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Abstract
Graphics Processing Units (GPUs) are powerful computing devices
that with the advent of CUDA/OpenCL are becomming useful for
general purpose computations. Obsidian is an embedded domain
specific language that generates CUDA kernels from functional de-
scriptions. A symbolic array construction allows us to guarantee
that intermediate arrays are fused away. However, the current ar-
ray construction has some drawbacks; in particular, arrays cannot
be combined efficiently. We add a new type of push arrays to the
existing Obsidian system in order to solve this problem. The two
array types complement each other, and enable the definition of
combinators that both take apart and combine arrays, and that result
in efficient generated code. This extension to Obsidian is demon-
strated on a sequence of sorting kernels, with good results. The
case study also illustrates the use of combinators for expressing the
structure of parallel algorithms. The work presented is preliminary,
and the combinators presented must be generalised. However, the
raw speed of the generated kernels bodes well.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages; Concurrent, distributed, and parallel languages; D.3.4
[Programming Languages]: Processors—Code generation

General Terms Languages, Algorithms, Performance

Keywords Arrays, Data parallelism, Embedded Domain Specific
Language, General Purpose GPU programming, Haskell

1. Introduction
Graphics Processing Units (GPUs) are parallel computers with
hundreds to thousands of processing elements. The CUDA and
OpenCL languages make available the power of the GPU to pro-
grammers interested in general purpose computations. In CUDA
and OpenCL, the programmer writes kernels, Single Program Mul-
tiple Data (SPMD) programs that are executed by groups of threads
on the available processing elements of the GPU.

CUDA and OpenCL are general purpose programming lan-
guages, mirroring the increased capabilities of a modern GPU to
target that domain. However, these languages lack compositional-
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ity. Also, being based in C/C++ means that the core idea in a pro-
gram may not be easily visible.

1.1 Embedded DSLs for GPGPU programming
We are aiming for a GPU programming language that is more
concise than mainstream languages such as CUDA and OpenCL.
Obsidian is a domain specific embedded language (DSEL) imple-
mented in Haskell. When an Obsidian program is run, a representa-
tion of the program is created as a syntax tree. For more information
on EDSL implementation see [9]. The program representation gen-
erated when running an Obsidian program is compiled into CUDA
code. We are also working on an OpenCL backend.

Our approach is different from that of other Haskell DSELs tar-
getting GPUs [4, 12, 13]. We do not try to abstract away from all
the peculiarities of GPU programming, but rather provide a higher
level language in which to experiment with them. For instance, Ac-
celerate provides a standard set of basic operations such as map,
reduce and zipWith as built in skeletons, implemented with the
help of small, predefined, hand-tuned CUDA kernels [4]. Obsidian,
on the other hand, allows the user to experiment with the genera-
tion of small kernels for fixed size array inputs from higher level
descriptions. It is intended to allow the user to play with the kinds
of tradeoffs that are important when writing such high performance
building blocks; in this paper, the main consideration is the number
of array elements of the input and output that are manipulated by
a single thread in the generated CUDA code. An important aspect
of Obsidian is the symbolic array representation used, along with
its associated sync operation. As we shall see, the sync operation
allows the programmer to guide code generation and control paral-
lelism and thread use [10].

In Obsidian, a kernel that sums an array can be expressed as:

sum :: Array IntE -> Kernel (Array IntE)
sum arr | len arr == 1 = return arr

| otherwise = (pure (fmap (uncurry (+)) . pair)
->- sync
->- sum) arr

The result of running this kernel on an eight element input array,
runKernel sum (namedArray ‘‘input’’ 8), is an intermedi-
ate representation of the computation (shown in slightly pretty-
printed form):

arr0 = malloc(16)
par i 4 {
arr0[i] = ( + input[( * i 2 )] input[( + ( * i 2 ) 1 )] );
}Sync
arr1 = malloc(8)
par i 2 {
arr1[i] = ( + arr0[( * i 2 )] arr0[( + ( * i 2 ) 1 )] );
}Sync
arr2 = malloc(4)
par i 1 {
arr2[i] = ( + arr1[( * i 2 )] arr1[( + ( * i 2 ) 1 )] );
}Sync



The named intermediate arrays in this representation are then laid
out in GPU shared memory and CUDA code can be generated (here
for arrays of length eight)1:
__global__ void sum(int *input0,int *result0){

unsigned int tid = threadIdx.x;
unsigned int bid = blockIdx.x;
extern __shared__ unsigned char sbase[];
(( int *)sbase)[tid] =

(input0[((bid*8)+(tid*2))]+
input0[((bid*8)+((tid*2)+1))]);

__syncthreads();
if (tid<2){

(( int *)(sbase + 16))[tid] =
((( int *)sbase)[(tid*2)]+
(( int *)sbase)[((tid*2)+1)]);

}
__syncthreads();
if (tid<1){

(( int *)sbase)[tid] =
((( int *)(sbase+16))[(tid*2)]+
(( int *)(sbase+16))[((tid*2)+1)]);

}
__syncthreads();
if (tid<1){

result0[(bid+tid)] = (( int *)sbase)[tid];
}

}

1.2 Arrays in Obsidian
An array is represented by an indexing function and a length:
data Array a = Array (UWordE -> a) Word32

This array representation has served us well. It has these properties:

• Fusion of operations is automatic.
• It naturally describes a data-parallel computation suitable for

CUDA/OpenCL generation.
• Many basic operations can be implemented: map, zipWith etc.

Using this array representation in a DSEL is not new; the first oc-
curence that we know of is in Pan [8]. Similar array representations
have also later been used in Feldspar [1], and more recently also in
the Repa library [11]. Functions for indexing and getting the length
of arrays are as follows:
(!) :: Array a -> UWordE -> a
(Array ixf _) ! ix = ixf ix

len :: Array a -> Word32
len (Array _ n) = n

A Functor instance for the Array datatype is
instance Functor Array where

fmap f arr = Array (\ix -> f (arr ! ix)) (len arr)

Now, composed applications of fmap will be automatically fused.
This is illustrated in the example program below and the CUDA
generated from it.
mapFusion :: Array IntE -> Kernel (Array IntE)
mapFusion = pure (fmap (+1) . fmap (*2))

__global__ void mapFusion(int *input0,int *result0){
unsigned int tid = threadIdx.x;
unsigned int bid = blockIdx.x;

result0[((bid*32)+tid)] = ((input0[((bid*32)+tid)]*2)+1);
}

Both of these code listings need explanation. In the Haskell code,
mapFusion has type Array IntE -> Kernel (Array IntE);
Kernel is a state monad that accumulates CUDA code as well
as provides new names for intermediate arrays. Neither of these
features of the monad is activated by this example though. The

1 An alignment qualifier for shared memory has been omitted to save space
in the listings showing generated code

pure function is defined using the monad’s return as pure f a
= return (f a). In this case, it lifts a function of type Array
IntE -> Array IntE into a kernel.

The generated CUDA code computes the result array using a
number of threads equal to the length of that array. In this case, the
kernel was generated to deal with arrays of length 32. The impor-
tant detail to notice in the CUDA code is that there is no intermedi-
ate array created between the (*2) and the (+1) operations.

The mapFusion example could just as well have been imple-
mented using the kernel sequential composition combinator, ->-.

mapFusion :: Array IntE -> Kernel (Array IntE)
mapFusion = pure (fmap (*2)) ->- pure (fmap (+1))

Exactly the same CUDA code is then generated.
In some cases, it is necessary to force computation of intermedi-

ate arrays. This can be used to share partial computations between
threads and to expose parallelism. In Obsidian, the tool for this is
called sync, a built-in kernel. Using sync as follows prevents fu-
sion of the two operations:

mapUnFused :: Array IntE -> Kernel (Array IntE)
mapUnFused = pure (fmap (*2)) ->- sync ->- pure (fmap (+1))

The generated CUDA code now stores an intermediate result in
local shared memory before moving on.

__global__ void mapUnFused(int *input0,int *result0){
unsigned int tid = threadIdx.x;
unsigned int bid = blockIdx.x;
extern __shared__ unsigned char sbase[];
(( int *)sbase)[tid] = (input0[((bid*32)+tid)]*2);
__syncthreads();
result0[((bid*32)+tid)] = ((( int *)sbase)[tid]+1);

}

Intermediate arrays are laid out in the sbase array in shared mem-
ory. Since we may store arrays of many different types in the same
locations of the shared memory at different times during the execu-
tion, the type casts used in the code above are necessary.

1.3 Sync and parallelism
The sync operation also enables the writing of parallel reduction
kernels. A reduction operation is an operation that takes an array as
input and produces a singleton array as output.

First, we define zipWith and halve on Obsidian arrays.

zipWith :: (a -> b -> c) -> Array a -> Array b -> Array c
zipWith op a1 a2 = Array (\ix -> (a1 ! ix) ‘op‘ (a2 ! ix))

(min (len a1) (len a2))

splitAt :: Word32 -> Array a -> (Array a, Array a)
splitAt n arr =

(Array (\ix -> arr ! ix) n ,
Array (\ix -> arr ! (ix + fromIntegral n)) (len arr - n))

halve arr = splitAt ((len arr) ‘div‘ 2) arr

A reduction kernel that takes an array whose length is a power of
two and gives an array of length one can be defined recursively.
Defining kernels recursively results in completely unrolled CUDA
kernels, and kernel input size must be known at compile time. The
approach to reduction taken here is to split the input array into two
halves and then apply zipWith of the combining function to the
two halves, repeating the process until the length is one.

reduceS :: (a -> a -> a) -> Array a -> Kernel (Array a)
reduceS op arr | len arr == 1 = return arr

| otherwise =
(pure ((uncurry (zipWith op)) . halve)
->- reduceS op) arr

Since the output of this kernel is of length one, and the number of
elements in the output array specifies the number of threads used to
compute it, this function, reduceS, defines a sequential reduction.
The generated code for arrays of length eight is



__global__ void reduceSAdd(int *input0,int *result0){
unsigned int tid = threadIdx.x;
unsigned int bid = blockIdx.x;

result0[(bid+tid)] =
(((input0[((bid*8)+tid)]+

input0[((bid*8)+(tid+4))])+
(input0[((bid*8)+(tid+2))]+
input0[((bid*8)+((tid+2)+4))]))+

((input0[((bid*8)+(tid+1))]+
input0[((bid*8)+((tid+1)+4))])+

(input0[((bid*8)+((tid+1)+2))]+
input0[((bid*8)+(((tid+1)+2)+4))])));

}

Sequential reduction is not very interesting for GPU execution,
but the fix is simple. A well placed use of sync indicates that we
want to compute, after each zipWith phase, the intermediate arrays
using as many threads as that intermediate array is long. The effect
is shown in the code below.

reduce :: Syncable Array a
=> (a -> a -> a) -> Array a -> Kernel (Array a)

reduce op arr | len arr == 1 = return arr
| otherwise =

(pure ((uncurry (zipWith op)) . halve)
->- sync
->- reduce op) arr

The CUDA code for reduction with addition on eight elements is

__global__ void reduceAdd(int *input0,int *result0){
unsigned int tid = threadIdx.x;
unsigned int bid = blockIdx.x;
extern __shared__ unsigned char sbase[];
(( int *)sbase)[tid] =

(input0[((bid*8)+tid)]+
input0[((bid*8)+(tid+4))]);

__syncthreads();
if (tid<2){

(( int *)(sbase + 16))[tid] =
((( int *)sbase)[tid]+
(( int *)sbase)[(tid+2)]);

}
__syncthreads();
if (tid<1){

(( int *)sbase)[tid] =
((( int *)(sbase+16))[tid]+
(( int *)(sbase+16))[(tid+1)]);

}
__syncthreads();
if (tid<1){

result0[(bid+tid)] = (( int *)sbase)[tid];
}

}

In this generated CUDA, three phases can be identified. The first
uses four threads to compute a four element intermediate array; the
second uses two threads, and so on. At the very end, a single thread
copies the result from local shared memory to global memory.

1.4 Drawbacks of Obsidian Arrays
The previous subsection described positive aspects of the array rep-
resentation that we have used so far. There are, however, circum-
stances in which this Array representation is too restricted.

Take the problem of concatenating two arrays. Using the array
representation described above, the only way to concatenate two
arrays is to introduce a conditional into the indexing function. If
f and g are the indexing functions of two arrays that are to be
concatenated, and n1 is the length of the first array, the indexing
function of the result must be

new ix = if (ix < n1)
then f ix
else g (ix - n1)

The following program concatenates two arrays:

catArrays :: (Array IntE, Array IntE) -> Kernel (Array IntE)
catArrays = pure conc

When it is used to generate a CUDA kernel that concatenates two
arrays of length 16, the following code is the result:
__global__ void catArrays(int *input0,int *input1,int *result0){

unsigned int tid = threadIdx.x;
unsigned int bid = blockIdx.x;

result0[((bid*32)+tid)] =
(tid<16) ? input0[((bid*16)+tid)] :

input1[((bid*16)+(tid-16))];
}

Now, conditionals like these are bad in code to execute on a GPU,
with its wide-SIMD data-parallel model. Separating the operation
into two assignments and using half as many threads gives much
higher performance.
__global__ void catArraysByHand(int *input0,

int *input1,
int *result0){

unsigned int tid = threadIdx.x;
unsigned int bid = blockIdx.x;

result0[((bid*32)+tid)] = input0[((bid*16)+tid)];
result0[((bid*32)+tid+16)] = input1[((bid*16)+tid)];

}

There are cases where code with conditionals is not that bad. An
expert on NVIDIA GPUs in particular may say that code with the
condition (tid < 32) is fine, since 32 is the SIMD width of those
GPUs. However, any number that is not a multiple of 32 would lead
to poor performance, so in general this is a problem. Worse still,
zipping two arrays together and then unpairing (to get an array of
elements) leads to code that takes two different paths depending on
odd or even thread id. When a GPU executes such code, it shuts
down half of the threads and computes the two paths in sequence.
zippUnpair :: (Array IntE, Array IntE) -> Kernel (Array IntE)
zippUnpair = pure (unpair . zipp)

The zipp and unpair operations are defined as follows:
zipp :: (Array a, Array b) -> Array (a, b)
zipp (arr1,arr2) =

Array (\ix -> (arr1 ! ix, arr2 ! ix))
(min (len arr1) (len arr2))

unpair :: Choice a => Array (a,a) -> Array a
unpair arr =

let n = len arr
in Array (\ix -> ifThenElse ((mod ix 2) ==* 0)

(fst (arr ! (ix ‘shiftR‘ 1)))
(snd (arr ! (ix ‘shiftR‘ 1)))) (2*n)

Code generated from the zippUnpair program exhibits really poor
performance; at any time half of the threads are shut down.
__global__ void zippUnpair(int *input0,

int *input1,
int *result0){

unsigned int tid = threadIdx.x;
unsigned int bid = blockIdx.x;

result0[((bid*64)+tid)] =
((tid%2)==0) ? input0[((bid*32)+(tid>>1))] :

input1[((bid*32)+(tid>>1))];
}

If we wrote this CUDA program by hand, we would, again, split it
up into two phases so that all threads can progress in parallel.

The arrays described so far, with an indexing function and a
length, have been nicknamed Pull arrays for how they describe
how to compute an element by pulling data from a number of
places. Using just Pull arrays, we have been unable to solve the
problems described so far in this section. The solution is to add a
complementary array type to Obsidian.

2. Push Arrays
In order to improve low level control for the programmer, Push
arrays are added to Obsidian. The old Pull arrays are still available,
along with the new array type.



Some operations, typically involving taking arrays apart, are
easily described using Pull arrays, giving efficient code. In those
cases, using a Push array would add complexity in the implemen-
tation for no performance benefit. Other operations cannot be im-
plemented efficiently with Pull arrays, but Push arrays then pro-
vide the solution. This duality is apparent when looking at opera-
tions on Pull arrays such as halve and conc (for concatenate). The
halve function is efficient since it introduces no diverging condi-
tionals. The conc function, on the other hand, introduces condi-
tionals. Concatening two arrays using the concP combinator, im-
plemented on Push arrays, allows us to generate the desired code:

catArrayPs :: (Array IntE, Array IntE) -> Kernel (ArrayP Int)
catArrayPs = pure concP

__global__ void catArrayPs(int *input0,int *input1,int *result0){
unsigned int tid = threadIdx.x;
unsigned int bid = blockIdx.x;

result0[((bid*32)+tid)] = input0[((bid*16)+tid)];
result0[((bid*32)+(16+tid))] = input1[((bid*16)+tid)];

}

Compared to the CUDA code for catArrays, this kernel uses only
16 threads instead of 32. At each step of the computation, all the
threads are fully busy doing exactly the same thing, which is the
preferred mode of execution on the target platform.

2.1 What are Push Arrays?
The idea behind Push arrays is to have a way to describe where
elements are supposed to end up. In some sense, a Push array
produces a collection of Index/Value pairs. This makes Push arrays
complementary to Pull arrays. For example, it is possible for a
Push array to output several elements at the same index (which we
probably need to control carefully). Push arrays should permit us to
provide more expressive operations on arrays to the user, including
an operation similar to Haskell’s filter on lists. Here, we consider
a different advantage of adding push arrays: finer control over
patterns of thread use in generated code.

A Push array consists of three parts: a function in continuation
passing style, a Program datatype and an array datatype.

type P a = (a -> Program) -> Program

For another example of using continuations and a more complete
description of their meaning and application, see [5].

The Program datatype has now been adopted as Obsidian’s
internal representation of CUDA programs.

data Program
= Skip
| forall a. Scalar a => Assign Name UWordE (Exp a)
| Par (UWordE -> Program) Word32
| Allocate Name Word32 Type
| Synchronize
| ProgramSeq Program

Program

Even Obsidian programs that never explicitly uses a Push array will
also be represented by this datatype.

Note that the Par constructor, the parallel for loop, could
potentially introduce nesting, which would lead to nested data-
parallelism. We do not compile nested data parallelism into CUDA,
and right now this is guaranteed by taking care not to introduce any
nesting in the library functions provided. Some of the simpler cases
of nestedness should be possible to take care of quite easily. For
example, one extra level of nesting could be done by sequential ex-
ecution in each thread of the GPU; using sequential computations
per thread has been shown to be beneficial [3]. But for the general
case of arbitrary nesting, some method of flattening is needed. We

also assume that both Allocate and Synchronize occur only at
the top level in objects of type Program.

Now, a Push array is a function in continuation passing style
coupled with a length.

data ArrayP a = ArrayP (P (UWordE, a)) Word32

There is a function that takes an array and turns it into a Push
array, called push. This function is defined for both Pull and Push
arrays:

class Pushable a where
push :: a e -> ArrayP e

instance Pushable ArrayP where
push = id

instance Pushable Array where
push (Array ixf n) =

ArrayP (\func -> Par (\i -> func (i,(ixf i))) n) n

Going in the other direction, from a Push array to a Pull array,
is a costly operation; it involves writing all the elements to GPU
memory followed by creating a Pull array that represents reading
them. The task of writing intermediate values to memory has tra-
ditionally been up to the sync operation in Obsidian. Therefore, in
this version, sync is overloaded to operate on both Pull and Push
arrays. This means that the sync operation can be used both on ar-
rays of type Array and of type ArrayP. The result type, however,
is always Array.

When a Push array is synced, it is applied to a continuation that
writes the elements into a named array in memory. The name to use
is obtained through the Kernel monad.

targetArray :: Scalar a => Name -> (UWordE,Exp a) -> Program
targetArray n (i,a) = Assign n i a

After applying the Push array to targetArray <name>, the
sync operation proceeds by storing away a representation of the
program that computes the array called <name>; it returns a Pull
array that reads elements from that same array.

Now we have seen enough of the implementation of Push arrays
to be able to look at some operations. Earlier, we saw that the array
concatenation function conc on Pull arrays leads to inefficient
code. The Push version of this operation, called concP can be
implemented as follows:

concP :: (Pushable arr1,
Pushable arr2) => (arr1 a, arr2 a) -> ArrayP a

concP (arr1,arr2) =
ArrayP (\func -> f func

*>*
g (\(i,a) -> func (fromIntegral n1 + i,a)))

(n1+n2)
where

ArrayP f n1 = push arr1
ArrayP g n2 = push arr2

The function concP takes two arrays, that can be Push or Pull
arrays, and concatenates them into a single Push array. It does so by
creating a sequential program, using the *>* operator for Program
sequential composition. An example use of this combinator has
already been displayed in the catArrayPs example.

The zippUnpair example shows a drawback similar to that of
catArrays using Pull arrays. In this case, the problem is that the
unpair function introduces a conditional that takes different paths
depending on odd or even thread id. A Push array implementation
of the unpair operation called unpairP can be given as follows:

unpairP :: Pushable arr => arr (a,a) -> ArrayP a
unpairP arr = ArrayP (\k -> f (everyOther k)) (2 * n)

where
ArrayP f n = push arr



everyOther :: ((UWordE, a) -> Program ())
-> (UWordE, (a,a)) -> Program ()

everyOther f = \(ix,(a,b)) -> f (ix * 2,a) *>* f (ix * 2 + 1,b)

Just like concP, this function takes either a Push or Pull array as
input, and produces a Push array as result.

Rewriting the example from earlier using unpairP gives:

zippUnpairP :: (Array IntE, Array IntE) -> Kernel (ArrayP IntE)
zippUnpairP = pure (unpairP . zipp)

In this case, the generated code looks as follows:

__global__ void zippUnpairP(int *input0,int *input1,int *result0){
unsigned int tid = threadIdx.x;
unsigned int bid = blockIdx.x;

result0[((bid*64)+(tid*2))] = input0[((bid*32)+tid)];
result0[((bid*64)+((tid*2)+1))] = input1[((bid*32)+tid)];

}

Again, we get CUDA code that uses half as many threads as the
inefficient version, but all threads are occupied at all times. This
uses the resources more efficiently.

Being able to generate the kind of code that we have just seen
is something we have desired for a long time. We believe that Push
arrays are an important tool for obtaining high performance kernels.
The results in section 3 bear this out.

3. Application
3.1 Sorting on a GPU
In this section, we introduce combinators that express patterns of
computation on whole arrays, and show their application to the
development of fast sorting kernels. By kernel, we mean a com-
putation that is performed by multiple threads, each performing
the same computation, in a single block. The computation is per-
formed entirely on the GPU, operating on a short array, which has
been placed into shared memory. On the GPU on which we perform
measurements, the maximum number of threads in a single block
is 512. Thus, we will build and benchmark a sequence of kernels
that sort 512 inputs. Our first kernels are implemented using one
thread per array element. Next, we show how Push arrays allow
us to move to having each thread operate on two array elements,
giving a substantial performance improvement.

Sorting kernels are typically used as building blocks in larger
programs to sort much larger sequences of inputs. In section 3.6,
we show how to build a sorter for large arrays from small building
blocks, including small kernels for sorting and merging that are
generated from Obsidian. Our small kernels are constructed in
the form of sorting and merging networks, building on Batcher’s
bitonic merger [2] and on the periodic balanced merger [7]. We
chose also to implement the large sorter used in benchmarking the
small kernels as a sorting network. However, large sorters that are
not themselves sorting networks (with typical examples being radix
sort and quicksort) often call small sorting networks when they
need to sort small arrays during their execution. Thus, small, fast
sorting kernels have a variety of uses.

3.2 Describing Batcher’s bitonic merger
The bitonic merger is typically presented as a recursive construc-
tion and we have earlier explored ways to describe and analyse it
in both (our) Ruby and in Lava [6, 14]. Here, we consider iterative
descriptions using similar combinators.

Figure 1 illustrates the merger for 16 inputs. Data flows from
left to right. The vertical lines indicate components that operate on
two array elements, placing the minimum onto the lower (abstract)
wire, and the maximum onto the other output of the component.

  

  

tt

Figure 1. A diagram of a 16 input bitonic merging network, using
a style that is standard in the literature. Note that in each stage
containing 8 min/max or comparator components, all 8 operate on
independent parts of the input and so can proceed in parallel.

The leftmost stage operates (for n = 16) on elements that are 8
apart. the next stage deals with elements that are 4 apart, and so on.

We introduce a combinator ilv1, for interleave, that captures
this pattern. ilv1 i f g applies f to elements 2i apart, producing
the output at the lower of the two input indices; it applies g to the
same pairs of elements, producing the output on the upper index.
Defining stage i to be ilv1 i min max, the four stages in the
diagram are simply stage applied to3, 2 1 and 0. The definition
of ilv1 makes use of the fact that flipping the bit i of an index
(using the function flipBit) gives the index of the element that
will be combined with it using the functionsf and g. The decision
about whether to apply f or g is made by looking at the value of bit
i. As we shall see, the use of the Obsidian ifThenElse produces
conditionals in the resulting CUDA.
lowBit :: Int -> UWordE -> Exp Bool
lowBit i ix = (ix .&. bit i) ==* 0

flipBit :: Bits a => Int -> a -> a
flipBit = flip complementBit

ilv1 :: Choice a =>
Int -> (b -> b-> a) -> (b -> b -> a) ->
Array b -> Array a

ilv1 i f g arr = Array ixf (len arr)
where

ixf ix = let l = arr ! ix
r = arr ! newix
newix = flipBit i ix

in (ifThenElse (lowBit i ix) (f l r) (g l r))

Expressing ilv1 using bit-flipping may seem strange, but it has the
advantage that it actually applies the desired pattern of computation
repeatedly over larger input arrays. Now, for 2n inputs, a Haskell
list containing the n calls of this interleave combinator are built:
bmerge :: Int -> [Array IntE -> Array IntE]
bmerge n = [istage (n-i) | i <- [1..n]]

where istage i = ilv1 i min max

Finally, the compose function makes each element of the list into
a kernel (using map pure) and places a sync between each kernel
(using composeS).
compose :: (Scalar a) =>

[Array (Exp a) -> Array (Exp a)]
-> Array (Exp a) -> Kernel (Array (Exp a))

compose = composeS . map pure

runm k = putStrLn$ CUDA.genKernel "bitonicMerge"
(compose (bmerge k)) (namedArray "inp" (2^k))



Note that bmerge k works on inputs of length 2k+j , for j > 0,
applying the merger to sub-sequences of length 2k. The CUDA
code for bmerge 4 on 16 inputs (with some newlines inserted) is
*Main> runm 4
__global__ void bitonicMerge(int *input0,int *result0){

unsigned int tid = threadIdx.x;
unsigned int bid = blockIdx.x;
extern __shared__ unsigned char sbase[];
(( int *)sbase)[tid]

= ((tid&8)==0)
? min(input0[((bid*16)+tid)],input0[((bid*16)+(tid^8))])
: max(input0[((bid*16)+tid)],input0[((bid*16)+(tid^8))]);

__syncthreads();
(( int *)(sbase + 64))[tid]

= ((tid&4)==0)
? min((( int *)sbase)[tid],(( int *)sbase)[(tid^4)])
: max((( int *)sbase)[tid],(( int *)sbase)[(tid^4)]);

__syncthreads();
(( int *)sbase)[tid]

= ((tid&2)==0)
? min((( int *)(sbase+64))[tid],(( int *)(sbase+64))[(tid^2)])
: max((( int *)(sbase+64))[tid],(( int *)(sbase+64))[(tid^2)]);

__syncthreads();
(( int *)(sbase + 64))[tid]

= ((tid&1)==0)
? min((( int *)sbase)[tid],(( int *)sbase)[(tid^1)])
: max((( int *)sbase)[tid],(( int *)sbase)[(tid^1)]);

__syncthreads();
result0[((bid*16)+tid)] = (( int *)(sbase+64))[tid];

3.3 Modifying the bitonic merger
The bitonic merger for which we have just generated a kernel is
known to sort so-called bitonic sequences, which include sequences
whose first half is sorted in one direction and whose second half is
sorted in the other direction. This fact can be used to build the well-
known bitonic sorting network. However, a GPU implementation
typically needs to check, for each comparator, whether or not it
should sort upwards or downwards, see for instance the simple
CUDA implementation shown in Appendix A. We choose here
to modify the merger so that it sorts two concatenated sequences
that are sorted in the same direction. We do this by using a well-
known trick, reversing half of the input to the merger. It turns
out that we can also reverse the same half of the output of the
first stage of the network, without affecting overall behaviour. The
resulting network, tmerge, shown in Figure 2, encourages us to
develop a new combinator to describe the characteristic V-shaped
pattern that results in the first stage. The combinator is modelled
on ilv1. The only difference is that the “partner” of an index is
found not by flipping bit i, but by flipping bits 0 to i, using function
flipLSBsTo. The implementation of vee1 is got from that for
ilv1 by replacing the call of flipBit by one of flipLSBsTo (and
we could also have chosen to make a more generic function that is
parameterised on this partner function).
flipLSBsTo :: Int -> UWordE -> UWordE
flipLSBsTo i = (‘xor‘ (oneBits (i+1)))

vee1 :: Choice a =>
Int -> (b -> b-> a) -> (b -> b -> a) ->
Array b -> Array a

vee1 i f g arr = Array ixf (len arr)
where

ixf ix = let l = arr ! ix
r = arr ! newix
newix = flipLSBsTo i ix

in (ifThenElse (lowBit i ix) (f l r) (g l r))

tmerge :: Int -> [Array IntE -> Array IntE]
tmerge n = vstage (n-1): [istage (n-i) | i <- [2..n]]

where
vstage i = vee1 i min max
istage i = ilv1 i min max

Now that we have a merger that sorts sub-sequences containing
two concatenated sorted sequences, it is easy to make a tree of
them. The list of kernels to be composed now becomes
tsort1 :: Int -> [Array IntE -> Array IntE]
tsort1 n = concat [tmerge i | i <- [1..n]]
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Figure 2. 16 input merging network, tmerge. The first stage is
made with a new combinator that we call vee, while the remaining
stages are as in the bitonic merger. This network sorts an input that
consists of two half-sized sorted sequences, giving the opportunity
to build a tree-shaped sorting network.
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Figure 3. A 16-input sorter made from a tree of tmerge mergers. 8
2-input mergers feed 4 4-input mergers, followed by 2 8-input and
one 16-input merger. A sorter on 8 inputs is shaded, as is a merger
on 8 inputs, above it.

The resulting sorting network is shown in Figure 3.
The following call writes the resulting CUDA to file tsort1.cu
and this is the first generated CUDA kernel whose performance is
measured in section 3.6.

runs1 k
= writeFile "tsort1.cu" $ CUDA.genKernel "tsort1"

(compose (tsort1 k)) (namedArray "inp" (2^k))

The generated code uses one thread per array element (just as
the bitonicMerge kernel shown above did). The next step is to
move to using Push as well as Pull arays, so as to be able to generate
more efficient code from essentially the same sorter construction.

3.4 New combinator implementations using Push arrays
It is in combining the results of the f and g functions that we run
into difficulty using just Pull arrays. Earlier, we saw how to use
Push arrays to implement concP, which concatenates two arrays.
Here, we use exactly the same approach to make a new version of
the interleave combinator. The results of applying the fs and gs are
combined into a Push array, in the right order.



ixMap :: (UWordE -> UWordE) -> ArrayP a -> ArrayP a
ixMap f (ArrayP p n) = ArrayP (ixMap’ f p) n

ixMap’ :: (UWordE -> UWordE)
-> P (UWordE, a)
-> P (UWordE, a)

ixMap’ f p = \g -> p (\(i,a) -> g (f i,a))

insertZero :: Int -> UWordE -> UWordE
insertZero 0 a = a ‘shiftL‘ 1
insertZero i a

= a + (a .&. fromIntegral (complement (oneBits i :: Word32)))

ilv2 :: Choice b =>
Int -> (a -> a -> b) -> (a -> a -> b) ->
Array a -> ArrayP b

ilv2 i f g (Array ixf n)
= ArrayP (\k -> app a5 k *>* app a6 k) n

where
n2 = n ‘div‘ 2
a1 = Array (ixf . left) (n-n2)
a2 = Array (ixf . right) n2
a3 = zipWith f a1 a2
a4 = zipWith g a1 a2
a5 = ixMap left (push a3)
a6 = ixMap right (push a4)
left = insertZero i
right = flipBit i . left
app (ArrayP f _) a = f a

This new combinator can now replace ilv1 in the bitonic merger,
giving a kernel that runs considerably faster. We will use that kernel
to build a large sorter later.

The implemenation of vee2 is almost identical to that of ilv2,
with flipBit i replaced by flipLSBsTo as before (so that, again,
one would in fact make a more generic function for building such
combinators). Now, we just need to replace the ilv1 and vee1
combinators in the tree sorter with ilv2 and vee2 , to get a verrsion
that uses half as many threads:
tmerge2 :: Int -> [Array IntE -> ArrayP IntE]
tmerge2 n = vstage (n-1) : [ istage (n-i) | i <- [2..n]]

where
vstage i = vee2 i min max
istage i = ilv2 i min max

tsort2 :: Int -> [Array IntE -> ArrayP IntE]
tsort2 n = concat [tmerge2 i | i <- [1..n]]

As we shall see in section 3.6, the resulting code is significantly
faster. This is because it uses one thread per two array elements,
and the code no longer contains any conditionals.

In order to go faster still, we resort to building a different sorting
network, of exactly the same size as the bitonic sorter, but based
instead on the balanced period merger of Dowd et al [7]. This
involves the introduction of one new combinator that can be seen
as a mixture of the ilv and vee combinators already introduced.

3.5 A sorter built from the balanced periodic merger
First, we note that the balanced periodic merger contains multiple
uses of the now familiar vee-shaped pattern, see Figure 4.

bpmerge2 :: Int -> [Array IntE -> ArrayP IntE]
bpmerge2 n = [vstage (n-i) | i <- [1..n]]

where vstage i = vee2 i min max

Now Dowd et al proved that the balanced periodic merger sorts
two interleaved sorted sequences. So, taking an iterative view of the
resulting sorter, we want to build a tree of mergers as before, but
the smaller mergers should be interleaved, rather than operating on
adjacent sub-sequences. There should be one merger on the right
hand end of the network; left of that, there should be two mergers
that operate on the odd and even elements, and each of them should
in turn be fed by two interleaved mergers, and so. The sorter is
illustrated, for 16 inputs in Figure 5. Just to the left of the final
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Figure 4. 16 input periodic balanced merging network

balanced merger, one of the two interleaved mergers is shown using
dotted lines. It operates on a completely different set of inputs from
the other 8-input merger in the same part of the tree.

The most straightforward way to give an iterative description of
this sorter is to introduce a new combinator that is a combination of
ilv and vee. The only thing that we need to change is the partner
function. This time we will flip not the least significant bits from
position 0 to position i but from position i to i+ j.

-- flip bits from position i to position i+j inclusive
flipBitsFrom :: Bits a => Int -> Int -> a -> a
flipBitsFrom i j a = a ‘xor‘ (fromIntegral mask)

where
mask = (oneBits (j + 1):: Word32) ‘shiftL‘ i

ilvVee1 :: Choice a =>
Int -> Int ->
(b -> b-> a) -> (b -> b -> a) ->
Array b -> Array a

ilvVee1 i j f g arr = Array ixf (len arr)
where

ixf ix = let l = arr ! ix
r = arr ! newix
newix = flipBitsFrom i j ix

in (ifThenElse (lowBit (i+j) ix) (f l r) (g l r))

ilvVee2 :: Choice b => Int -> Int ->
(a -> a -> b) -> (a -> a -> b) ->
Array a -> ArrayP b

ilvVee2 i j f g (Array ixf n)
= ArrayP (\k -> app a5 k *>* app a6 k) n
where

n2 = n ‘div‘ 2
a1 = Array (ixf . left) (n-n2)
a2 = Array (ixf . right) n2
a3 = zipWith f a1 a2
a4 = zipWith g a1 a2
a5 = ixMap left (push a3)
a6 = ixMap right (push a4)
left = insertZero (i+j)
right = flipBitsFrom i j . left
app (ArrayP f _) a = f a

For both variants of the combinator, we simply add to the ilv
definitions a new Int parameter, j, and replace flipBit i by
flipBitsFrom i j. We also insert the zero bit (when calculating
the left index) at position i + j rather than just at position i.
ilvVee is a generalisation of both ilv and vee. ilvVee i 0 has
the same behaviour as ilv i, and ilvVee 0 (j-1) is the same
as vee j. The i parameter controls the degree of interleaving, and
the j parameter controls the size of the vee-shaped blocks.

For 16 inputs, the parameters to ilvVee that describe the pe-
riodic merger on the right of the construction are i = 0 (for no
interleaving) paired with 3, 2, 1 and 0 for the decreasing size of
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Figure 5. A sorter based on the idea that the periodic balanced merger network sorts two interleaved sorted sequences. It consists of two
half-sized sorters, one working on the odd elements of the input and one on the even, followed by the balanced merger. The diagram indicates
using dotted lines the balanced merger that is the final (rightmost) part of one of the half-size sorters.

unsigned int arrayLength = 1 << LOG_L_SIZE;
unsigned int diff = LOG_L_SIZE - LOG_S_SIZE;
unsigned int blocks = arrayLength / S_SIZE;
unsigned int threads = S_SIZE / 2;

sortSmall<<<blocks, threads,4096>>>(din,din);

for(int i = 0 ; i < diff ; i += 1){
vSwap<<<blocks/2,threads*2,0>>>(din,din,(1<<i)*S_SIZE);

for(int j = i-1; j >= 0; j -= 1)
iSwap<<<blocks/2,threads*2,0>>>(din,din,(1<<j)*S_SIZE);

bmergeSmall<<<blocks,threads,4096>>>(din,din);}

Figure 6. CUDA code for our large sorter. sortSmall and
bmergeSmall are replaced by Obsidian-generated kernels in the
experiments. vSwap and iSwap are handwritten CUDA kernels that
perform one column of compare and swap operations in the vee and
ilv shapes respectively, and are parameterised on the stride. (Our
generated kernels have fixed input and output size.)

the vee-shaped blocks. Next, to the left, the mergers are interleaved
(i = 1) and there are three stages with vee-shaped blocks of de-
creasing size (j = 2, 1, 0), see Figure 5. The following code gives
an iterative description of the construction for 2n inputs:

vsort :: Int -> Array IntE -> Kernel (Array IntE)
vsort n = composeS . map pure $ [istage (n-i) (i-j)

| i <- [1..n], j <- [1..i]]
where istage i j = ilvVee2 i j min max

The resulting generated code uses one thread per 2 indices.

3.6 Measuring performance of the generated kernels
We have measured the performance of generated 512-input sorting
and merging kernels by plugging them into a larger sorter written
in CUDA. The sorter has exactly the structure shown in Figure 3.
Figure 7 shows the location of smaller sorters and mergers, and
of vSwap and iSwap kernels for 16 inputs. Larger sorters simply
have more columns of mergers, each preceded by a vSwap and a
number of iSwaps. The overall structure of the resulting CUDA
code is shown in Figure 6. Because iSwap is used repeatedly, we
also wrote kernels corresponding to compositions of two and three
of them (avoiding memory accesses between the columns). That is,
we replaced the loop containing iSwap above by

sort          vswap         merge         vswap               iswap        merge
tt

   
  

  

  

Figure 7. This diagram shows the tree-shaped sorting network
that we saw earlier, but with 4 input sorting and merging kernels
indicated. This is the structure of the network that we have used to
implement large sorters, in which the small kernels having 29 =

512 inputs in all cases. For 224 inputs overall, the resulting sorter
has one column of small sorters and 24−9 = 15 of small mergers.

for(int j = i-1; j >= 0; j -= 3){
if (j==0)

iSwap<<<blocks/2,threads*2,0>>>(din,din,(1<<j)*S_SIZE);
else
{if (j==1)

iSwap2<<<blocks/4,threads*2,0>>>(din,din,(1<<j)*S_SIZE);
else
iSwap3<<<blocks/8,threads*2,0>>>(din,din,(1<<j)*S_SIZE);}}

The Obsidian implementation and all code for examples in the
paper are available at http://www.cse.chalmers.se/~joels/
expressive.html.

Table 3.6 shows the performance figures for the large sorter
for 5 different 512−input small sorter kernels. tsort1 is defined
above, and is a variant of bitonic sort that does not require if
statements to determine the direction of sorting of pairs, as all
comparison operations place the minimum at the same index as
the lower input. tsort2 is the same construction, but built with
the combinators ilv2 and vee2 that result in the use of one thread
per two indices. vsort, the fastest kernel, uses a generalisation of
those two combinators, and again uses one thread per two indices.



k 20 21 22 23 24 24(CPU)
bitonic(CUDA)(512) 5 12 25 54 117 2741
tsort1(512) 4 10 22 47 102 2742
tsort2(256) 4 9 23 45 98 2741
vsort1(512) 4 10 21 47 102 2747
vsort(256) 4 9 20 44 96 2783

Table 1. Sorting time (ms) for 2k inputs, 20 ≤ k ≤ 24. The GPU
used is an NVIDIA GTX480. Each line shows the result using a
particular small 512 input sort kernel with the indicated number of
threads as sortSmall in the CUDA code above. The small merge
kernel used is our generated bmerge2, with two indices per thread
and 512 inputs. Memory transfer time (GPU-CPU) is not shown.
In the 224 input case using vsort, the total sorting time, including
memory transfers was 141 ms. The rightmost column shows the
time taken for the C quicksort function qsort, compiled with gcc
-O3, to sort the same inputs as those sorted on the GPU on an i7-
920 2.8GHz CPU.

time percent
bitonic(CUDA) 30203 32.07
tsort1 15823 19.72
vsort1 14955 18.76
tsort2 11562 15.37
vsort 9228 12.67
bitonic (NVIDIA SDK) 23815 6.55

Table 2. time: GPU time (in µs) spent in calls to small sorter ker-
nels in the initial phase of the sorter for 224 inputs. percent: per-
centage of total GPU time spent in the small sort kernel. The final
line shows the numbers for the bitonic code (for large sorts) that
is distributed with the the NVIDIA SDK. Its structure also starts
with a phase of small sorting kernels. It takes 274 ms to sort 224

key-value pairs on an NVIDIA GTX480 GPU. It could be sped up
by using our vsort kernel, and also by (hand) fusing single “col-
umn” kernels as we did with iSwap, although the need to calculate
directions of comparators in the bitonic network would complicate
this. Our CUDA code is simpler because all comparators point in
the same direction in the sorter construction.

vsort1 is the same construction as vsort, but with ilvVee2
replaced by ilvVee1, and so using one thread per index. As a
reference small kernel implementation, we include a simple hand-
coded bitonic sort that uses one thread per index (see code in
Appendix). None of the kernels has been subject to optimisations
related to warp size.

We also recorded the GPU time spent in the calls to the small
sorters alone (using the NVIDIA CUDA Visual profiler), see Ta-
ble 3.6. The tsort1 and vsort1 kernels, which are built using
only pull arrays, (and which have one index per thread in the gen-
erated code) are noticeably slower than those that have two indices
per thread. The generation of the latter kernels is made possible by
the introduction of push arrays.

Although none of our generated kernels is optimised (for exam-
ple with respect to warp size), their performance is, nevertheless,
very good. We are working on automated warp size-related optimi-
sations. It would also be interesting to explore the fusion of adja-
cent columns of comparators in the small kernels; omitting a sync
would cause this fusion to happen but we also need to modify the
threading behaviour (doubling the number of indices per thread).

4. Discussion
Push arrays form a new approach to array representation in DSELs.
We do not know of similar approaches in the literature, despite the
fact that the notions of demand and data flow may feel familiar
to the reader who considers Pull and Push arrays. The addition
of Push arrays to Obsidian seems highly beneficial. With this new
feature, the user gains finer grained control over the code generated
and the resulting CUDA kernels perform considerably better than
before. This was illustrated in the series of sorters explored in
section 3. The performance of vsort is sufficiently good that it
can be used as a first phase in a larger sorter (written in CUDA)
that can sort 16M elements in 96 ms, while an i7-920 CPU takes
around 2740 ms. Further speed improvements look possible, both
in the coordination code and in the kernels. An obvious next step
would be to investigate the generation of the iSwap and vSwap
kernels from Obsidian. (This is not currently possible because of
assumptions that we made about the interfaces to kernels and about
how thread ids are used. We will look into ways to relax our
assumptions.)

The series of kernels also illustrates how the use of combina-
tors brings a form of reuse, and makes design exploration easier.
Our experience of using similar combinators in the Lava hardware
description language [6] was that a relatively small set of combina-
tors went a long way. So, although we introduced three combina-
tors here, ilv, vee and ilvVee, which includes the other two, we
do not believe that every new kernel development exercise would
demand a completely new set of combinators. We expect to pro-
vide the user with a well-documented set of combinators, so that
users can get access to this style of programming without having
to develop their own combinators, and without having to think too
much about bit-hacking. The bit-manipulation approach chosen to
define our combinators automatically created functions that apply
to sub-sequences of the input that are of an appropriate length.

In this paper, we made combinators for the special case of two
input, two output operations (built from two two-input funtions that
we typically called f and g). This approach should be generalised
to deal with blocks that have 2k inputs and outputs. Also, we
made a compound combinator from ilv and vee, but generalising
to more than two input components would allow for composing
combinators, and indeed for recursive descriptions that could be
unrolled. Then, ignoring syncs, a recursive description of vsort
could be something like

vsortR 0 = id
vsortR n = bpmergeR n . ilv2 1 (vsortR (n-1))

It would then be necessary to optimise the code generated from
multiple applications of ilv2 1, for example, whereas here we
have forced the user to figure out both the unrolling and the combi-
nations. Moving to more general combinators would also give the
opportunity to provide predefined combinators that capture more
of the commonly used threading patterns (for instance k indices
per thread rather than the 1 and 2 shown here).

The integration of Push arrays into Obsidian raises some new
questions. Previously, there was a direct correspondence between
the length of an array and the number of threads used to compute
it, which allowed the user to write an initial program without
worrying about threads at all, and then to tweak the Obsidian
program if he was not satisfied with the threading behaviour of the
resulting kernel. Now, as can be seen in the catArrayPs example
and in the sorters, this correspondence can be broken using Push
arrays. The catArrayPs example and two of the sorters use half
as many threads as the number of elements. For users who are very
concerned about the speed of the generated kernels, getting this
control through using Push arrays in a particular pattern is clearly
a good thing. But adding a second, different way to control thread



use in the generated code certainly complicates matters, and further
case studies are needed to confirm that the complication pays off.

The addition of Push arrays also adds the possibility to include
potentially unsafe operations in Obsidian, for example by writing
multiple array elements to the same index, or by discarding ele-
ments. This new expressiveness will have to be carefully controlled.
On the positive side, it offers the possibility to encode functions like
filter from Haskell that are simply not expressible using only
Pull arrays. Being able to implement filter would make pro-
gramming kernels in obsidian feel much more like programming
in Haskell – a welcome loosening of the strait-jacket. Once that is
done, it will be time to develop a very simple coordination language
to allow programming of entire GPU applications that make use of
the kind of small kernel building blocks developed here.

A. Appendix
__device__ inline void swap(int & a, int & b)
{

int tmp = a;
a = b;
b = tmp;

}

__global__ static void bitonicSort(int * values, int *results)
{

extern __shared__ int shared[];

const unsigned int tid = threadIdx.x;
const unsigned int bid = blockIdx.x;

// Copy input to shared mem.
shared[tid] = values[(bid*NUM) + tid];

__syncthreads();

// Parallel bitonic sort.
for (unsigned int k = 2; k <= NUM; k *= 2)
{

// bitonic merge
for (unsigned int j = k / 2; j>0; j /= 2)

{
unsigned int ixj = tid ^ j;

if (ixj > tid)
{

if ((tid & k) == 0)
{

if (shared[tid] > shared[ixj])
{

swap(shared[tid], shared[ixj]);
}

}
else
{

if (shared[tid] < shared[ixj])
{

swap(shared[tid], shared[ixj]);
}

}
}
__syncthreads();

}
}

// Write result.
results[(bid*NUM) + tid] = shared[tid];

}
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