
Parallel Programming in Haskell Almost for Free
an embedding of Intel’s Array Building Blocks

Bo Joel Svensson
Chalmers University of Technology

joels@chalmers.se

Mary Sheeran
Chalmers University of Technology

ms@chalmers.se

Abstract
Nowadays, performance in processors is increased by adding more
cores or wider vector units, or by combining accelerators like GPUs
and traditional cores on a chip. Programming for these diverse ar-
chitectures is a challenge. We would like to exploit all the resources
at hand without putting too much burden on the programmer. Ide-
ally, the programmer should be presented with a machine model
abstracted from the specific number of cores, SIMD width or the
existence of a GPU or not. Intel’s Array Building Blocks (ArBB) is
a system that takes on these challenges. ArBB is a language for data
parallel and nested data parallel programming, embedded in C++.
By offering a retargetable dynamic compilation framework, it pro-
vides vectorisation and threading to programmers without the need
to write highly architecture specific code. We aim to bring the same
benefits to the Haskell programmer by implementing a Haskell
frontend (embedding) of the ArBB system. We call this embedding
EmbArBB. We use standard Haskell embedded language proce-
dures to provide an interface to the ArBB functionality in Haskell.
EmbArBB is work in progress and does not currently support all of
the ArBB functionality. Some small programming examples illus-
trate how the Haskell embedding is used to write programs. ArBB
code is short and to the point in both C++ and Haskell. Matrix mul-
tiplication has been benchmarked in sequential C++, ArBB in C++,
EmbArBB and the Repa library. The C++ and the Haskell embed-
dings have almost identical performance, showing that the Haskell
embedding does not impose any large extra overheads. Two image
processing algorithms have also been benchmarked against Repa.
In these benchmarks at least, EmbArBB performance is much bet-
ter than that of the Repa library, indicating that building on ArBB
may be a cheap and easy approach to exploiting data parallelism in
Haskell.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages; Concurrent, distributed, and parallel languages; D.3.4
[Programming Languages]: Processors—Code generation

General Terms Languages, Performance

Keywords Data parallelism, array programming, dynamic compi-
lation, embedded language

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

FHPC’12, September 15, 2012, Copenhagen, Denmark.
Copyright c© 2012 ACM 978-1-4503-1577-7/12/09. . . $10.00.

1. Introduction
Modern hardware architectures provide much parallelism in the
form of multi- and many-core processors and heterogeneous com-
binations of the two. We would like to exploit this parallelism with-
out over-burdening the programmer, and without sacrificing too
much performance. Ideally, the programmer should be encouraged
to write the code in a way that is not too closely linked to the precise
combination of cores, SIMD vector processing power and GPU that
is currently targeted. It should also be possible to easily retarget the
code to new architectures. As processor architectures develop and
are combined at an ever increasing pace, these requirements place
considerable demands on programming languages and libraries for
parallel programming.

Intel’s Array Building Blocks (ArBB) is one approach to the
problem of how to increase productivity for programmers who
need to exploit hardware parallelism, but for whom very low level
parallel programming (as typically found in High Performance
Computing) is too difficult or time consuming [11]. ArBB is a
retargettable dynamic compilation framework that is provided as an
embedded language in C++. It aims to give the programmer access
to data and thread parallelism, while protecting him from common
pitfalls such as race conditions and deadlock.

Many of the ideas in ArBB feel familiar to functional program-
mers. For example, when referring to collection data types, refer-
ence [11] states that “Expressions over collections always act as
if a completely new collection were created and assignment be-
tween collections always behaves as if the entire input collection
were copied.” This rather functional view of data is accompanied
by extensive optimisation that (as the paper states) removes almost
all copying. A key to the approach is the use of standard patterns
of computation such as scan and reduce – familiar as higher order
functions in a functional setting. The system tries to fuse away in-
termediate data-structures when these patterns are composed. The
patterns are deterministic, so that problems with race conditions are
avoided by design. Programs are stated to be short and close to the
mathematical specification, and that, again, is a familiar mantra.
The system allows C++ users to construct code objects called clo-
sures. The first time the call operation is applied to a particular
function, ArBB captures the sequence of operations over ArBB
types and creates an intermediate representation. This representa-
tion is then compiled to vector machine language, which is cached
for later use. The machine code is also invoked (in parallel on mul-
tiple cores, if appropriate). The next time the function is called,
ArBB reuses the cached machine code rather than regenerating it.
Although dynamically typed closures are available, ArBB is gener-
ally statically typed.

ArBB is an embedded language, implemented as a library in
the host language C++. The embedding makes heavy use of the
C++ template machinery. There is also a lower level interface to
ArBB, the ArBB Virtual Machine C API [7]. The low level C API

is not intended for use directly by applications programmers, but
rather as a base for implementations of alternative ArBB frontends
(embeddings) [11]. The ArBB VM implements the compilation
and parallelisation. Reference [14] presents Haskell bindings to
the ArBB C API as well as initial steps towards using ArBB as
a backend to the embedded language Accelerate [3].

The design of ArBB seems particularly well suited to a func-
tional setting. In this paper, we present work in progress on em-
bedding ArBB in Haskell. We call the embedding EmbArBB. It
is our hope that using Haskell as a host language will be just as
user friendly and efficient as the C++ version. EmbArBB does not
yet include all of the functionality of ArBB, and this is discussed
further in section 8. However, our first benchmarks show that the
performance of EmbArBB is very similar to that of ArBB in C++.
This bodes well.

EmbArBB is available at GitHub as
github.com/svenssonjoel/EmbArBB.

2. Related Work
2.1 Data.Array.Accelerate

Accelerate [3] is an embedded language for general purpose, flat
data parallel computations on GPUs.

The Accelerate programmer expresses algorithms using collec-
tive operations over vectors. These collective operations are similar
to the parallel patterns of ArBB, but are generally higher order.
That is, where ArBB and EmbArBB have addReduce, mulReduce
and so on, Accelerate has a single higher-order fold function. This
means that the Accelerate library gets away with a much smaller
set of operations, while maintaining a higher level of expressivity
in the language.

Accelerate arrays have their dimensionality (shape) encoded in
the type and this was the inspiration for the similar approach taken
in EmbArBB. In Accelerate, a one dimensional array of integers
has type Array DIM1 Int. However, Accelerate does not limit
the dimensionality to one, two or three, as ArBB does, but rather
supports arbitrary dimensionality.

2.2 Data Parallel Haskell

Data Parallel Haskell (DPH) is an extension to GHC for nested data
parallelism. This is one thing that DPH and ArBB have in common.

In DPH, the programmer can use parallel arrays of type [:e:]
that look similar to normal Haskell lists, but give access to data
parallel execution. The similarity to Haskell list processing doesn’t
end there. The operations on these parallel arrays are also remi-
niscent of Haskell’s normal list processing functions. For example,
mapP, unzipP and sumP are parallel versions of these well known
functions.

DPH relies on a technique called flattening to transform its
nested data parallelism into flat data parallelism. A recent article
about DPH is reference [9].

2.3 Feldspar

Feldspar is a language for Digital Signal Processing (DSP) pro-
gramming developed at Chalmers, ELTE University and Ericsson
(the telecom company) [1]. The functional while loop of Em-
bArBB is inspired by the same concept in Feldspar.

Feldspar is based on a deeply embedded core language and
implements a vector library as a shallow embedding on top of that.
This means that there are no vector specific constructs in the core
abstract syntax.

2.4 Nikola

Nikola is an embedded language for GPU programming[10], also
in Haskell. During the early phases of implementation of Em-
bArBB, the source code of Nikola was often studied for inspiration.

The embedding used in Nikola makes use of an untyped expres-
sion data structure wrapped up in phantom types, in the style of
Pan [4]. The EmbArBB embedding works in the same way. One of
the listed strengths of Nikola is the ability to generate GPU func-
tions from Haskell functions, which enables function reuse and the
ability to amortise the cost of code generation over several launches
in an easy way. The ability the generate target language function
from Haskell functions is a present in EmbArBB as well.

Nikola, like Accelerate, provides a set of higher-order functions
with general map, reduce and zipWith functionality.

2.5 Repa

Repa is a library for regular, shape polymorphic parallel arrays [8].
Repa uses a concept of delayed arrays to obtain fusion of opera-
tions, such as the typical map fusion:

map f . map g = map (f . g)

A delayed array has a representation that is quite direct to paral-
lelise; it is represented as a function from an index-space to an ele-
ment and the extents of that same index-space. Concretely:

data DArray sh e = DArray sh (sh -> e)

Parallelising the computation of such an array is done by split-
ting up the index-space over the available parallel resources of the
system. Repa does not use SIMD (vector) instructions; this is some-
thing that ArBB does and that EmbArBB gets for free.

Repa is compared to EmbArBB in the benchmarks in section 7.

3. Motivation
We have two main motivations for implementing EmbArBB.

Firstly, we are interested in exploring programming idioms
for data parallel programming in a functional setting. Embedding
ArBB gives a quick route to a platform for such exploration, with-
out too much implementation effort. This is what the “almost for
free” in the title is intended to refer to. We wish to explore ways
to make use of the fact that we have an array programming library
embedded in a sophisticated, strongly typed host language. In our
earlier work on the embedded hardware description language Lava,
we investigated various approaches to exploiting the host language
during netlist synthesis [12], and we have also experimented with
the use of search and dynamic programming in generating parallel
prefix (or scan) networks [13]. We intend to apply similar methods
to the development of data parallel programs once the EmbArBB
implementation is more complete and stable.

A second motivation is the desire to teach NESL-style data par-
allel programming in a Masters course on parallel functional pro-
gramming that has recently been introduced at Chalmers [6]. The
first instance of the course (in Spring 2012) covered Blelloch’s
NESL language, with its associated cost model [2], but did not pro-
vide any satisfactory way for the students to experience real, nested
data parallel programming. This was due not only to a lack of suit-
able hardware, but also to deficiencies in the available tools. We
used the Repa library to get flat data parallelism, but then suffered
from the lack of a built-in scan primitive (as many of Blelloch’s
NESL examples use scan). Perhaps as a result of needing scan, we
did not get good performance. We have not done enough examples
or experiments yet, but it seems to us that EmbArBB could be used
to give students an experience of real parallel programming in a
NESL-like functional language. It remains to be seen whether the
limited degree of nesting allowed in ArBB can be offset, at least

to some extent, by clever use of the host programming language
during generation of the desired abstract syntax tree.

4. Programming in ArBB
What the authors of ArBB call latent parallelism is expressed both
by using operations like scan and reduce (or fold) over vectors and
by mapping functions over collection data-types. ArBB provides
both dense and nested vectors. Dense vectors can be one, two or
three dimensional; they correspond to ordinary arrays.

Matrix-vector multiplication can be expressed in ArBB and
C++ like this:

void arbb_matrix_vector(const dense<f32, 2>& a,
const dense<f32>& x,
dense<f32>& b) {

b = add_reduce(a * repeat_row(x, a.num_rows()));
}

This function takes a dense matrix (a two dimensional array), a, and
a dense vector, x, and returns a dense vector b. It uses add reduce
and repeat row, which are built in ArBB operations. Note that
we are not provided with a general reduction operator that takes a
function as parameter, but rather with specific instances.

The matrix-vector multiplication code above is very concise,
but some further steps are necessary before it can be run on real
data. The code below shows how to set up a 4x4 scaling matrix
and a vector to multiply by that matrix using ArBB. This entails
allocating memory on the ArBB heap and copying data into it,
reminiscent of the copying of data from host to device that is
common in general purpose GPU (GPGPU) programming .

int main(void)
{
float matrix[4][4] = {{2.0,0.0,0.0,0.0},

{0.0,2.0,0.0,0.0},
{0.0,0.0,2.0,0.0},
{0.0,0.0,0.0,2.0}};

float vector[4] = {1.0,2.0,3.0,4.0};

// set up the matrix in ArBB
dense<f32, 2> a(4, 4);
range<f32> write_a = a.write_only_range();
float* a_ = &write_a[0];
memcpy(a_,matrix,16*sizeof(float));

// set up the vector in ArBB
dense<f32> x(4);
range<f32> write_x = x.write_only_range();
float* x_ = &write_x[0];
memcpy(x_, vector,4*sizeof(float));

// Room for the result
dense<f32> arbb_b(4);
const_range<f32> read_arbb_b;

call(arbb_matrix_vector)(a, x, arbb_b);
read_arbb_b = arbb_b.read_only_range();

for (int i = 0; i < 4; ++i) {
printf("%f ", read_arbb_b[i]);

}

return 0;
}

After setting up and copying the data into ArBB, the function
arbb matrix vector is called using the call command. At this

point, a number of things happen. If the function is called for the
first time, it is captured. This means that the function is run as a
C++ function, which produces an intermediate representation (IR)
of the computation (which is standard in such embeddings). For
example, if the function being captured contains a normal C++ for
loop, it will be unrolled, much in the same way as recursion in a
Haskell embedded DSL results in unrolled code. After the function
is captured, the IR is further optimised and finally executed. Com-
pilation and capture only occur the first time a function is called.
The compilation procedure is outlined in [11].

Nested vectors in ArBB allow the creation of an array of dense
vectors of varying length – giving the ability to express less regular
parallelism. There is a limit, though, in that only one level of such
nesting is allowed. Section 5.7 shows a small example that uses
this nestedness in EmbArBB to implement sparse matrix vector
multiplication. The program in ArBB itself is very similar. We note,
though, that one of the samples distributed with ArBB is also sparse
matrix vector multiplication, but implemented using dense vectors
and a function that can take sections of a vector. We will need to
experiment further with nestedness and when it should be used.

5. Programming in EmbArBB
In EmbArBB, ArBB functions are expressed as Haskell functions
on expressions (abstract syntax trees). This is standard Haskell
embedded language procedure. A function that adds a constant to
all elements of a vector is

addconst :: Num a
=> Exp a
-> Exp (DVector Dim1 a)
-> Exp (DVector Dim1 a)

addconst s v = v + ss
where
ss = constVector (length v) s

In this function (+) is used for elementwise addition of two
vectors. The function constVector is part of the EmbArBB li-
brary and creates a vector of a given length containing the same
value at each index.

EmbArBB supports one, two and three dimensional dense vec-
tors. These vectors are represented by a datatype called DVector
(for Dense Vector). DVector takes two arguments, the first speci-
fying its dimensionality and the second its payload type. Hence, an
array of 32 bit words has type DVector Dim1 Word32. The one
dimensional DVector also has the alias Vector. The type of the
addconst function above could also have been written:

addconst :: Num a
=> Exp a
-> Exp (Vector a)
-> Exp (Vector a)

The nested vectors of ArBB correspond to NVectors in Em-
bArBB.

The addconst function needs to be captured before it can be
executed. The term capture is borrowed from ArBB nomenclature
and corresponds to compiling the embedded language function into
an ArBB function. In EmbArBB, a function is captured using the
function capture; in the C++ embedding, a function is captured
when it is called for the first time. The same could have been done
in the Haskell embedding of course, but we chose to make cap-
ture explicit for simplicity. The capture function takes a Haskell
function as input and produces an opaque typed function identifier
as output. The identifier points out the function in an environment
that is managed by a monad called ArBB. To make this concrete,

1 main =
2 withArBB $
3 do
4 f <- capture addconst
5 x <- copyIn $ mkDVector
6 (V.fromList [1..10 :: Float])
7 (Z:.10)
8 r1 <- new (Z:.10) 0
9 c <- mkScalar 1

10 execute f (c :- x) r1
11 r <- copyOut r1
12 liftIO$ putStrLn$ show r

Figure 1. The code shows how to capture a function, upload data
to ArBB and how to execute the captured function.

Figure 1 shows the complete procedure from capturing to execu-
tion.

The withArBB function (line two) is the “run”-function of the
ArBB monad. It turns something of type (ArBB a) into (IO a).
This is how ArBB computations are interfaced with Haskell. A
withArBB session also sets the scope for any captured functions
or vectors created in the ArBB monad.

The result of capture addconst on line four in the code has
type

Function (BEScalar Float :- BEDVector Dim1 Float)
(BEDVector Dim1 Float)

representing a function that takes a float and a vector of floats as
input and gives a vector of floats as result. The “BE” prefixes in
those names (BEScalar,BEDvector) refers to this being vectors
and scalar that reside in the ArBB heap (Backend vectors). BEVec-
tors and Scalars are mutable and the vector used to store the re-
sult needs to be allocated by the programmer. This interface seems
rather imperative but ArBB requires output data to be placed into
an output vector of the correct size. Because of this, the options
were either to try to infer result size (which can be dependent on
the value of input data) or to have the programmer supply storage
for the result. We chose the latter, and thus also avoid additional
runtime overhead due to size inference.

Continuing with the example: the function, once captured, can
be executed on data. On line five, a DVector is copied into ArBB
using the copyIn function. A vector to hold the result is created
using the new function on line eight. The new function takes a shape
description ((Z:.10), meaning a one dimensional vector of length
10) and an element to fill the vector with initially. A scalar c is
created using mkScalar on line nine. Next, on line ten, the function
is executed by issuing

execute f (c :- x) r1

The (c :- x) is a heterogeneous list of inputs. The :- operator is
similar to normal cons (:) on Haskell lists. The output is stored in
r1. Had there been more outputs, the output list would have also
had a heterogeneous list type of the form (r1 :- ... :- rn).
If the result is a scalar, a storage location can be created using a
function called mkScalar that takes its initial value as input.

All that remains is to copy the output vector out of ArBB and
show the result; this is done on lines eleven and twelve in the figure.

In this example, we have seen all of the important parts of the
Haskell to EmbArBB interface: how embedded language functions
are compiled and executed, and how to transfer data from Haskell
into the ArBB world. The following subsections show EmbArBB
versions of some common data parallel computations.

-- Scatter values into a vector
-- resolves collisions by adding elements
addMerge :: Exp (DVector (t:.Int) USize) -- indices

-> Exp USize -- res length
-> Exp (DVector (t:.Int) a) -- src
-> Exp (DVector (t:.Int) a)

-- Reduce a vector using addition
addReduce :: Num a

=> Exp USize -- rows, cols or pages
-> Exp (DVector (t:.Int) a)
-> Exp (DVector t a)

-- Segmented version of addReduce
addReduceSeg :: Num a

=> Exp (NVector a) -- nested input
-> Exp (DVector Dim1 a)

-- Create a nested vector from a dense
applyNesting :: Exp USize -- lengths or offsets

-> Exp (DVector Dim1 USize) -- nesting
-> Exp (DVector Dim1 a)
-> Exp (NVector a)

-- Create a vector with a constant value
constVector :: Exp USize -- length

-> Exp a -- value
-> Exp (DVector Dim1 a)

-- Extract a column from a 2D vector
extractCol :: Exp USize -- col. index

-> Exp (DVector Dim2 a)
-> Exp (Vector a)

-- Fill a portion of a vector with a constant
fill :: Exp a -- fill value

-> Exp USize -- start
-> Exp USize -- end
-> Exp (DVector Dim1 a) -- dst
-> Exp (DVector Dim1 a)

-- Gather elements from a vectors
gather1D :: Exp (DVector Dim1 USize) -- indices

-> Exp a -- default
-> Exp (DVector Dim1 a) -- values
-> Exp (DVector Dim1 a)

-- Get the number of rows
getNRows :: Exp (DVector (t:.Int:.Int) a)

-> Exp USize

-- Turn a zero dimensional vector into a scalar
index0 :: Exp (DVector Z a) -> Exp a

-- Create a 2D vector by repeating a 1D vector
repeatRow :: Exp USize -- #repetitions

-> Exp (DVector Dim1 a) -- row
-> Exp (DVector Dim2 a)

-- Replace one column in a 2D vector
replaceCol :: Exp USize -- col

-> Exp (DVector Dim1 a) -- new values
-> Exp (DVector Dim2 a)
-> Exp (DVector Dim2 a)

-- Convert every element of a vector to USize
vecToUSize :: Exp (Vector a)

-> Exp (Vector USize)

Figure 2. A list of EmbArBB functions that are used in the exam-
ples with short descriptions

• ISize is an integer type used to specify for example offsets.

• USize is an unsigned integer type used for lengths or in-
dices.

• Boolean replaces the Bool type for EmbArBB programs.
The reason for this is that ArBB internally represents
booleans as 8bit words. while the Storable instance for
Bool does not.

• DVector is the type of regular shaped vectors.

• NVector is the type of irregularly shaped vectors.

Figure 3. A list of EmbArBB types with short descriptions

In the examples one can assume that following imports have
been made:

import Data.Vector as V
import Prelude as P

In this way, wherever there is potential for mixup between Em-
bArBB functions and Prelude or Data.Vector functions, these are
prefixed by either “V.” or “P.”.

5.1 Saxpy

Saxpy is a vector operation that gets its name from the description
of what it does “Single-precision Alpha X Plus Y”. There is also
a double-precision version called daxpy. Here we can use a single
source to obtain both versions:

saxpy :: Num a
=> Exp a
-> Exp (DVector Dim1 a)
-> Exp (DVector Dim1 a)
-> Exp (DVector Dim1 a)

saxpy s x y = (ss*x) + y
where
ss = constVector (length x) s

Now, capture can be used to instantiate the function at either
float or double types.

main =
withArBB $
do

f <- capture saxpy

let v1 = V.fromList [1,3..10::Float]
v2 = V.fromList [2,4..10::Float]

x <- copyIn $ mkDVector v1 (Z:.5)
y <- copyIn $ mkDVector v2 (Z:.5)

r1 <- new (Z:.5) 0

c <- mkScalar 1

execute f (c :- x :- y) r1

r <- copyOut r1

liftIO$ putStrLn$ show r

Changing Float to Double in the definitions of v1 and v2 gives
the double precision version of the function. A function needs to be
captured at every type at which it is to be used. This is because

the resulting ArBB function is not polymorphic over something
corresponding to Num types (while the embedded language function
is).

5.2 Matrix-vector multiplication

In section 4, matrix-vector multiplication was shown using the C++
ArBB interface. Here, EmbArBB is used to implement the same
function. The function definition itself is very similar to the C++
one:

matVec :: Exp (DVector Dim2 Float)
-> Exp (DVector Dim1 Float)
-> Exp (DVector Dim1 Float)

matVec m v = addReduce rows
$ m * (repeatRow (getNRows m) v)

The addReduce function takes a parameter that specifies
whether to reduce rows or columns.

The following Haskell main function completes the comparison
to the C++ version shown in the Introduction:

main =
withArBB $
do

f <- capture matVec
let m1 = V.fromList [2,0,0,0,

0,2,0,0,
0,0,2,0,
0,0,0,2]

v1 = V.fromList [1,2,3,4]

m <- copyIn $ mkDVector m1 (Z:.4:.4)
v <- copyIn $ mkDVector v1 (Z:.4)

r1 <- new (Z:.4) 0

execute f (m :- v) r1

r <- copyOut r1

liftIO$ putStrLn$ show r

The complete Haskell version of this program is slightly shorter
than the corresponding C++ version. However, the C++ version
could probably be made shorter as well; the Haskell and C++
versions must be considered similar in implementation complexity.

5.3 Matrix-matrix multiplication

The following EmbArBB implementation of matrix-matrix multi-
plication is used as a benchmark in section 7:

matmul :: Exp (DVector Dim2 Float)
-> Exp (DVector Dim2 Float)
-> Exp (DVector Dim2 Float)

matmul a b = fst $ while cond body (a,0)
where

m = getNRows a
n = getNCols b
cond (c,i) = i <* n
body (c,i) =
let mult = a * repeatRow m (extractCol i b)

col = addReduce rows mult
in (replaceCol i col c, i+1)

This example uses a while loop. In the C++ embedding of
ArBB, the programmer has the option of using a C++ while loop

or a special while loop. The normal C++ while loop unrolls at
capture time; the while is kept by ArBB and corresponds to an
ArBB loop. The two loops differ in the kinds of values on which
they can depend. The C++ loop can only depend on C++ values,
so the number of iterations in a normal while loop must be known
at capture time. All of these concepts have Haskell counterparts.
The while loop used in the example corresponds to the while
loop and will remain in the generated ArBB code; it can depend on
ArBB values at runtime. Haskell recursion is used to get the kind
of unrolling that one gets by using a C++ while loop.

The EmbArBB while loop takes three parameters, a condition,
a body and an initial state. In every iteration of the loop, the body
is applied to the state and the condition checked.

5.4 Histogram

The histogram of a grayscale image contains the frequency with
which each shade occurs in the image. In this example, the image
used represents the shade of each pixel with a single byte, so that
256 different shades are possible. An array of length 256 is created
to hold at index i the number of occurrences of the shade i in the
image. In essence, this is an array of buckets.

histogram :: Exp (DVector Dim2 Word8)
-> Exp (Vector Word32)

histogram input = addMerge (vecToUSize flat) 256 cv
where
flat = flatten input
cv = constVector (r * c) 1
r = getNRows input
c = getNCols input

The addMerge operation takes a vector of inputs, a vector of
indices and finally a size (specifying the result size). Elements from
the input vector (cv in the example) are placed into the result at the
index specified at the same location in the indices vector. Elements
placed at the same index are added together. Here, the input vector
contains all ones, while the image is cast into a vector of indices.
The result is that index i of the output vector contains the number
of times shade i appears in the image. The histogram computation
becomes very concise through the use of the addMerge operation.

The code below creates the image shown in figure 4. It takes as
input a vector on frequencies and outputs a two dimensional vector,
a grayscale image.

histImage :: Exp (Vector Word32)
-> Exp (DVector Dim2 Word8)

histImage input = fst $ while cond body (cvn,0)
where
cond (img,i) = i <* n
body (img,i) = (replaceCol i col’ img,i+1)

where
val = input ! i
col = extractCol i img
col’ = fill black 0 n col
n = 255 - scale 255 m val

n = length input
cv = constVector (n*n) white
cvn = setRegularNesting2D n n cv
m = index0 (maxReduce rows input)
black = 0
white = 255

Figure 4. The righ-hand image visualises the frequency with
which different shades of gray occur in the left-hand one.

5.5 Sobel edge detection filter

Sobel edge detection is an example of a stencil computation over
an array. At each element of the array, a computation is performed
that depends on that element and on elements close by. Which of
the nearby elements to use, and how much they influence the result
is typically described using a matrix (in the two dimensional case)
called the stencil. Below are two stencils used in the sobel edge
detection filter:

Gx =

⎡
⎣
−1 0 1
−2 0 2
−1 0 1

⎤
⎦ Gy =

⎡
⎣
−1 −2 −1
0 0 0
1 2 1

⎤
⎦

In ArBB, the map operation gives the programmer a way to im-
plement stencil computation. It takes a function and a vector on
which to apply the function at each element. Inside the function
being mapped, the programmer may use a set of getNeighbor func-
tions to access nearby elements.

The elements used by the stencils are kept (in the form of
coordinates relative to the centre point of the matrix) in two Haskell
lists. This is an example of how host language (Haskell) features are
used as a kind of scripting aid.

s1, s2 :: [(Exp ISize,Exp ISize)]
s1 = [(1,1),(0,1),(-1,1),(1,-1),(0,-1),(-1,-1)]
s2 = [(1,1),(1,0),(1,-1),(-1,1),(-1,0),(-1,-1)]

The actual weights are placed in a separate list.

coeffs :: [Exp Float]
coeffs = [-1,-2,-1,1,2,1]

The following functions implement the stencil computation part
of the program using the elements pointed out by s1 and s2 to-
gether with the weights in coeffs. Each of the six neighbours is
multiplied by the appropriate weight. Haskell’s foldl function is
used to sum up the values, to give the result for the location in ques-
tion. Using a Haskell fold means that the summation is unrolled.

gx :: Exp Word8 -> Exp Float
gx x = P.foldl (+) 0

$ P.zipWith (*) [toFloat (getNeighbor2D x a b)
/ 255
| (a,b) <- s1] coeffs

gy :: Exp Word8 -> Exp Float
gy x = P.foldl (+) 0

$ P.zipWith (*) [toFloat (getNeighbor2D x a b)
/ 255
| (a,b) <- s2] coeffs

Figure 5. The image on the right shows the result of applying the
sobel edge detection filter to that on the left.

The helper functions convertToWord8 and clamp take care of
converting floats between 0 and 1 to bytes between 0 and 255, and
of clamping floating point values into the 0 to 1 range.

convertToWord8 :: Exp Float -> Exp Word8
convertToWord8 x = toWord8 $ (clamp x) * 255

clamp :: Exp Float -> Exp Float
clamp x = max 0 (min x 1)

The complete kernel, the program that is to be executed at every
index of the image, is given below. The earlier parts are brought
together into a function that transforms one Word8 into another.

kernel :: Exp Word8 -> Exp Word8
kernel x = convertToWord8 $ body x
where

body x = sqrt (x’ * x’ + y’ * y’)
where

x’ = gx x
y’ = gy x

In order to execute the kernel, an ArBB map is used.

sobel :: Exp (DVector Dim2 Word8)
-> Exp (DVector Dim2 Word8)

sobel image = map kernel image

The implementation of sobel is pleasingly simple and concise
in this setting. Despite the fact that this is a small example, the
value of being able to use Haskell lists and operations is already
becoming obvious.

5.6 Image filtering

The blur operation, which is a kind of spatial linear filter, shows
another way to implement a stencil operation. The mapStencil
function used is a composite function in the EmbArBB library; it is
not provided as a primitive from the ArBB VM.

blur :: Exp (DVector Dim2 Word8)
-> Exp (DVector Dim2 Word8)

blur image = vec2DToWord8 (res ‘div‘ all16)
where

all16 = constVector2D (getNRows image)
(getNCols image)
16

res = mapStencil (Stencil [1,2,1
,2,4,2
,1,2,1] (Z:.3:.3))

image’

image’ = vec2DToWord32 image

In Repa, similar mapStencil functionality is present but using
Template Haskell to give a safer way to specify the stencil. In our
version there is no protection agains mischievous stencil specifica-
tion. This guarantees only that if the programmer says the stencil
is two dimensional then it can only be applied to two dimensional
vectors. Applying similar Template Haskell based extension here
as well is probably quite easy now that Repa has shown how.

5.7 Sparse matrix multiplication

A sparse matrix can be represented by three vectors, one (cidx)
containing column indices, one (offsets) indicating indices in the
vector of values at which the first non-zero element of each row
appears, and one containing the values themselves. This is known
as the Compressed Sparse Row (CSR) format. Given such a matrix
and a dense vector, the relevant elements of the dense vector can be
gathered into a new vector using the column indices. The resuting
vector is multiplied pointwise by the vector of non-zero values from
the sparse matrix. All that remains, then, is to divide the result
into rows and sum each one. The offsets vector points to where
the division should happen. The code in EmbArBB is as follows:

smvm :: Exp (Vector USize)
-> Exp (Vector USize)
-> Exp (Vector Float)
-> Exp (Vector Float)

smvm mval cidx os vec = addReduceSeg nps
where
ps = mval * gather1D cidx 0 vec
nps = applyNesting offsets os ps

The multiplication acts pointwise on the elements of vals
and the vector (of the same length) containing relevant elements
of the dense vector (produced using gather1D). The function
applyNesting produces a nested vector of rows. The function
addReduceSeg sums each of the rows (or segments) in that ar-
ray, producing the non-zero elements of the result vector. Note that
there is irregular data parallelism here because the rows may have
different lengths. We would hope to get parallelism both in the indi-
vidual summations and between summations. This is a well known
algorithm that can be traced back to Blelloch [2].

6. Implementation
EmbArBB is a deeply embedded language. There is a constructor
for every operation that ArBB can perform. A deep embedding is
useful when there is need to apply optimisations or transformations
to the AST before executing the operations. However, EmbArBB
currently relies entirely on ArBB to perform optimisations to the
program. The only optimisation performed on the EmbArBB side
is sharing detection. Detecting sharing reduces the number of calls
into the ArBB C library. Should we add a GPU backend to Em-
bArBB, further GPU specific optimisations of the AST will likely
become necessary.

6.1 Vectors

EmbArBB has support for one, two and three dimensional dense
vectors, represented by a datatype called DVector.

import qualified Data.Vector.Storable as V

data DVector d a
= Vector {vectorData :: V.Vector a,

vectorShape :: d}

The payload data in a DVector is stored in a vector from the
Data.Vector library. There is also a d parameter that specifies the
shape of the DVector.

The d parameter is used for a type level representation of the
dimensionality of a vector, as in the Repa library [8]. The dimen-
sionality is encoded using the following types together with the Int
type.

data a :. b = a :. b
infixl :.

data Z = Z

The dimensions zero to three are represented as follows:

type Dim0 = Z
type Dim1 = Dim0 :. Int
type Dim2 = Dim1 :. Int
type Dim3 = Dim2 :. Int

For example in the reduction functions provided by EmbArBB
the output vector is of a dimensionality one less than the input
vector used. Below is the type of addReduce to illustrate this.

addReduce :: Num a
=> Exp USize
-> Exp (DVector (t:.Int) a)
-> Exp (DVector t a)

A somewhat unfortunate side effect of this is that currently
EmbArBB has two kinds of scalars, Exp (DVector Dim0 a) and
Exp a. The result of reducing a one-dimensional vector is a zero-
dimensional vector. An operation called index0 converts from
zero-dimensional vectors to scalars.

Irregular container, in ArBB called Nested vectors, are repre-
sented in EmbArBB by the type NVector. Currently there are no
versions of the copyIn, copyOut or new functions for nested vec-
tors. The programmer must transfer dense vectors into the ArBB
heap and then apply nesting to them as part of the computation to
perform thereupon. This means that having a concrete representa-
tion for a NVector is currently not useful. In the hope of being able
to implement some of the transfer functions, even without direct
support from the ArBB VM, we represent NVectors as a vector of
dense data together with a vector containing segment lengths.

data NVector a =
NVector { nVectorData :: V.Vector a

, nVectorNesting :: V.Vector USize}

As part of the interface between Haskell and EmbArBB there
are also mutable vectors, of a type called BEDVector. These are
vectors that reside in the ArBB heap and are represented only by an
integer identifier with which the actual data can be accessed from
ArBB. These are used to store the inputs and outputs of calls to
execute on a captured function.

data BEDVector d a =
BEDVector { beDVectorID :: Integer

, beDVectorShape :: d}

New BEVectors are created using the function new. The func-
tion copyIn copies a DVector from Haskell to the ArBB heap and
there is a function copyOut to retrieve data from ArBB.

6.2 The language

The EmbArBB language is implemented as a set of library func-
tions, operating on an expression datatype:

data Expr = Lit Literal
| Var Variable

| Index0 Expr

| ResIndex Expr Int

| Call (R GenRecord) [Expr]
| Map (R GenRecord) [Expr]

| While ([Expr] -> Expr)
([Expr] -> [Expr])
[Expr]

| If Expr Expr Expr
| Op Op [Expr]

Most of the ArBB functionality is taken care of by the Op construc-
tor. The datatype Op used to represent operations has over 120 con-
structors, so only a selection is shown in figure 6. Having all these
120+ operations taken care of by one constructor in the expression
datatype simplifies the implementation of the backend, since all of
these operations are handled in a very similar way. The few remain-
ing special ArBB capabilities such as loops, and function mapping
and calling are handled by their own cases, discussed below. There
are also some implementation specific details that result in their
own constructors in the Expr type, namely Index0 for turning a
zero dimensional DVector into a scalar, and resIndex that helps
with implementing operations that have more than one result. An
example of an such an operation is SortRank, which returns both
the sorted result of an input vector and a vector of indices that spec-
ifies a permutation that would have sorted the input vector.

The Expr type also has constructors for the call and map func-
tionality. To call a function means to apply it to input data. The map
operation specifies elementwise application of a function over vec-
tors, like NESL’s apply-to-each [2], so it corresponds to Haskell’s
map and zipWith. Both Call and Map take a (R GenRecord).
This is inspired by the delayed expressions that enable the imple-
mentation of vapply in Nikola [10]. The R is the reification monad
used to create DAGs (directed acyclic graphs) from embedded lan-
guage functions. These DAGs are part of a GenRecord that con-
tains all information that the ArBB code generator needs to gener-
ate the ArBB function.

The While loop is represented using higher order abstract syn-
tax, that is using functions to represent the condition and body. The
state is represented by a list of expressions; this needs to be gen-
eralised somewhat in order to support loops with general tuples in
the state. Something more structured than a list is needed for this.

The expression data type used in EmbArBB is untyped (not
using a GADT). A typed interface to the language is supplied
using the same phantom types method as used in pan [4] and many
other Haskell embedded languages since then. The choice to use an
untyped Expr datatype was based on the wish to keep the backend
(ArBB code generation) as simple as possible.

-- Phantom types
type Exp a = E Expr

As an example, the operation addReduce, which reduces a
vector across a specified dimension, is implemented as follows in
the EmbArBB library:

addReduce :: Num a
=> Exp USize
-> Exp (DVector (t:.Int) a)
-> Exp (DVector t a)

addReduce (E lev) (E vec) =
E $ Op AddReduce [vec,lev]

data Op =
-- elementwise and scalar
Add | Sub | Mul | Div | Max | Min

| Sin | Cos | Exp
...

-- operations on vectors
| Gather | Scatter | Shuffle | Unshuffle
| RepeatRow | RepeatCol | RepeatPage
| Rotate | Reverse | Length | Sort
| AddReduce | AddScan | AddMerge
...

Figure 6. ArBB scalar, elementwise and vector operations, which
are handled by the Op constructor in the Expr datatype. This is
just a selection from the more than 120 different operations ArBB
provides.

6.3 Interfacing with Haskell and Code generation

The interface between ArBB and Haskell consists of the DVector,
NVector, BEDVector and BEScalar types, the capture, and
execute functions, and the ArBB monad with its withArBB “run”-
function. This section describes what happens when the program-
mer captures an embedded language function, and when execute
is called on a captured function.

Capture and execution of functions takes place in the ArBB
monad, which manages state of type ArBBState:

data ArBBState =
ArBBState

{ arbbFunMap :: Map.Map Integer
ArBBFun

, arbbVarMap :: Map.Map Integer
VM.Variable

, arbbUnique :: Integer }

type ArBBFun = (VM.ConvFunction, [Type], [Type])

This state contains a map from function names to ArBB func-
tions and their input and output types. The VM.ConvFunction is
how ArBB functions are represented by the ArBB-VM bindings.
There is a map from vector and scalar IDs to their correspond-
ing ArBB variables. The last item in ArBBState is an Integer that
is used to generate new function names and variable IDs as the
programmer captures more functions or creates new arrays on the
ArBB heap. Now, the ArBB monad is defined as:

type ArBB a = StateT ArBBState VM.EmitArbb a

VM.EmitArbb is also a concept from the virtual machine bind-
ings. It manages low-level functions (the VM.ConvFunction func-
tions) and implements an interface to the low level ArBB-VM API.
EmitArBB is the ArBB code generating monad from the arbb-vm
bindings. For more or less everything that can be done with the
arbb-vm bindings, there is a function of the form

f :: arg1 -> ... argn -> EmitArBB out

For example, for generating an operation node (such as +) in the
ArBB IR, there is a function of type

op_ :: Opcode
-> [Variable]
-> [Variable]
-> EmitArbb ()

while the function for generating a while loop in the ArBB IR has
type

while_ :: (EmitArbb Variable)
-> EmitArbb a
-> EmitArbb a

The details of the translation are omitted for brevity, as the ap-
proach is standard.

When a function f of type

Exp tin1 -> ... -> Exp tinN -> Exp tout

is captured, it is first applied to expressions that represent variable
names. For each of the inputs, (tin1,..,tinN), a variable is
created. The result is an expression (or expressions) representing
the function f. On this expression, sharing detection is performed,
and a directed acyclic graph (DAG) is created. The method of
sharing detection used is based on the StableNames method [5].

Then, the code generation is implemented using a very direct
approach; no extra optimisations or transformations are applied.
This is a reasonable choice, since the whole point of ArBB is that
the built-in JIT compiler knows and performs architecture specific
optimisations. Sharing detection on the Haskell side makes sense
because code generation for each node in the DAG results in at least
two calls into the ArBB-VM API, which means going through the
FFI and incurring the associated cost. Detecting the sharing already
in the host language should give a smaller workload for the ArBB
JIT compiler, thus reducing the time spent on JITing. It remains
to be seen how important JIT cost will be in practice, however, as
we expect it to be amortised over a large number of executions of
the JITed code. We will need to conduct experiments with a suite
of larger examples in order to decide if sharing detection on the
Haskell side is worthwhile.

Applying capture to a function gives an object of type

type FunctionID = Integer

data Function i o = Function FunctionID

The i and o parameters to Function represent the input and
output types of the captured function. As an example, capturing

f :: Exp (DVector Dim1 Word32)
-> Exp (DVector Dim1 Word32)

results in an object of type

Function (BEDVector Dim1 Word32)
(BEDVector Dim1 Word32)

This is just phantom types placed over a function name that is just
a String, but it does offer a typed interface for the capture and
execute functions.

The execute function that launches a captured function takes a
Function i o object, inputs of type i and outputs of type o. The
function name is looked up in the ArBB environment (the monad).
The inputs and outputs are also looked up in the environment and
then the function is executed.

execute :: (VariableList a, VariableList b)
=> Function a b -> a -> b -> ArBB ()

execute (Function fid) a b =
do

(ArBBState mf mv _) <- S.get
case Map.lookup fid mf of
Nothing -> error "execute: Invalid function"
(Just (f,tins,touts)) ->

do
ins <- vlist a
outs <- vlist b

liftVM$ VM.execute_ f outs ins

The vlist function goes through the heterogeneous list of in-
puts or outputs and looks up each of the elements in the arbbVarMap;
the result is a Haskell list of VM.Variable. The function VM.execute
is part of the virtual machine API bindings, and corresponds di-
rectly to a C function in that library.

7. Benchmarks
In this section, matrix multiply, Sobel edge detection and an image
blur algorithm are used as benchmarks in comparing sequential
C++ code, ArBB, EmbArBB, and a Haskell library called Repa.
Repa provides regular shape polymorphic arrays; it permits parallel
execution of the resulting code, making use of multiple cores, but
not of SIMD parallelism [8]. The Repa versions of the benchmarks
used in the comparison come from the repa-examples-3.2.1.1
package on Hackage.

The processor used for all measurements is a four core Intel
Core-I7 930 at 2.80Ghz.

7.1 matrix-matrix multiplication

The matrix multiplication benchmarks consist of square matrices of
sizes 256x256, 384x384, 512x512, 640x640 and 768x768. Figure 7
shows the runtimes for the four implementations being compared,
using the best settings in numbers of cores or threads found by pre-
vious experiments. The sequential C++ and ArBB versions come
directly from the ArBB distribution.

7.2 Sobel edge detection

In the Repa Sobel code, only the applications of the stencils are
timed. This part is defined as follows

gradientX :: Monad m => Image -> m Image
gradientX img

= computeP
$ forStencil2 (BoundConst 0) img

[stencil2| -1 0 1
-2 0 2
-1 0 1 |]

gradientY :: Monad m => Image -> m Image
gradientY img

= computeP
$ forStencil2 (BoundConst 0) img

[stencil2| 1 2 1
0 0 0

-1 -2 -1 |]

A corresponding EmbArBB code to use in this comparison was
implemented.

gx :: Exp (DVector Dim2 Float)
-> Exp (DVector Dim2 Float)

gx = mapStencil
(Stencil [-1,0,1

,-2,0,2
,-1,0,1] (Z:.3:.3))

gy :: Exp (DVector Dim2 Float)
-> Exp (DVector Dim2 Float)

gy = mapStencil
(Stencil [1, 2, 1

, 0, 0, 0
,-1,-2,-1] (Z:.3:.3))

We compare these two examples, in which only the applications
of the stencils are timed; we also time the complete Sobel imple-
mentation in EmbArBB (shown in section 5.5). The Sobel bench-
mark is run om images of sizes 256x256, 512x512, 1024x1024,

Figure 7. Shows in a log-scale the execution time of matrix-matrix
multiplication comparing ArBB, EmbArBB, Repa and sequential
C++. The ArBB and EmbArBB lines are indistinguishable.

Figure 8. Shows in a log-scale the execution time of a key part of
the sobel edge detection program. The chart compares EmbArBB
to REPA and also displays for reference the execution times of
the full sobel program as implemented in section 5.5, called Em-
bArBB* in the chart.

2048x2048 and 4096x4096. Again, Figure 8 shows that EmbArBB
performs well. As we had expected, the Haskell embedding, once
a function is captured, seems to impose little or no overhead com-
pared to the C++ implementation.

7.3 Blur

The blur benchmark is performed using an algorithm similar to
the example code in section 5.6 but with the following changes.
The image used is in RGB color. This means that the stencil needs
to be applied three times, once to each color plane. Also the image
is converted into a form where each color intensity is represented
by a Double.

Here as well as in the sobel case the Repa code from
repa-examples-3.2.1.1 times only the actual computational
kernel (the application of the stencils) including conversion to
Doubles. The corresponding EmbArBB part was broken out and
timed separately as well. The chart 9 shows comparison of runtime
for the key part of the computation but also adds the full execution
time of the EmbArBB version (called EmbArBB* in the chart).
The full EmbArBB implementation of the blur filter including
conversion into Doubles, image decomposition into R,G and B
planes, application of the stencil and reconstructing a planar RGB
image in the end.

Figure 9. Shows the execution time of a 7x7 blur filter applied to
images of various sizes.

256x256 512x512 1024x1024 2048x2048
Repa 3x3 12 27 72 190
EmbArBB 3x3 1 2 20 77
EmbArBB* 3x3 2 9 33 153
Repa 5x5 13 32 87 254
EmbArBB 5x5 1 5 28 105
EmbArBB* 5x5 3 12 46 204
Repa 7x7 20 48 119 368
EmbArBB 7x7 2 10 46 176
EmbArBB* 7x7 4 17 63 270

Table 1. The table shows execution times (rounded to ms) for
various image and stencil size combinations in both Repa and
EmbArBB.

7.4 About the numbers

This section presents three benchmarks, two of which compare
to Repa only and one that compares to Repa, ArBB in C++ and
sequential C++ code. In all of these comparisons, JIT compilation
time is excluded.

The comparison to ArBB in C++ shows that the Haskell em-
bedding does not impose any extra overhead (at least not in this
benchmark); this matched our expectations. More comparisons to
the C++ version of ArBB are needed to confirm these first impres-
sions about overhead in the Haskell embedding. If future directions
of EmbArBB development develop techniques (such as size infer-
ence) that impose a runtime overhead, then the comparison in exe-
cution to the C++ version becomes more important.

The comparisons to Repa all show that the performance of Em-
bArBB compares favourably. This can be attributed to the way in
which ArBB’s developers at Intel have incorporated vectorisation
and threading.

8. Future Work
The C++ embedding of ArBB allows for dense containers of structs
in some cases. The operations on vectors supplied by the ArBB
virtual machine are exclusively over vectors of scalar types. So
the C++ embedding must be performing a AOS to SOA (Array of
Struct to Struct of Array) transformation. The Haskell embedding
does not implement any similar transformation. This is an impor-
tant addition that would for example make implementing functions
on complex numbers easier.

We stress that this paper presents first steps in the implemen-
tation of EmbArBB. Our benchmarks, while promising, are very
limited. We must devote effort to developing a suite of interesting,
larger data parallel programs for use in benchmarking EmbArBB.
It is particularly important to explore the nested vectors, and the ef-

fects of the limitation to one level of nesting in ArBB. Those parts
of ArBB that support nested vectors seem to be less well developed
than those supporting dense vectors, as evidenced by the sample
applications distributed with ArBB, none of which uses nesting.
We expect ArBB to become more complete, and perhaps we will be
able to contribute interesting examples both in the C++ and Haskell
embeddings.

Having exercised EmbArBB more thoroughly, we will assess
the results of the benchmarking and experiments with program-
ming idioms, and decide on future research directions. We expect
to focus on ways to provide users with an interface that is more
functional in style than the current C++ oriented one.

9. Conclusion
We have shown that Intel’s Array Building Blocks (ArBB) provides
an interface that is well suited to functional programming. The
programs are quite close to mathematical specifications, in the
style of NESL [2]. We have only just completed the embedding
of the part of ArBB that deals with nested vectors, and we need
to tackle many more case studies. In our case studies using dense
vectors, ArBB seems to do a good job of efficiently using parallel
hardware resources – both cores and vector units. By embedding
ArBB, we can, with little implementation effort, provide quite
an attractive data parallel programming language in Haskell. Our
benchmarks are preliminary and small, but they show very good
performance. Once we have completed the ArBB embedding, we
will have an interesting platform on which to experiment with
and develop new programming idioms that exploit the fact that
we have a data parallel programming language embedded in an
expressive, strongly typed host language. We feel that work in this
area (as distinct from implementation methods) is overdue. We
would be happy to receive suggestions for interesting case studies
or collaborations.

Acknowledgments
Svensson was first introduced to ArBB while on a three month
internship at Intel during 2011. Thanks go to Ryan R. Newton for
inspiring supervision during that internship.

This research has been funded by the Swedish Foundation for
Strategic Research (which funds the Resource Aware Functional
Programming (RAW FP) Project) and by the Swedish Research
Council.

References
[1] E. Axelsson, K. Claessen, G. Dévai, Z. Horváth, K. Keijzer, B. Ly-

ckegård, A. Persson, M. Sheeran, J. Svenningsson, and A. Vajda.
Feldspar: A domain specific language for digital signal processing algo-
rithms. In 8th ACM/IEEE International Conference on Formal Methods
and Models for Codesign (MEMOCODE 2010), pages 169–178. IEEE
Computer Society, 2010.

[2] G. Blelloch. Programming Parallel Algorithms. Communications of
the ACM, 39(3), 1996.

[3] M. M. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and V. Grover.
Accelerating Haskell Array Codes with Multicore GPUs. In Proceedings
of the sixth workshop on Declarative aspects of multicore programming,
DAMP ’11, pages 3–14, New York, NY, USA, 2011. ACM. ISBN 978-
1-4503-0486-3. URL http://doi.acm.org/10.1145/1926354.
1926358.

[4] C. Elliott, S. Finne, and O. de Moor. Compiling embedded languages.
Journal of Functional Programming, 13(2), 2003. URL http:
//conal.net/papers/jfp-saig/.

[5] A. Gill. Type-Safe Observable Sharing in Haskell. In Proceedings of
the 2009 ACM SIGPLAN Haskell Symposium, 09/2009 2009. URL
http://www.ittc.ku.edu/csdl/fpg/sites/default/files/
Gill-09-TypeSafeReification.pdf.

[6] J. Hughes and M. Sheeran. Teaching parallel functional programming
at Chalmers. In presentation at Trends in Functional Programming in
Education, Workshop associated with Conf. on Trends in Functional
Programming, St. Andrews, 2012.

[7] Intel. Intel(r) Array Building Blocks Virtual Machine Specification.
http://software.intel.com/sites/whatif/arbb/arbb_vm.
pdf.

[8] G. Keller, M. M. Chakravarty, R. Leshchinskiy, S. Peyton Jones,
and B. Lippmeier. Regular, shape-polymorphic, parallel arrays in
haskell. In Proceedings of the 15th ACM SIGPLAN international
conference on Functional programming, ICFP ’10, pages 261–272,
New York, NY, USA, 2010. ACM. ISBN 978-1-60558-794-3. URL
http://doi.acm.org/10.1145/1863543.1863582.

[9] B. Lippmeier, M. M. T. Chakravarty, G. Keller, R. Leshchinskiy,
and S. P. Jones. Work Efficient Higher-Order Vectorisation. http:
//www.cse.unsw.edu.au/~chak/papers/replicate-tr.pdf,
2012. ICFP’12.

[10] G. Mainland and G. Morrisett. Nikola: Embedding Compiled
GPU Functions in Haskell. In Proceedings of the third ACM Haskell
symposium, pages 67–78. ACM, 2010. ISBN 978-1-4503-0252-4. URL
http://doi.acm.org/10.1145/1863523.1863533.

[11] C. J. Newburn, B. So, Z. Liu, M. McCool, A. Ghuloum, S. D. Toit,
Z. G. Wang, Z. H. Du, Y. Chen, G. Wu, P. Guo, Z. Liu, and D. Zhang.
Intel’s array building blocks: A retargetable, dynamic compiler and
embedded language. In Proceedings of the 2011 9th Annual IEEE/ACM
International Symposium on Code Generation and Optimization, CGO
’11, pages 224–235, Washington, DC, USA, 2011. IEEE Computer
Society. ISBN 978-1-61284-356-8.

[12] M. Sheeran. Generating fast multipliers using clever circuits. In Int.
Conf. on Formal Methods in Computer Aided Design (FMCAD), volume
3312 of LNCS, pages 6–20, 2004.

[13] M. Sheeran. Functional and dynamic programming in the design of
parallel prefix networks. J. Funct. Program., 21(1):59–114, 2011.

[14] B. J. Svensson and R. Newton. Programming Future Parallel
Architectures with Haskell and ArBB. http://faspp.ac.upc.
edu/faspp11/pdf/faspp11-final12.pdf, 2011. Presented at
the workshop: Future Architectural Support for Parallel Programming
(FASPP), in conjuction with ISCA ’11.

