
Simple and Compositional Reification
of Monadic Embedded Languages

Functional Pearl

Josef Svenningsson Bo Joel Svensson
Chalmers University of Technology

{josefs,joels}@chalmers.se

Abstract
When writing embedded domain specific languages in Haskell, it is
often convenient to be able to make an instance of the Monad class
to take advantage of the do-notation and the extensive monad li-
braries. Commonly it is desirable to compile such languages rather
than just interpret them. This introduces the problem of monad reifi-
cation, i.e. observing the structure of the monadic computation. We
present a solution to the monad reification problem and illustrate it
with a small robot control language. Monad reification is not new
but the novelty of our approach is in its directness, simplicity and
compositionality.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages; D.3.4 [Programming Languages]: Processors—Code gen-
eration

Keywords Compiling, embedded language, reification, monads

1. Introduction
Benny is a computer science student working in a project involv-
ing programming robots in a low-level imperative language. How-
ever, Benny has a budding interest in functional programming us-
ing Haskell and has read “The Haskell school of expression” [6].
He gets the idea to implement a language for robot control em-
bedded in Haskell. Benny realises that the capabilities of the robot
hardware are very similar to those of the robots that Hudak evalu-
ates graphically in a grid world. There is however a very important
difference; the embedded language needs to be compiled into some
form that is understood by the robot.

Guided by the capabilities of the target robot, Benny designs
an API for robot programming. The robot can perform operations
such as move that steps the robot forward and turn left and right.
The robot also has the capability to execute program loops and
conditionals and it has a forward facing sensor with which it can
query the world.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICFP ’13, September 25–27,2013, Boston, MA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2326-0/13/09. . . $15.00.
http://dx.doi.org/10.1145/2500365.2500611

The API that Benny designs is simple:

move :: Program ()
turnLeft :: Program ()
turnRight :: Program ()
sensor :: Program Bool
cond :: Program Bool

-> Program ()
-> Program ()
-> Program ()

while :: Program Bool
-> Program ()
-> Program ()

Now, Benny wants to express robot programs using the Haskell
do notation. The motivation behind this is the imperative look and
feel of the operations he identified and the potential to use all the
control structures in the Control.Monad library. For this, a Monad
instance is needed.

To be able to create a first-order representation of a computation
described using monads, Benny needs to solve the problem of
reifying monads. This is the story of how Benny came up with a
particularly simple solution to this problem.

1.1 Example programs
Benny is quite happy with his language design and decides to write
some programs to try it out.

The first program is called sMove, which implements a safe
move operation. This operation can be executed by the robot even
though it is facing an obstacle, without risk of harming robot or
obstacle.

sMove :: Program ()
sMove = cond sensor turnRight move

The second program moves the robot forward until it stands
directly in front of an obstacle such as a wall.

moveToWall :: Program ()
moveToWall = while ((liftM not) sensor) move

Based on these examples, Benny is quite satisfied with the
design of his language and turns to implementing it.

1.2 Implementation and data structures
Enthused by the prospect of compiling these programs to the target
language and seeing some robot action, Benny goes to work on the
data structures.

Since the language is going to be compiled, Benny realises that
the booleans in his language cannot be regular Haskell booleans.
The booleans needs to be replaced by boolean typed expressions.

type Name = String

data BoolE = Lit Bool
| Var Name
| (:||:) BoolE BoolE
| (:&&:) BoolE BoolE
| Not BoolE

Following this, the operations that should go into the Program
data type feel straightforward.

data Program a where
Move :: Program ()
TurnLeft :: Program ()
TurnRight :: Program ()
Sensor :: Program BoolE
Cond :: Program BoolE

-> Program ()
-> Program ()

While :: Program BoolE
-> Program ()
-> Program ()

Benny continues by naively adding constructors for Return and
Bind to the Program data type.

data Program a where
...
Return :: a -> Program a
Bind :: Program a

-> (a -> Program b)
-> Program b

Then he writes down the Monad instance.

instance Monad Program where
return = Return
(>>=) = Bind

Proud of his accomplishments, Benny sends his Haskell mod-
ule in an email to Prof. Björn. Benny knows that Björn is teaching
an introductory Haskell course and should be able to provide feed-
back.

1.3 Problem statement
Meanwhile in Professor Björn’s Office

Prof. Björn notices an email from Benny in his inbox and opens it.

Dear Professor Björn

I am CS student working in a robot control project.
Usually, we program our robots in C but I have developed
an interest in Haskell programming and thought it’d be
natural to try implementing an EDSL. I know you teach an
FP course and thought I would ask for your input. Attached
to this mail is a file containing an outline of the data types I
want to use. Does this look sensible to you?

Thank you
Benny

Prof. Björn opens the attachment and takes a look at the data
type. He particularly notices the constructors Return and Bind
and the Monad instance. He shakes his head at Benny’s naiveté and
writes an email back:

Hello Benny

I’m afraid your implementation of the monadic primi-
tives can never work. The constructor Return can take any
arbitrary value that has nothing to do with the language
you’re designing. These values may be strings, binary
trees or higher-order functions from zygomorphisms to
histomorphisms. The same problem goes for Bind; it has to
be able to handle arbitrary values. It cannot possibly work!
This is a very difficult problem and such a naive solution is
bound to fail.

Prof. Björn
Dept. of Computer Science and Engineering
Chalmers University of Technology

While waiting for feedback from Björn, Benny has carried on
trying to implement a compiler for his language.

When Björn’s email does arrive, Benny is confused. He feels he
has already managed to compile the Program data type into a rep-
resentation closer to that which is executed by the robot hardware.

He writes an apprehensive email back to Prof. Björn.

Hello Prof. Björn

Thanks for your feedback. But I think it does work!
Attached to this email you find a file containing my attempt
at compiling the Program data type into a representation
closer to that which is executed by our robots.

I have also attached two example programs that you can
compile and then run in the graphical simulator (see fig-
ure 1)

Benny

2. Compilation of the monadic robot EDSL
Björn receives Benny’s latest email

Björn looks through the Compiler module and finds a data type
describing a first-order representation of the robot language.

data Prg = PMove
| PTurnRight
| PTurnLeft
| PSensor Name
| PCond BoolE Prg Prg
| PWhile Name Prg Prg
| PSeq Prg Prg
| PSkip
| PAssign Name BoolE

From the Prg data type, Björn presumes that the PSeq construc-
tor will be the result of compiling Bind and that PSensor binds a
variable which can be used in PAssign and PWhile. The conclu-
sion is that the representation looks sensible, but he is very inter-
ested in seeing the Program a -> Prg transformation. The com-
pile function assumes a splittable name supply with the interface
described in figure 2.

spiralIn :: Int -> Program ()
spiralIn 0 = return ()
spiralIn n = do

replicateM_ 2 $ do
replicateM_ n move
turnLeft

spiralIn (n-1)

followWall :: Program ()
followWall =

while (return true) $
cond checkLeft sMove $

do turnLeft
move

checkLeft :: Program BoolE
checkLeft = do

TurnLeft
s <- Sensor
TurnRight
return s

Figure 1. The spiralIn and followWall programs sent from Benny to Björn in an email

newNameSupply :: NameSupply
split2 :: NameSupply ->

(NameSupply,NameSupply)
split3 :: NameSupply ->

(NameSupply,NameSupply,NameSupply)
supplyValue :: NameSupply -> Int

Figure 2. The interface of the splittable name supply used in the
implementation of the compile functions

runCompile :: Program a -> Prg
runCompile prg = snd $ compile s prg

where
s = newNameSupply

compile :: NameSupply -> Program a -> (a, Prg)
compile s Move = ((),PMove)
compile s TurnRight = ((),PTurnRight)
compile s TurnLeft = ((),PTurnLeft)
compile s Sensor = (Var nom,PSensor nom)

where
v = supplyValue s
nom = "v" ++ show v

compile s (Cond b p1 p2) =
((),bp ‘PSeq‘ PCond b’ p1’ p2’)

where
(s1,s2,s3) = split3 s
(b’,bp) = compile s1 b
(a1,p1’) = compile s2 p1
(a2,p2’) = compile s3 p2

compile s (While wp prg) = ((),PWhile nom nwp prg’)
where

(s1,s2,s3) = split3 s
(b,wp’) = compile s1 wp
(c,prg’) = compile s2 prg
nom = "v" ++ (show $ supplyValue s3)
nwp = (wp’ ‘PSeq‘ PAssign nom b)

compile s (Return a) = (a,PSkip)
compile s (Bind pa f) = (b, prg1 ‘PSeq‘ prg2)

where
(s1,s2) = split2 s
(a,prg1) = compile s1 pa
(b,prg2) = compile s2 (f a)

Björn studies the code in disbelief, saves the module and tries
it out on some examples. The code does indeed seem to work and
Björn’s disbelief is replaced with enthusiasm; this appears to be a
simple and convenient way to reify monads.

Björn sends an email to Benny, inviting him to a meeting.

3. Meeting in Björn’s office
BJÖRN: Hello, come in.
BENNY: Thanks.

BJÖRN: So, about this robot language! You gave me a bit of a
surprise there. I was entirely sure that what you did was
impossible.

BENNY: Oh, But I just did the first thing that came to mind.
There was no deep thought behind it.

BJÖRN: The problem is [Björn approaches his whiteboard] when you
try to reify the bind constructor of your representation.

Bind :: Program a -> (a -> Program b) -> Program b

BJÖRN: You need to come up with an element of type a to pass
to the function.

BENNY: I didn’t realise it was problem.
BJÖRN: But it is! Your solution is that you are careful about the

return types of all operations in your language. They are
either of unit type or some type which can be guaranteed to
be reified. [Björn scribbles on his whiteboard]

Move :: Program ()

Sensor :: Program BoolE

BJÖRN: This is different from how such constructs are normally
implemented. If I had implemented the language I would
have given Sensor the type Program Bool so that I could
write an evaluator of type Program a -> a, or perhaps
Program a -> M a. But then adding a monad to the lan-
guage and reifying it becomes much harder.

BENNY: Yes, now that you mention it, I have seen that style used
for defining DSLs.

BJÖRN: Having constructors like Sensor return BoolE instead
of Bool is a crucial part of why your method works. It
allows the compile function to be written in such a way that
it can generate the return values statically and pass them as
arguments to Bind. In a sense you’re doing evaluation at the
same time as compilation. There’s just enough evaluation to
remove the monadic constructs. It’s a very neat trick!

BENNY: Thank you.
BJÖRN: Another way to think about your trick is that you are

using a writer monad to evaluate your language and produce
the first-order syntax tree as a side effect. Then you could
have used a state monad transformer on top of that for the
fresh name supply. But that’s a stylistic choice.

BENNY: You seem to be making a big deal out of this. I just did
what I thought was the most straightforward thing to do.

3.1 Related work
BJÖRN: Others have solved this problem before but I have never

seen a solution as simple as yours and was quite surprised
that it works. For example, in this paper [Björn shows Benny
the paper [7]], the authors use a continuation monad to be able
to reify the monadic constructs of their language. If they

were to implement your robot language they would use the
same Program data type as you do. However, they would
not expose that to the user of the language. Instead they
would create a type like this:

data P a =
P (forall r. ((a -> Program r) -> Program r))

BJÖRN: The type P is a continuation monad so the monad in-
stance comes naturally. Operations on P are defined using
Bind like this:

while :: P BoolE -> P () -> P ()
while c b =

P (\k -> While (runP c) (runP b) ‘Bind‘ k)

cond :: BoolE -> P () -> P () -> P ()
cond b t e =

P (\k -> Cond b (runP t) (runP e) ‘Bind‘ k)

runP :: P a -> Program a
runP (P f) = f (\a -> Return a)

BENNY: I see. Continuations are quite magical to me. I could
never have come up with that technique. How do they deal
with transforming higher-order programs to first-order pro-
grams?

BJÖRN: That’s a good question. The transformation to first or-
der programs is dealt with by a library called Syntactic. It is
described in a separate paper [Björn pulls out the paper [2] from
a pile of papers]. It’s hard to do an apples to apples compari-
son between Syntactic and your technique. Syntactic solves
a much bigger problem than what you’re doing so it is nat-
urally more complicated.

BENNY: Ok.
BJÖRN: There are also the papers [5, 8] which solves the prob-

lem in a manner that is more similar to yours. They also
have explicit constructors Bind and Return but give them
a slightly different type which guarantees that all applica-
tions of Bind are normalised, so that all Binds are right-
associated. Unexpectedly, this allows them to make in-
stances of the Monad class but at the same time constrain
the arguments of Bind. Their technique is more compli-
cated than yours, but just as with the case of Syntactic, they
solve a more general problem.
However, there is one particular thing I like about your
technique.

BENNY: What is that?
BJÖRN: Your technique is compositional.

3.2 Compositionality
BENNY: What does it mean that my technique is compositional?
BJÖRN: The compile function is compositional because there is

one case for each constructor and each case deals with ex-
actly one constructor. In particular, the constructors Return
and Bind are handled completely separately from all other
language constructs.

BENNY: And that is good ?
BJÖRN: Absolutely! Compositional definitions are nice because

they imply that there is no weird semantical interaction
between the constructs as they are defined independently.
But it also means that it should be possible to factor out
the constructors Return and Bind into a data type of their
own. Then, it could be combined with other data types using
techniques like Data Types á la Carte [9] or CompData [3].
This way, a language can be designed piece by piece.You
can then select the set of pieces required for a particular
task or that suits a particular brand of robots.

BENNY: Oh! Interesting.

3.3 The Monad laws
BJÖRN: There is still one problem with your method though.
BENNY: What’s that?
BJÖRN: When we make instances of the monad class we expect

certain laws to hold. [Björn writes the laws on his whiteboard]

m >>= return = m
return a >>= f = f a
(m >>= f) >>= g = m >>= \a -> f a >>= g

BJÖRN: These laws clearly don’t hold for your instance. Take
the first law for instance. The left hand side will have extra
Bind and Return constructors compared to the right hand
side.

BENNY: Hmmm. I hadn’t really thought about that. But adding
an extra return at the end of a computation shouldn’t make
a difference in my implementation.

BJÖRN: So, you’re saying that your implementation actually
obeys the first monad law?

BENNY: Well, at least when I run my programs I will never see
any difference between the left hand side and the right hand
side.

BJÖRN: Aha, so what you’re saying is that if we compare the
semantics of programs rather than comparing the programs
themselves then we get some useful laws. [Björn scribbles some
new laws on the whiteboard]

eval (m >>= return) = eval m
eval (return a >>= f) = eval (f a)
eval ((m >>= f) >>= g) = eval (m >>= \a -> f a >>= g)

BJÖRN: These laws are morally the same as the monad laws,
especially if we don’t let the user of the robot language ever
compare terms in the language.

BENNY: Yes, that captures my intuition very well.
BJÖRN: Ok, good. Can you prove these equations?
BENNY: No, I don’t have any experience proving programs cor-

rect.
BJÖRN: Well, it shouldn’t be that difficult. Let me see what I can

come up with.
[Björn scribbles frenetically on a piece of paper for a couple of min-
utes.]
Aha! Your technique is quite general. It can reify mon-
ads into any kind of structure which is a monoid. Return
translates into the monoid unit and bind translates into the
monoid operation.
For example, in your compilation function it is important
that the semantics of PSkip is the identity of the semantics
of PSeq and that PSeq is associative.

BENNY: Ok, that sounds good. I take that as meaning the method
is quite general?

BJÖRN: Yes, requiring a monoid is a very mild restriction.
Look at the time! This was interesting, I got quite carried
away. We must round off but please get back to me if you
make any more progress on your robot language.

BENNY: Thanks very much for your time. Bye!
BJÖRN: Thank you.

4. Composing reifiable monadic languages
At Benny’s computer

Benny was really intrigued by the idea of compositionally build-
ing embedded languages and after having read the papers Björn
showed him he decides to try his own approach to the problem.

data (e1 :+: e2) x a
= InjL (e1 x a) | InjR (e2 x a)

infixr :+:

class sub :<: sup where
inj :: sub x a -> sup x a

instance f :<: f where
inj = id

instance (f :<: (f :+: g)) where
inj = InjL

instance (f :<: h) => (f :<: (g :+: h)) where
inj = InjR . inj

Figure 3. Data types from CompData for composing languages.

Inspired by CompData he starts out by adding the code in figure
3 to his file. The data type :+: is used for composing languages,
and the :<: typeclass provides coercions so that the programmer
doesn’t have to worry about using the right sequence of the InjL
and InjR constructors to inject terms into the composed language.

Benny then starts to add data types for the different language
constructs in his robotic language. The different operations for the
robot are pleasingly easy to add.

data MoveOp x a where
Move :: MoveOp x ()

data TurnOp x a where
TurnLeft :: TurnOp x ()
TurnRight :: TurnOp x ()

data SensorOp x a where
Sensor :: SensorOp x BoolE

data CondOp x a where
Cond :: x BoolE -> x () -> x () -> CondOp x ()

data WhileOp x a where
While :: x BoolE -> x () -> WhileOp x ()

In order to test out these definitions, Benny next turns to im-
plementing a compiler. He realises that the compiler now needs to
be implemented as a class with one instance per compilable sub-
language.

runCompile :: Compile f => f a -> Prg
runCompile prg = snd $ compile s prg

where s = newNameSupply

class Compile f where
compile :: NameSupply -> f a -> (a, Prg)

instance Compile (MoveOp x) where
compile _ Move = ((), PMove)

instance Compile (TurnOp x) where
compile _ TurnLeft = ((), PTurnLeft)
compile _ TurnRight = ((), PTurnRight)

instance Compile (SensorOp x) where
compile s Sensor = (Var nom, PSensor nom)

where v = supplyValue s
nom = "v" ++ show v

instance Compile x => Compile (CondOp x) where
compile s (Cond b p1 p2) =

((),bp ‘PSeq‘ PCond b’ p1’ p2’)
where (s1,s2,s3) = split3 s

(b’,bp) = compile s1 b
(a1,p1’) = compile s2 p1
(a2,p2’) = compile s3 p2

instance Compile x => Compile (WhileOp x) where
compile s (While wp p) = ((),PWhile nom nwp p’)

where (s1,s2,s3) = split3 s
(b,wp’) = compile s1 wp
(c,p’) = compile s2 p
nom = "v" ++ (show $ supplyValue s3)
nwp = wp’ ‘PSeq‘ PAssign nom b

instance (Compile (e1 f), Compile (e2 f))
=> Compile ((e1 :+: e2) f) where
compile s (InjL a) = compile s a
compile s (InjR a) = compile s a

But when Benny tries to add the monadic operations he finds
that they are quite resistant to a compositional treatment. After
much struggle he comes up with the following data type definition:

data Mops f x a where
Oper :: f x a -> Mops f x a
Return :: a -> Mops f x a
Bind :: x a -> (a -> x b) -> Mops f x b

The recursion is provided by another data type that Benny calls
MonadExp.

data MonadExp f a = In (Mops f (MonadExp f) a)

Benny thinks of the MonadExp data type as a representation of
a monadic language parameterised over operations Oper that are
constructed using the constructors of some type f. The monad in-
stance for this data type is only slightly more complicated com-
pared to the earlier, non-compositional setting.

instance Monad (MonadExp f) where
return = In . Return
(>>=) a f = In (Bind a f)

Benny can now write the type of his robotic language, built from
independent pieces. It is noteworthy that the monadic expressions
have to be added on top of all the other language constructs.

type Robot = MonadExp (MoveOp :+: TurnOp :+:
CondOp :+: WhileOp :+:
SensorOp)

Given the definition of his language Benny can now write an
injection function which helps writing smart constructors for all
the different robot operations.

inject :: (sub :<: f)
=> sub (MonadExp f) a
-> MonadExp f a

inject a = In $ Oper $ inj $ a

move :: (MoveOp :<: f) => MonadExp f ()
move = inject Move

turnL :: (TurnOp :<: f) => MonadExp f ()
turnL = inject TurnLeft

turnR :: (TurnOp :<: f) => MonadExp f ()
turnR = inject TurnRight

sensor :: (SensorOp :<: f) => MonadExp f BoolE
sensor = inject Sensor

cond :: (CondOp :<: f)
=> MonadExp f BoolE
-> MonadExp f () -> MonadExp f () -> MonadExp f ()

cond b p1 p2 = inject $ Cond b p1 p2

while :: (WhileOp :<: f)
=> MonadExp f BoolE
-> MonadExp f () -> MonadExp f ()

while pb p = inject $ While pb p

Things are starting to fall into place. The only remaining bit is
to complete the compiler for monadic expressions.

instance (Compile x, Compile (f x))
=> Compile (Mops f x) where
compile s (Oper o) = compile s o
compile s (Return a) = (a,PSkip)
compile s (Bind m f) = (b,prg1 ‘PSeq‘ prg2)

where (s1,s2) = split2 s
(a,prg1) = compile s1 m
(b,prg2) = compile s2 (f a)

instance (Compile (f (MonadExp f)))
=> Compile (MonadExp f) where
compile s (In a) = compile s a

Now, Benny has all the functions he needs to compile a simple
example program.

test1 :: Robot ()
test1 = do

move
turnL
move
turnL

Compiling the program above gives the expected result.

PSeq PMove (PSeq PTurnLeft (PSeq PMove PTurnLeft))

Benny decides to contact Björn again to show him what he has
done.

Dear Prof. Björn

I have attached a file which demonstrates that the monadic
constructs can be factored out and compiled separately, just
as you suggested.

Thanks
Benny

Benny,

Fascinating! You’ve managed to factor out the monadic
operations so that they can be compiled once and for all.
Users of your library don’t have to be concerned at all with
the semantics of bind and return. Very nice!

I note that the data type for monadic operations cannot be
composed as freely as the other operations, but instead has
to be applied separately as a final step. Your solution is very
similar to how variable binding is handled in the Syntactic
library [1].

Prof. Björn
Dept. of Computer Science and Engineering
Chalmers University of Technology

5. Epilogue
This paper shows a simple method of implementing monadic ED-
SLs. It shows a naïve approach to the monad reification problem
which has the additional benefit of being compositional. In section
4, the language is reimplemented in an extensible way and the com-
pile function is shown explicitly to be compositional by treating sub
parts of the language separately.

The example language used throughout the story is small and
quite limited. But the technique presented in this paper does scale
up to larger languages and more complicated language constructs.
It is currently used in the implementation of Obsidian, an EDSL
for general purpose GPU programming [4]. Obsidian has language
constructs which are considerably more advanced than the robot
language is this paper. One example is the sequential for-loop
which is higher-order (the type parameter t is not relevant to the
current discussion):
SeqFor :: EWord32 -> (EWord32 -> Program t ())

-> Program t ()

There does, however, seem to be restrictions on what kind of lan-
guage constructs the reification technique presented in this paper
can deal with. For instance, the functions from the MonadPlus class
has resisted our attempts at adding them to an EDSL in the same
way as we’ve added Return and Bind. The exact limits of the ex-
pressiveness of our method is currently unknown to us.

Acknowledgments
We would like to thank Emil Axelsson for very valuable help during
the implementation of the methods used in this pearl. We thank
Mary Sheeran for suggesting the names Björn & Benny. The ICFP
reviewers provided many helpful suggestion which has improved
the paper.

This research has been funded by the Swedish Foundation for
Strategic Research (which funds the Resource Aware Functional
Programming (RAW FP) Project) and by the Swedish Research
Council.

References
[1] E. Axelsson. Syntactic. http://hackage.haskell.org/package/syntactic.
[2] E. Axelsson. A generic abstract syntax model for embedded languages.

In Proceedings of the 17th ACM SIGPLAN international conference on
Functional programming, pages 323–334. ACM, 2012.

[3] P. Bahr and T. Hvitved. Parametric compositional data types. In MSFP,
pages 3–24, 2012.

[4] K. Claessen, M. Sheeran, and B. J. Svensson. Expressive Array Con-
structs in an Embedded GPU Kernel Programming Language. In Pro-
ceedings of the 7th workshop on Declarative aspects and applications
of multicore programming, DAMP ’12, pages 21–30, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1117-5.

[5] A. Farmer and A. Gill. Haskell DSLs for interactive web ser-
vices. In 1st International Workshop on Cross-model Language De-
sign and Implementation, Sep 2012. (published on workshop website,
http://workshops.inf.ed.ac.uk/xldi2012/).

[6] P. Hudak. The Haskell School of Expression: Learning Functional
Programming through Multimedia. Cambridge University Press, New
York, NY, USA, 1999. ISBN 0521643384.

[7] A. Persson, E. Axelsson, and J. Svenningsson. Generic monadic con-
structs for embedded languages. In Proceedings of the 23rd interna-
tional conference on Implementation and Application of Functional
Languages, IFL’11, pages 85–99, Berlin, Heidelberg, 2012. Springer-
Verlag.

[8] N. Sculthorpe, J. Bracker, G. Giorgidze, and A. Gill. The constrained-
monad problem. In Proceedings of the 18th ACM SIGPLAN interna-
tional conference on Functional programming. ACM, 2013.

[9] W. Swierstra. Data types à la carte. Journal of Functional Program-
ming, 18(4):423, 2008.

