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1 Introduction

Obsidian is a language for data-parallel programming embedded in Haskell.
As the Obsidian programs are run, C code is generated. This C code can be
compiled for an NVIDIA 8800 series GPU (Graphics Processing Unit), or for
other high-end NVIDIA GPUs. The idea is that the style of programming
used in Lava for structural hardware design [2] can be applied to data-parallel
programming as well. Therefore Obsidian programmers use combinators that
have much in common with those used in Lava. However, where Lava gener-
ates the netlist for a fixed-size circuit, Obsidian can generate GPU programs
that are parametric in input size.

2 GPGPU and Data-parallel programming

GPUs designed to produce the fast-paced graphics in modern games are now
interesting for general purpose computations as well. GPUs are designed
for graphical computations of highly data-parallel nature. In comparison to
CPUs (Central Processing Units), GPUs devote more of their transistor bud-
get to computation, where CPUs need to devote much effort to extracting
instruction-level parallelism [14]. The GPGPU (General-Purpose Compu-
tations on the GPU) field is driven by the desire to use the computational
power of GPUs for general-purpose computations.

GPUs have been successfully applied to several areas such as physics simula-
tion, bioinformatics and computational finance [15]. Sorting is another area
where there are success stories [18, 12].



2.1 The NVIDIA 8800 GPU

The NVIDIA 8800 GPU is described as “a set of SIMD multiprocessors” in
the CUDA Programming Manual [7]. Each of the multiprocessors in the set
consists of 8 SIMD processing elements and the high end GPUs in the 8800
series have 16 such multiprocessors, giving a total of 128 processing elements.

On each of these groups of 8 SIMD processing elements a number of threads
can be executed. Such a group of threads is called a thread block. Each of
the threads in a block is executing an instance of the same program. Up to
512 threads can be executing within a block. A block is divided into smaller
groups that are executed in a SIMD fashion; these groups are called warps
[7]. This means that within a warp, all threads are progressing in lock-step
through the program. There is a scheduler that periodically switches warps.
However, between warps; SIMD fashion of execution is not maintained, thus
thread synchronisation primitives are needed.

3 Programming in Obsidian

Obsidian can be used to describe computations on arrays. Currently there
are some limitations on what computations can be described. As an example
the computations must be length homogeneous, that is the input and output
arrays must be equal in length. Also programs are currently limited to work-
ing only with integers. Another limitation is that currently the generated
code can operate on arrays of length up to 512 elements. This is because the
generated code is run in one block of threads, with at most 512 threads, and
each thread is only operating on one element of the array.

The first example program reverses an array and adds one to each element:
rev_incr = rev ->- fun (+1)

Here rev is an index permutation and fun applies a function to each element
of the array. The combinator ->- composes its two arguments into one
operation, by feeding the outputs of the first into the inputs of the second.
The rev_incr program can be run on the GPU using the execute function
or it can be run on the CPU using the emulate function:

*0bsidian> emulate rev_incr [1..10]
[(11,10,9,8,7,6,5,4,3,2]



The functions execute and emulate both take an Obsidian program and a
Haskell list as arguments. The C program is generated and the Haskell list
is turned into a C array. The resulting C program is then passed to the
NVIDIA compiler and turned into GPU code or, in the emulation case, into
code for the CPU. The compiled program is executed and the result read
back into the Haskell system and presented.

The C code generated from the previous rev_incr program looks as follows:

__global__ static void rev_incr(int *values, int n)

{

extern __shared__ int shared[];
int *source = shared;

int *target = &shared[n];

const int tid = threadldx.x;

int *tmp;

source[tid] = values[tid];

__syncthreads () ;

target[tid] = (source[((n - 1) - tid)] + 1);
__syncthreads () ;

tmp = source;

source = target;

target = tmp,

__syncthreads() ;
values[tid] = sourcel[tid];

In this program, the general structure of a program generated by Obsidian
is visible. First the array is loaded into shared memory. This is followed by
a CUDA __syncthreads() statement making sure the entire array is loaded
into the shared memory. When the shared memory is set up, the computation
described in the Obsidian program commences. The generated C code then
ends with another __syncthreads() and the storing of the computed results
into the array.

An Obsidian program will bear much resemblance to the corresponding Lava
program. In some cases the Lava and Obsidian descriptions will be identical.
As an example, here is the description of the shuffle exchange network:

shex n f = rep n (riffle ->- evens f)



In the definition of shex, the combinators rep and evens are used along with
the index permutation riffle. rep repeats a program a given number of
times and evens applies a two-input two-output function to each even num-
bered input and its direct neighbour. Figure 1 shows a visual representation
of the shuffle exchange network.
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Figure 1: Shuffle exchange network

In Lava as well as Obsidian, shex declared above defines the shuffle exchange
network. However, the above program will generate a GPU program which
is not parametric in the length of the input array, much as Lava generates a
netlist of fixed size. This can be fixed by using a different repeat combinator
called repE that takes an expression as argument instead of an integer:

pshex f arr = let n = log2i (len arr)
in repE n (riffle ->- evens f) arr

This parametric shuffle exchange network will work for any array of length
a power of 2. Both rep and repE result in a for loop in the generated C
program.

The following example shows the kind of C code that is generated from an
Obsidian program using the combinator repE. The example program reverses
an array as many times as the array is long and hence it is the identity on
even length arrays while it reverses arrays of odd length.

revs arr = let n = len arr
in repE n rev arr



The code generated from the example above looks as follows:

__global__ static void revs(int #*values, int n)

{
extern __shared__ int shared[];
int *source = shared;
int *target = &shared[n];

const int tid = threadldx.x;

int *tmp;
source[tid] = values[tid];
__syncthreads() ;

for (int i0 = 0;(i0 < n);i0 = (10 + 1)){
target[tid] = source[((n - 1) - tid)];
__syncthreads() ;
tmp = source;
source = target;
target tmp;

}

__syncthreads() ;
values[tid] = source[tid];

In Lava, it is common to define circuits recursively. Here is an example
showing a butterfly network:

bfly 1 £
bfly n £

£
ilv (bfly (n-1) f) ->- evens f

Figure 2 shows the butterfly network (which forms the merger in Batcher’s
well-known bitonic sort [1]). At the moment there is no good way of dealing
with programs such as bfly, in Obsidian. Defining an Obsidian function
recursively can lead to C programs with deeply nested conditionals, which
is very bad for the performance on the target platform. A way to deal with
recursive structures is definitely needed and will be explored as future work.

Since we cannot at the moment generate code for recursive structures, the
second example program will be a periodic sorter, instead of a recursive one.
A periodic sorter works by repeatedly applying a so-called periodic merger
to the input. The first component needed is a two-sorter. A two-sorter, here
called cmpSwap, is a two-input two-output function that sorts its two inputs
onto the outputs:
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Figure 2: Butterfly network

cmpSwap op (a,b) = ifThenElse (op a b) (a,b) (b,a)
Now the shuffle exchange network can be used to define a bitonic merger:
bmergeIt = pshex (cmpSwap (<*))

For a given component, such as cmpSwap, the functional behaviour of the shuf-
fle exchange network is equivalent to that of the butterfly described above.
This can be shown by induction, see for example reference [17]. An earlier
Lava paper also showed how to exploit the zero one principle in automatic
proofs about fixed-size sorting networks [6]. Here, we use that idea (and
Lava) to show that the bitonic merger and the merger made using the shuffle
exchange network have identical behaviour for 8 inputs. The following prop-
erty states that using the the component cmpSwapB, which is a two-sorter
on boolean values, the shuffle exchange network and the butterfly network
produce the same output given the same input:

prop_shex_bfly =
forAll (list 8) $ \xs —>
shex 3 cmpSwapB xs <==> bfly 3 cmpSwapB xs

Now this can be verified using Lava and SMV:
Main> smv prop_shex_bfly

Smv: ... (t=0.01system) \c
Valid.



Below are two test runs using bmergeIt. The first input shown is a bitonic
sequence (with first half increasing and second half decreasing,) resulting in
sorted output. The second input is not a bitonic sequence and the result
remains unsorted.

*0Obsidian> execute pbmergelIt [1,3,5,7,8,6,4,2]
[1,2,3,4,5,6,7,8]

*Obsidian> execute pbmergelIt [1,7,4,2,6,8,3,5]
[1,2,3,774,5,6)8]

The next question is how to make a periodic merger. Composing several
bitonic mergers in sequence does not give a sorter (as the reader might like to
verify). However, Dowd et al have not only introduced the periodic balanced
merger, but also shown how it relates to the shuffle exchange (or omega)
network [8].From the 7 permutation that they introduce, we can derive a
related permutation, here called taul, that when composed with a bitonic
merger gives a network that behaves identically to the balanced periodic
merger.! Figure 3 shows the permutation defined by taul schematically.

The taul index permutation is defined as follows:

taul = unriffle ->- one rev

Figure 3: Index permutation defined by taul

Combining taul and bmergelt results in a merger that has the same be-
haviour as the balanced periodic merger [8]. Figure 4 shows this merger.

dmergelt = taul ->- bmergelt
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Figure 4: Periodic merger

The sorter called iterative vsort is a periodic sorter made from this merger.
It is implemented by repeatedly applying dmergeIt to the input array.

vsortIt arr =
let n = log2i (len arr)
in (repE n dmergelt) arr

*0bsidian> execute vsortIt [8,1,4,2,3,6,7,5]
[1,2,3’4’5,6,7’8]

This section showed how programs are written using Obsidian and also what
the generated C code looks like.

4 Results

The experiements shown in this section was performed using an earlier version
of Obsidian. In that version, a single Obsidian sync point resulted in two
__synchthreads() in the generated code. The figures presented here are
obtained using the following hardware:

CPU: Intel Core 2 Duo 2,4GHz
GPU: NVIDIA 8800 GTS 1.2GHz

!Thanks to Eva Suci (Berrgen) for pointing out that Dowd et al contained exactly the
information we needed to be able to make a completely iterative description of a periodic
sorter



The dataset used in the tests was 288MB of random data. This dataset was
split into batches of 512 32bit elements. Each batch of 512 elements was then
sorted individually. Figure 5 shows the running time of a number of sorters
generated from Obsidian descriptions as well as a sorter running on the CPU
and one implemented directly in CUDA. The GPU sorters are running on one
of the multiprocessors, using 8 SIMD processing elements. All running times
where obtained using the Unix time command. Below are short descriptions
of all the sorters used in the comparison:

bitonicCPU is an implementation of bitonic sort for the CPU. The imple-
mentation is adapted from one shown in [16].

sortOET Odd Even Transposition sort, is a periodic sorter with depth n.

vsortlt is similar to the sorter described previously, but it is optimized using
tables that represent the taul permutation. For 2" inputs it has depth
n2

vsortlt2 is the same sorter as the above, but with an extra sync inserted
into its shuffle exchange network.

vsortHO is a hand optimised version of vsort. This version is actually quite
different from the different versions of vsort generated by Obsidian. In
it each swap operation is done by a single thread.

bitonicSort is the implementation of bitonic sort supplied by the CUDA
SDK. For 2" inputs it has depth n(n + 1)/2.

The chart in figure 5 shows that it is possible to generate a sorter using
Obsidian that is close in performance to its hand optimised counterpart.
The difference in performance between the very similar sorters vsortlt and
vsortlt2 is a result of the much less complicated expressions in the latter.

The most efficient sorter in the comparison is the CUDA Bitonic sort. The
difference in running time between bitonicSort and vsortlt2 is explained by
the difference in depth between them. The sorter called wvsortlt2 is deeper
and therefore slower. For example, for 512 inputs wvsortlt2 has depth 81
while bitonicSort has depth 45. This indicates that the generated code is
acceptably efficient.
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Figure 5: Running time measurements using one block

5 Implementation of Obsidian

Using Obsidian it is possible to describe operations on arrays. To represent
an array in Obsidian the type Arr a is used:

data Arr a = Arr (IxExp -> a, IxExp)

An array in Obsidian is a tuple of an indexing function and an expression
representing the length of the array. There are a number of helper functions
for working with arrays, mkArray, len and !, for creating new arrays, getting
the length of a given array and indexing in an array. These functions are
mostly used inside of the library and not by the application writer.

One of the basic operations on arrays provided by Obsidian is the rev func-
tion. Its use has been shown in the previous section about programming. In
the library rev is implemented as follows:

rev :: Arr a > W (Arr a)
rev arr =
let n = len arr
in return $ mkArray (\ix -> arr ! ((n - 1) - ix)) n



This function takes an array and returns a new one with the indexing function
transformed. The type of rev is monadic, the monad W is a variant of the
Writer monad with functionality added for generating loop variables. All
Obsidian functions are monadic for consistency even though a function such
as rev makes no use of the functionality the W monad provides.

To be able to generate C Code from an Obsidian program, a representation
of C code is at certain points written into the W monad. We call these points
sync points. These sync points are expressed in Obsidian using the sync
function:

sync :: Syncable a => Arr a -> W (Arr a)

When a sync is reached an object of type IxExp -> AbsC is written into the
W Monad. This function is later applied to an index expression representing
a thread’s thread Id. The result, AbsC, of this application is then used to
generate the CUDA C code.

A sync point can be inserted into a program as follows, using the shuffle
exchange network example from earlier:

shex n f = rep n (riffle ->- sync ->- evens f)

The operations before and after the sync are now sequenced in the generated
code and no longer composed into one operation executed in parallel on the
target platform. In some cases this insertion of an extra sync can have
beneficial effect on the performance of the generated code. This is probably
due to the simpler expressions returned by sync. Perhaps this effect will
diminish when we later introduce optimisation of the generated expressions.
Currently no optimisation of the generated code is performed; this will be
explored as future work.

Let us return to the rev_incr example from the previous section. When
passing the program rev_incr to emulate or execute, a sync is added to
it. So in reality the rev_incr program is defined as:

rev_incr2 = rev ->- fun (+1) ->- sync

When using execute or emulate the two programs rev_incr and rev_incr2
are the same. Each of the execute and emulate functions analyses its input
and decides whether or not to insert a sync statement.



Sync points can also be added automatically in the combinators rep and
repE. This is essentially making the program rep 3 rev and rep 3 (rev
->- sync) equivalent.

To generate the C code from an Obsidian program the first step is to apply
the Obsidian program to a symbolic array defined as follows:

symArray :: Arr (Exp Int)
symArray = (\ix -> (index (variable
variable ‘‘n’’ Int)

4

‘source’’ Int) ix),

If all goes well an object of type IxExp -> AbsC is created. This object is
applied to an index expression representing thread id:

threadID = variable ‘‘tid’’ Int

The AbsC type describes the abstract syntax of a subset of C. For example
it contains for loops, if statements, variable declarations and assignments.
From this representation a CUDA C source file is generated.

6 Related Work

This project touches a number of different areas, such as embedded lan-
guages, data-parallel programming and the GPGPU area.

Lava is an example of an embedded language written in Haskell. It is
from Lava that the programming style for Obsidian is derived. In Lava
combinators are used to describe hardware [2].

Pan is an embedded language for image synthesis developed by Conal Elliot.
Because of the computational complexity of image generation, C code
is generated. This C code can then be compiled by an optimising
compiler. Pan is described in the paper [9]. Many ideas from the paper
“Compiling Embedded Languages”, describing the implementation of
Pa,n were used in the implementation of Obsidian [11].

The two languages above are those that had a more direct impact on this
project. The programming style using combinators has much in common
with Lava, while the implementation is in debt to Pan.



NESL is a functional data-parallel language developed at Carnegie Mellon
university. NESL offers a kind of data-parallelism known as nested
data-parallelism. Nested data-parallelism allows a parallel function to
be applied over nested data structures, such as arrays of arrays, in par-
allel. NESL is compiled into a intermediate language called VCode that
in turn can be used to generate code for numerous parallel architecture
[3]. NESL is described in [4].

Data Parallel Haskell takes the ideas from NESL and incorporates them
into the Glasgow Haskell Compiler. Data Parallel Haskell adds a new
built-in type of parallel arrays to Haskell. Data parallel programs are
expressed as operations on objects of this type. The implementation
of Data Parallel Haskell is not complete, but is showing promise [5].

In both NESL and Data Parallel Haskell, the data-parallel programming
model is implemented in a functional setting. Both implement nested data
parallelism.

PyGPU is a language for image processing embedded in Python. PyGPU
uses the introspective abilities of Python and is in that way bypassing
the need to implement new loop structures and conditionals for the
embedded language. In Python it is possible to access the bytecode of
a function and from that extract information about loops and condi-
tionals [13]. Programs written in PyGPU can be compiled and run on

a GPU.

Vertigo is another embedded language by Conal Elliot. Vertigo is a language
for 3D graphics that targets the DirectX 8.1 shader model. Vertigo can
be used to describe geometry, shaders and to generate textures. Each
sublanguage is given formal semantics [10]. From programs written in

Vertigo assembly language programs are generated for execution on a
GPU.

Like Obsidian, PyGPU and Vertigo generate code that can be run on GPUs.
Though PyGPU and Vertigo are aimed at graphics applications, not GPGPU
applications as Obsidian.

7 Future Work

Currently the generated code operates on array with a maximum length of
512 elements. Breaking this barrier in combination with exploiting the full



GPU is high priority for future work.

Even though the results show that the generated code is reasonably efficient,
it must be said that implementing the efficient sorter presented in the results
demdanded much care in choosing what combinators to use and exactly how
they should be implemented. Optimising the generated code might result
in less work needed from the application implementor in order to assure
efficiency. At the moment no optimisation of the generated code is performed.
There are a number of techniques for optimising expressions similar to those
generated by Obsidian in “Compiling Embedded Languages” [11].

Recursive Obsidian functions are not recommended, as the expressions gen-
erated by such functions tend to be large. Because of this, Obsidian is lacking
some expressive power. In the future some control structure to replace re-
cursion is needed. A possible approach is to use combinators that capture
common recursive patterns, such as a divide-and-conquer combinator.

Another possible path to investigate in the future is nested data parallelism.
Nested data parallelism allows the implementation of divide-and-conquer al-
gorithms [4]. Perhaps this would offer a solution to the previously stated
shortcoming as well. It looks as though a limited form of nested data par-
allelism could be implemented rather easily using the “block of threads”
structure supported by CUDA. However, that direct approach would proba-
bly mean that the kinds of parallel functions that can be applied to a nested
data structure are limited.
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