (0,0,0).

25

Getting Started with OpenCL on the ZYNQ Version: 0.5

*a_addr = (unsigned int)a;

*b_addr = (unsigned int)b;

*c_addr = (unsigned int)c;

/* set the workgroup identity */

*wg_y = 0;

*wg_z = 0;

*wg_x = 0;

*o_x = 0;

*o_y = 0;

*o_z = 0;

The next piece of code prints the contents of the control register. This serves no important
purpose for the application but only provides a way to visually inspect that the control status
(which should be “idle”).

print("Status of control register: \n\r");

unsigned int con = *control;

for (i = 0; i < 8; i ++) {

if (con & (1 << i)) {

print("1");

} else {

print("0");

}

}

print("\n\r");

We instruct the vadd hardware to start computing by putting a one at bit position zero in
the control register.

print("Starting OpenCL kernel execution\n\r");

*control = *control | 1; /* start */

And then we wait for the hardware to report done in bit position two.

/* waiting for hardware to report "done" */

while (! ((*control) & 2));

print("DONE!\n\r");

Xil_DCacheInvalidate();

After the hardware reports to be done, we invalidate the cache of the processing system in order
to ensure that we will see the fresh data that the programmable logic has computed (without
any involvement of the cache hierarchy, so the changes in memory are not yet visible to the
ARM cores).

After that we can check the result for correctness.

26

Getting Started with OpenCL on the ZYNQ Version: 0.5

for (i = 0; i < WG_SIZE_X; i ++) {

if (c[i] != 3) ok = 0;

}

if (ok) {

print("Success!\n\r");

} else {

print("Error: Something went wrong!\n\r");

}

And we are done.

cleanup_platform();

return 0;

}

5 Conclusion

We hope that following this guide has allowed you to run OpenCL on a Zynq device. Please
send us feedback or questions.

27

	Introduction
	Initial setup for the zynqberry
	Guide structure

	Part 1: Vivado HLS and OpenCL
	Creating a Vivado HLS project
	Writing a simple OpenCL kernel
	Synthesize the OpenCL code
	Programming Interface Generated by HLS

	Part 2: Vivado
	Creating a Vivado project
	Designing the system
	Important details from the Address Editor

	Part 3: Xilinx SDK
	 C Code Walkthrough

	Conclusion

