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Abstract

We present a Functional Compute Language (FCL) for low-level
GPU programming. FCL is functional in style, which allows for
easy composition of program fragments and thus easy prototyping
and a high degree of code reuse. In contrast with projects such as
Futhark, Accelerate, Harlan, Nessie and Delite, the intention is not
to develop a language providing fully automatic optimizations, but
instead to provide a platform that supports absolute control of the
GPU computation and memory hierarchies. The developer is thus
required to have an intimate knowledge of the target platform, as is
also required when using CUDA/OpenCL directly.

FCL is heavily inspired by Obsidian. However, instead of rely-
ing on a multi-staged meta-programming approach for kernel gen-
eration using Haskell as meta-language, FCL is completely self-
contained, and we intend it to be suitable as an intermediate lan-
guage for data-parallel languages, including data-parallel parts of
high-level array languages, such as R, Matlab, and APL.

We present a type-system and a dynamic semantics suitable
for understanding the performance characteristics of both FCL and
Obsidian-style programs. Our aim is that FCL will be useful as a
platform for developing new parallel algorithms, as well as a target-
language for various code-generators targeting GPU hardware.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages, Performance

Keywords Type systems, data-parallel languages, GPU program-
ming, push arrays, pull arrays, iteration schemes, array-programming,
hierarchical machine models.

1. Introduction

In recent years, several languages for general purpose, data-parallel
computation on GPUs have been suggested [3, 5, 6, 12, 13, 19].
Most of these language developments have focused on providing
users with high-level specifications of programs and performing a
range of automatic optimizations. Often no cost-model is specified,
and the language is thus a black box for users who want to rea-
son about the performance of their programs. Parallel algorithms
researchers are sidelined, as it is hard to reason about the actual ef-
ficiency and performance characteristics of algorithms. The user is

decoupled from the hardware model, and cannot be sure whether
an operation will result in a memory transaction or not. This makes
unexpected performance hits hard to debug. Also, some algorithms
require memory patterns not supported by the prevalent set of prim-
itives, or depend critically on hardware parameters that these lan-
guages do not expose [4]. This is a shame. We want more algo-
rithms researchers to work on parallel algorithms, and they need
better languages to do their work.

In the GPU niche of data-parallel languages, Obsidian is an ex-
ception [19], allowing for playfulness and invention on the low-
level where you have (almost) complete control over the GPU,
and still allowing computations to be composed efficiently using
so called pull arrays and push arrays. These arrays are not di-
rectly stored in a region of memory, but are rather representations
of array-computations. This means that most array operations are
cheap: they do not incur the overhead of writing a modified array to
memory, but modifies the underlying symbolic array-computation
directly. Obsidian uses a multi-staged compilation approach, which
allows users to use Haskell as a meta-language generating Obsidian
expressions. This can for instance be used to generate all the state-
ments of an unrolled loop, or to precompute certain values already
at code-generation time.

We present FCL, a reimplementation of Obsidian with an exter-
nal syntax implemented in Haskell2010 as a self-contained com-

piler1. With FCL, we extend on the work on Obsidian; eliminating
the need of using meta-programming techniques in program devel-
opment, and introducing new operators and language constructs to
maintain the same expressive power. The embedded nature of Ob-
sidian also had its drawbacks, especially if used as an intermediate
language, which is another reason this project came to be.

In both Obsidian and FCL, computations are polymorphic in
their mapping to executions on the GPU hardware, by the use of
level-annotations in array types. We have developed a dynamic
operational semantics for FCL that details the computational model
and makes it clear how the different levels map to various iteration
schemes on the GPU.

The rest of the paper is structured as follows. Section 2 explains
pull and push arrays. In Section 3, we introduce FCL through three
example programs: array reversal, matrix transpose, and parallel
reduction. Section 4, we demonstrate that FCL is able to generate
efficient OpenCL-code. In Section 5, we do a rigorous introduction
to FCL, defining its type system and dynamic semantics. Finally,
we conclude in Section 7.

We did not find space for an introduction to GPU programming,
we refer the reader to the OpenCL and CUDA programming guides
by AMD [1] and NVIDIA [15].

1 FCL is available at http://github.com/dybber/fcl
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2. Pull and Push Arrays

FCL inherits pull and push arrays from Obsidian [8]. As mentioned
in the introduction, these are not actual arrays manifested in mem-
ory, but are instead delayed array computations that describe how
to produce an array. When the result of a pull or push array compu-
tation is written to memory, we say that the array has been materi-
alized.

The two types of arrays complement each other: pull arrays
allow array indexing, but array concatenation is inefficient. Push
arrays on the other hand allow for efficient concatenation, but
disallow array indexing. Below we will introduce a simplified view
of the pull and push array representation in Obsidian, using Haskell
notation.

2.1 Pull Arrays

Let Idx be the type of array indices and array lengths. A pull array
with elements of type a is then represented as a length paired with
an index:

type Pull a = (Idx, Idx -> a)

Materializing such an array in memory is performed by evaluating
the function at each index and generating the code associated with
writing the result to memory.

Operating on the individual elements of the array can be done
without materializing the array. Let arr be a function of type
Idx -> Double, multiplying each array element by two can then
be done by building a new pull array: \i -> 2.0 * (arr i).

2.2 Push Arrays

Push arrays, on the other hand, already carry with them an iteration
pattern, or iteration scheme, decided by the creator of that push
array. A push array is represented by a function that can construct
an array, when given a so-called writer-function. A writer-function
is a function that accepts an element and an index and produces
an assignment statement writing the element to its corresponding
index in memory.

type Writer a = a -> Idx -> Program Thread ()

Here Program Thread () is a computation in the Obsidian code-
generation monad. Push arrays are represented by a length and a
function accepting such a writer-function:

type Push a t = (Idx, Writer a -> Program t ())

Materializing a push array is done by applying the function to a
writer function, and the writer will then be invoked for each array
element. This means that we can not access any single element of
a push array, before it has been fully materialized.

In Obsidian iteration schemes on push arrays are annotated in
the array types, by a level-parameter, this is the t in the code above.
The level-parameter can be either Grid, Block, Warp or Thread,
corresponding to the hierarchy of organization for GPU threads,
and annotates the sequential/parallel structure of the underlying
iteration scheme. How levels are used will be explained in the
context of FCL in the next section.

The main advantage of push arrays compared with pull arrays, is
that they allow for efficient implementation of functions that com-
bine arrays, for example array append and various interleavings.
Combining pull arrays typically lead to conditionals evaluated at
each index of the array. The performance hit of these conditionals
can be severe, in the cases when these conditionals lead to threads
diverging within a warp. Interleaving two pull arrays is particularly
bad as it means that each pair of consecutive threads take differ-
ent paths through the conditional. This wastes half of the resources
within each warp in use by this interleaving.

Append and interleave of two push arrays can be achieved by
generating two separate loop structures and offsetting the writer
function.

In FCL we keep the concepts of pull and push arrays, but
abstract away from their actual representation, as will be illustrated
in the rest of the paper.

3. Case Studies in FCL

In this section we will demonstrate the use of FCL by implementing
three different GPU algorithms: array reversal, array transposition
using shared memory, and parallel reduction.

3.1 Array Reversal

Consider a program that reverses an array:

sig reverse : [a] -> [a]
fun reverse arr =
let n = length arr
in generate n (fn i => index arr (n - i - 1))

This program is implemented using the function generate, a lan-
guage primitive that creates a new array by mapping the given
function over the index-space [0;n− 1]. The program here cannot
be compiled directly to GPU code, as it does not mention how it
should be mapped to sequential or parallel loops. The arrays in this
example are pull arrays, and are identified by types of the form [a],
where a is a type variable, representing an arbitrary non-function
type. To compile an FCL program into a kernel, we require the
user to add an iteration scheme, detailing how this kernel should
be mapped to the threads of the GPU. Such iteration schemes are
annotated by a level, which can be either thread (sequential execu-
tion), warp, block, or grid. The iteration scheme is added using a
function called push. Let us demonstrate, and create a block-level
version of reverse.

sig revBlock : [a] -> [a]<block>
fun revBlock arr = push <block> (reverse arr)

Notice how the iteration scheme is reflected in the array type,
[a]<block>. This is a push array (from Obsidian). If we were to
compile this function, FCL would generate a kernel reversing the
entire array using a block-level computation. That is, the computa-
tion would only run in a single block, and thus only run on a single
of the GPUs streaming multiprocessors. To distribute across several
blocks, the input-arrays have to be partitioned and the resulting re-
versed array-chunks need to be concatenated back together again
in the right order. In this case, the order of the chunks also needs to
be reversed before concatenation.

sig revDistribute : int -> [a] -> [a]<grid>
fun revDistribute chunkSize arr =
splitUp chunkSize arr
|> map reverseBlock
|> reverse
|> concat chunkSize

The operator |> is reversed function application from F# and
Elm, also known as forward-pipe. Notice that the same reverse
function can be used both to reverse the order of elements and the
order of the blocks. The operation concat is what distributes the
computation across a grid of blocks, thereby raising the level from
block to grid. This is also evident from the type of concat, where
1+level, unifies with levels of one level higher in the hierarchy
(details are given in Section 5).

concat : int -> [[a]<level>] -> [a]<1+level>
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This means that each subarray is executed in a separate block,
and concat makes sure that each block writes its result to adjacent
subsections of the array it returns. Alternatively we could have
applied push <grid> directly to the primitive reverse function,
to add a grid-level iteration scheme to the array, but that is only
possible in simple cases, where there is no dependencies between
threads and we do not need to manipulate the amount of data
processed by each block or how results are combined. Neither
splitUp nor concat is a primitive of FCL, and more complicated
tiling and interleaving can thus be implemented, as we will see in
the following example.

3.2 Transpose in Shared Memory

Now consider the problem of matrix transposition. In FCL we only
have one-dimensional arrays, which means that a two-dimensional
matrix must be represented as its flat representation together with
number of columns and rows. We are planning to add support for
multidimensional-arrays, see Section 7.

If we follow a naive approach we can transpose a two-dimensional
matrix, using the following transpose function:

sig transpose : int -> int -> [a] -> [a]
fun transpose cols rows arr =
generate (cols * rows)

(fn n =>
let i = n div rows

j = n mod rows
in index arr (j * rows + i))

If this version of transpose were to be executed in parallel on the
GPU, it would lead to uncoalesced writes. When a group of GPU
threads collectively read or write a section of memory, the memory
transactions can be coalesced if they all fall into the same block of
memory. In this case, when adding an iteration scheme to the final
array, the final writes will always be in coalesced, but the indexing
into the input array will not, and the reads from the input-array will
thus not be able to coalesce and we will incur a huge performance
penalty.

A more efficient approach is to chunk up the matrix in smaller
2D tiles, transpose each tile in shared memory, before stitching
the tiles back together again (in transposed order). This approach
makes both reads and writes to global memory coalesced, as the
threads can first collaborate on moving data to shared memory, and
afterwards collaborate on copying data from shared memory to the
output-array.

The important thing to note is that this reading/writing order is
encapsulated in split2Dgrid and concat2Dgrid, and a library
of such operations can be provided to users.

sig transposeTiled : int -> int -> int ->
[a] -> [a]<grid>

fun transposeTiled tileDim cols rows mat =
let n = cols / tileDim

m = rows / tileDim
in split2DGrid tileDim cols n m mat

|> map (force . push <block>)
|> map (transpose tileDim tileDim)
|> transpose n m
|> map (push <block>)
|> concat2DGrid tileDim n rows

This algorithm follows roughly the same structure as the
reverse example. However, instead of splitting the linear input-
array into chunks (one following the other), we split and concate-
nate 2D tiles with the functions: split2DGrid and concat2DGrid.
Also, we apply the function force which executes an iteration

Figure 1: Transpose in Shared memory. Figure by NVIDIA.

scheme, writing the array to shared memory, after which the array
can again be indexed arbitrarily:

force : [a]<lvl> -> [a]

The result is a single kernel performing the transposition with
all steps fused, performing just as well as the standard OpenCL
implementation. For the sake of simplicity, the kernel in the form
presented here, works only for matrices that can be evenly divided
by tileDim. To use this method for other matrices, a reshape
operation increasing its size can be performed and, the surplus
columns and rows, can afterwards be removed using drop. We
expect that these operations will be able to fuse, such that no
additional reads/writes are necessary.

3.3 Parallel Reduction

To implement a reduction kernel (prefix-sum kernel), we will per-
form a tree-reduction inside each work-group; this is implemented
by splitting the subarray in two, and performing an element-wise
sum of the two halves. This is very similar to what has previously
been shown in Obsidian.

The FCL prelude provides the following functions for splitting
arrays in two and joining arrays element-wise. These are not FCL
primitives, but their implementation is standard and left out because
of lack of space.

halve : [a] -> ([a], [a])
zipWith : (a -> b -> c) -> [a] -> [b] -> [c]

The tuple returned by halve is merely a syntactic construction.
They will not be present in the OpenCL kernel code. Using these
we can now write a function for taking one reduction-step:

sig step : <lvl> -> (a -> a -> a) ->
[a] -> [a]<lvl>

fun step <lvl> f arr =
let x = halve arr
in push <lvl> (zipWith f (fst x) (snd x))

Notice that the function is polymorphic in the level-variable lvl.
This makes it possible to postpone the decision of whether step
will run sequentially or at one of the parallel levels of the hierarchy.

In Obsidian, we would have implemented this as a recursive
function on the meta-level. Recursion on the meta-level would be
possible in Obsidian, as the function is working on just a chunk of
the array and we would statically know the chunk size. The meta-
level recursion in Obsidian would generate an unrolled loop.

In FCL we instead provide a built-in looping-construct, while,
which accepts a stop-condition and stepping function as arguments
as well as the initial array.

sig red : <lvl> -> (a -> a -> a) -> [a] -> [a]<lvl>
fun red f arr =
while (fn arr => 1 != lengthPull arr)

(step <lvl> f)
(step <lvl> f arr)

|> push <lvl>
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This will generate a while-loop, and automatically force values to
shared memory between operations as well as performing a block-
level synchronization between threads. In cases where the chunk
size is known at compile time, we can use loop unrolling techniques
to achieve the same code as if we had used Obsidian.

The while construct assumes that arrays never need to grow
during evaluation and thus reuses the same area of shared memory
on each iteration. Also, while will always materialize the input
array to shared memory before starting the iteration. To avoid
doing a direct copy from global memory to shared memory, in the
reduction kernel, we take one initial step before starting the while-
loop. This optimization is called “First add during load” by Mark
Harris [11].

To get this to run over multiple blocks, we need to split a larger
array and concatenate the results:

sig reduceGrid : (a -> a -> a) -> [a] -> [a]<grid>
fun reduceGrid f arr =
let chunkSize = 2 * #BlockSize
in splitUp chunkSize arr

|> map (red <block> f)
|> concat 1

Here #BlockSize will refer to either CUDA’s blockDim.x,
OpenCL’s get local size(0), or a constant specified by the user
as configuration option at compilation time.

Another difference from Obsidian also comes to light here;
as we no longer distinguish between statically known values and
dynamically known values, we are not be able to infer that red
<block> f always returns a single scalar. We solve this by requir-
ing an extra argument to concat, an expression computing the size
of each chunk to concatenate.

4. Performance

FCL is work in progress; thus certain optimizations are still not im-
plemented. However, the performance on the previously shown
examples is promising, and we have identified the bottlenecks
that are currently limiting performance. We compare the perfor-
mance of each benchmark with hand-written OpenCL kernels from
NVIDIA’s OpenCL SDK.

When an FCL program is compiled, the result is a file contain-
ing one or more OpenCL or CUDA kernels. In the future, we also
want to be able to generate host-code, but right now it must be writ-
ten by hand. We use the same host-code for both FCL-generated
kernels and the handwritten kernels by NVIDIA.

To benchmark the generated code, we have used an NVIDIA
GeForce GTX 780 Ti, which is built on the Kepler architecture.
It has 2880 cores (875 Mhz), and 3GB GDDR5 ram (7 Ghz, bus-
width: 384 bit). Calculating the theoretical peak bandwidth we get
7Ghz×384bit = 336GB/s. In practice we can expect a 254.90GB/s
maximum bandwidth, which we have measured using NVIDIA’s
benchmarking tool (bandwidthTest).

Each benchmark has been executed on an array of 224 32-bit
integers (67 MB). Timing was measured as wall-clock time on 1000
executions of the same kernel, preceded by a single warm-up run.
The measured bandwidths are shown in Figure 2. The theoretical
maximum bandwidth is plotted as a dashed horizontal line.

In the simple reverse example, we hit the measured maximum
bandwidth as we hoped. The generated code is similar to the hand-
written code from NVIDIA, except for block-virtualization, which
is not used in NVIDIA’s version.

In the transpose example we are not quite on par with the
handwritten code, and there are two reasons for that. First, we do
not take care to avoid bank-conflicts, which we leave as future
work. Second, we have quite a lot of extraneous divisions in the
generated code. This is because we do not keep track of array
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Figure 2: Measured bandwidths on our three example programs.
OpenCL bars are code from NVIDIA’s OpenCL SDK, and we
compare it to OpenCL kernels generated by FCL. The dashed
line indicates the maximum bandwidth as measured by NVIDIA’s
benchmarking tool.

shapes, and thus split2DGrid and concat2DGrid are performing
some of the same work more than once. If we remove these double
computations by hand, we achieve a performance boost, which is
illustrated as FCL+handopt in the barplot. We are planning to add
support for multi-dimensional arrays to tackle this issue, but this is
also left as future work.

The reduction example is interesting; here we generate a com-
pletely unrolled loop, which performs reasonably well, but does
not quite hit the performance target set by NVIDIA’s heavily tuned
kernel. To identify how we can improve our solution, we have in-
spected the difference between the two kernels. To get on par with
NVIDIA’s kernel we will need to make each thread do an initial
sequential reduction on a few elements, before the parallel tree-
reduction we already have implemented.

5. Type System and Semantics

To better understand the limitations and performance of programs
written in FCL, and to validate correctness, we will now turn to a
more formal treatment of the language.

Previously, we have described both of the functions concat
and concat2DGrid, which are used for distributing a computation.
Both functions are written in terms of a more general operation,
which we have named interleave. The interleave operation
is in essence a forward permutation on the indexes written to.
However, in the limited treatment in this paper, we will focus on
a simplified version of FCL with concat as a primitive, leaving
out concat2DGrid and interleave. In all other aspects, this is a
full treatment of FCL in its current state.

We use i, d and b to range over integers, doubles, and booleans,
respectively. Let α range over an infinite set of type-variables and
let x range over program variables. We use unaryop and binaryop
to denote the sets of built in scalar operations.

Whenever z is some object, we write ~z to range over sequences
of similar objects. When we want to be explicit about the size of a

sequence ~z = z0, · · · , z(n−1), we often write it on the form ~z(n).
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lengthPull : [α] → int

lengthPush : [α]〈lvl〉 → int

mapPull : (α → β) → [α] → [β]

mapPush : (α → β) → [α]〈lvl〉 → [β]〈lvl〉

generate : int → (int → α) → [α]

index : [α] → int → α

push : 〈lvl〉 → [α] → [α]〈lvl〉

force : [α]〈lvl〉 → [α]

while : ([α] → bool) → ([α] → [α]〈lvl〉) → [α]〈lvl〉 → [α]

Figure 3: Types of built-in operators.

The core syntax of FCL is defined as follows:

op ::= unaryop | binaryop (built-in operators)

| generate | lengthPull | lengthPush

| index | mapPush | mapPull

| push | force | concat | while

bv ::= i | d | b (scalars)

γ ::= α | Z | 1 + γ (levels)

e ::= bv | x | [e1, . . . , en] | op (expressions)

| fn x => e | fn 〈α〉 => e

| e1 e2 | e 〈γ〉

| let x = e1 in e2

| (e1, e2) | fst e | snd e

Notice that the language has two application forms and two ab-
straction forms; in addition to standard function application, we
also have level-application, e 〈γ〉, for functions that accept a level-
parameter. We often use the following short-hands for the first four
levels:

thread = Z block = 1 + (1 + Z)

warp = 1 + Z grid = 1 + (1 + (1 + Z))

5.1 Type System

The syntax of FCL types, kinds and type-schemes is defined as
follows:

bt ::= α | int | double | bool (base types)

τ ::= α | bt | (τ1, τ2) | τ1 → τ2 (types)

| 〈α〉 → τ

| [τ ] (pull arrays)

| [bt]〈γ〉 (push arrays)

κ ::= BT | GT | TYP | LVL (kinds)

σ ::= forall α : κ. σ | τ (type-schemes)

The types of built-in array combinators are shown in Figure 3.
To define the set of valid types (under assumptions for free

variables), we define a relation ∆ ⊢ τ below, where ∆ are kind
environments, mapping type variables to kinds:

∆ ::= α : κ,∆ | ǫ

The kind-system divides types into four categories. Base types
(BT), ground types (GT), general types (TYP) and levels (LVL). Base
types are types of scalar values, which are the only types of values
allowed in push arrays. Ground types are all types except function-
types, and are the types allowed in pull arrays.

Kind system ∆ ⊢ τ : κ

∆ ⊢ int : BT
(1)

∆ ⊢ double : BT
(2)

∆ ⊢ bool : BT
(3)

∆(α) = κ

∆ ⊢ α : κ
(4)

∆ ⊢ τi : κ κ 6= LVL

∆ ⊢ (τ1, τ2) : κ
(5)

∆ ⊢ τ : BT

∆ ⊢ τ : GT
(6)

∆ ⊢ τ : GT

∆ ⊢ τ : TYP
(7)

∆ ⊢ τ → τ ′ : TYP
(8)

∆, α : LVL ⊢ τ : TYP

∆ ⊢ 〈α〉 → τ : TYP
(9)

∆ ⊢ τ : GT

∆ ⊢ [τ ] : GT
(10)

∆ ⊢ τ : BT

∆ ⊢ [τ ]〈γ〉 : GT
(11)

∆ ⊢ Z : LVL
(12)

∆ ⊢ γ : LVL

∆ ⊢ 1 + γ : LVL
(13)

A type environment Γ, is a set of type assumptions of the form
x : σ, mapping program variables to type-schemes:

Γ ::= x : σ,Γ | ǫ

We define the relation σ ≻∆ σ′ to denote that a type scheme σ′

is an instance of another type scheme σ.

∆ ⊢ τ : κ κ 6= LVL

∀α.σ ≻∆ σ[α 7→ τ ]
(14)

σ ≻∆ σ
(15)

σ ≻∆ σ′ σ′ ≻∆ σ′′

σ ≻∆ σ′′
(16)

The type system allows inferences among sentences of the form
∆,Γ ⊢γ e : τ , which are read: “under the assumptions ∆,Γ the
expression e has type τ at level γ”. The typing rules are shown
below. The γ annotation on the turnstile, is used to restrict how
array computations can be nested. In all other rules than the rule
for concat, γ is passed on unchanged, but in subexpressions of a
concat construct, only operations on a lower level can be used.

5.2 Dynamic Semantics

We now present the semantics of the language, which will aid
understand how FCL terms can be compiled and, in particular, how
level-types guide the compilation.

The evaluation relation, we define below, is annotated with a
location. Locations emulate the hierarchical structure of a parallel
machine, and are of the form:

loc ::= Thread(thread id) thread id ∈ N

| Group({loc1, . . . , locn})

Locations relates to levels and we introduce similar shorthands for
warps, blocks and grids..

Warp(
−→
loc) = Group({Thread(loc1), . . . ,Thread(locn)})

Block(
−→
loc) = Group({Warp(loc1), . . . ,Warp(locn)})

Grid(
−→
loc) = Group({Block(loc1), . . . ,Block(locn)})

We also introduce a relation, loc ⊲ γ, which defines whether
the location loc is respecting the level γ:

Thread(thread id) ⊲ Z
(31)

loci ⊲ γ for all i

Group(loc) ⊲ 1 + γ
(32)
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Expression typing ∆,Γ ⊢γ e : τ

∆,Γ ⊢γ i : int
(17)

∆,Γ ⊢γ d : double
(18)

∆,Γ ⊢γ b : bool
(19)

∆,Γ ⊢γ ei : τ, for all i ∆ ⊢γ τ : GT

∆,Γ ⊢γ [e1, . . . , en] : [τ ]
(20)

∆,Γ ⊢γ e1 : τ1 ∆,Γ ⊢γ e1 : τ2
∆,Γ ⊢γ (e1, e2) : (τ1, τ2)

(21)

∆,Γ ⊢γ e : (τ1, τ2)

∆,Γ ⊢γ fst e : τ1
(22)

∆,Γ ⊢γ e : (τ1, τ2)

∆,Γ ⊢γ snd e : τ2
(23)

Γ(x) = σ σ ≻∆ τ ∆ ⊢γ τ : TYP

∆,Γ ⊢γ x : τ
(24)

∆,Γ ⊢γ e1 : τ −→α = ftv(τ) ∆, (Γ, x : ∀−→α .τ) ⊢γ e2 : τ

∆,Γ ⊢γ let x = e1 in e2 : τ
(25)

∆,Γ ⊢γ e1 : τ ′ → τ ∆,Γ ⊢γ e2 : τ ′

∆,Γ ⊢γ e1 e2 : τ
(26)

∆,Γ ⊢γ e : 〈α〉 → τ ∆ ⊢γ α : LVL

∆,Γ ⊢γ e 〈γ〉 : τ [α 7→ γ]
(27)

∆, (Γ, x : τ ′) ⊢γ e : τ

∆,Γ ⊢γ fn x => e : τ ′ → τ
(28)

(∆, α : LVL),Γ ⊢γ e : τ

∆,Γ ⊢γ fn 〈α〉 => e : 〈α〉 → τ
(29)

∆,Γ ⊢γ e1 : int ∆,Γ ⊢γ e2 : [[α]〈γ〉]

∆,Γ ⊢1+γ concat e1 e2 : [α]〈1 + γ〉
(30)

Values in FCL are either base values (bv), pull arrays, push arrays,
or delayed concatenation of push arrays.

v ::= bv (base values)

| [e1, . . . , en] (pull array)

| [e1, . . . , en]〈γ〉 (push array)

| concatDelay e1 e2 (delayed concat)

We extend the typing relation above to include typing of values.

Value typing ∆,Γ ⊢γ v : τ

∆,Γ ⊢γ ei : τ ∆ ⊢γ τ : GT

∆,Γ ⊢γ [e1, . . . , en] : [τ ]
(33)

∆,Γ ⊢γ ei : τ ∆ ⊢γ τ : BT

∆,Γ ⊢γ [e1, . . . , en]〈γ〉 : [τ ]〈γ〉
(34)

∆,Γ ⊢γ e1 : int ∆,Γ ⊢γ e2 : [[τ ]〈γ〉]

∆,Γ ⊢1+γ concatDelay e1 e2 : [τ ]〈1 + γ〉
(35)

We now define the promised dynamic semantics of FCL. Due to
space limitations, we consider just the interesting cases involving
force. The first two rules are administrative fusion rules, which
an implementation can choose to implement at compile time (for
space reasons, we show only a subset of the administrative rules
here).

Only programs of type [α]〈γ〉 can be fully evaluated under this
semantics. For instance, we require that a reduction-kernel returns
a singleton push array instead of an integer. This requirement is

Small-step semantics e →֒loc e

mapPull e [e1, e2, . . . , en] →֒loc [e e1, e e2, . . . , e en]
(36)

mapPush e [e1, e2, . . . , en]〈γ〉 →֒loc [e e1, e e2, . . . , e en]〈γ〉
(37)

concat e1 e2 →֒loc concatDelay e1 e2
(38)

force [bv1, . . . , bvn]〈lvl〉 →֒loc [bv1, . . . , bvn]
(39)

ei →֒Thread(t) e
′

i

force [bv1, . . . , ei, . . . , en]〈thread〉

→֒Thread(t) force [bv1, . . . , e′i, . . . , en]〈thread〉

(40)

ei →֒loci e
′

i for all i ∈ [1, n]

force [e1, . . . , en]〈lvl〉

→֒Group(loc) force [e′1, . . . , e
′
n]〈lvl〉

(41)

e →֒loc m force [−→ei ]〈lvl〉 →֒∗

loci
[
−→
bvi] for all i ∈ [1, n]

force (concatDelay e [[−→e1 ], [
−→e2 ], . . . , [

−→en]]〈lvl〉)

→֒Group(loc) [
−→
bv1,

−→
bv2, . . . ,

−→
bvn]

(42)

intentional; all programs must be explicit about the computation
hierarchy and, currently, only push arrays allows for an annotation
that specifies the hierarchy of the computation.

PROPOSITION 1 (Type Preservation). If ∆,Γ ⊢γ e : τ and
e →֒loc e′ for some location loc ⊲ γ, then ∆,Γ ⊢γ e′ : τ .

PROPOSITION 2 (Progress). If ∆,Γ ⊢γ e : τ for some location
loc ⊲ γ, then either e is a value or e →֒loc e′ for some e′.

6. Related Work

FCL builds on previous work on Obsidian [19], from which both
the concepts of push arrays and level-variables originate. FCL
distinguishes itself from Obsidian, by adding support for more
involved interleaving patterns, being a self-contained language and
not allowing meta-programming.

Obsidian and FCL are not the first languages for hierarchical
parallel machines. Sequoia is a imperative hierarchical language
[10], inspired by previous work on Parallel Memory Hierarchies
(PMH) [2], supporting both cluster computing through MPI and
programming multiple GPUs. Both Sequoia and PMH models a
parallel machine as a tree of distinct memory modules. Programs
are written to be machine independent, where function calls cor-
responds to either executing a subtask on a child in the hierarchy
(copying data to this memory module) or staying in the same mem-
ory module. Thus, the call/return of a subtask implies that data
movement through the machine hierarchy might occur. The stop-
ping criteria for recursive functions are left out, and instead spec-
ified separately in a mapping specification, that details how an al-
gorithm maps to a concrete machine. Programs can also involve
tunable parameters and various variants of the same algorithm; the
mapping specification also controls these choices. Mapping specifi-
cations can potentially be automatically generated. The ideas from
Sequoia are further generalized in the work on Hierarchical Place
Trees [20].

Another hierarchical data-parallel language is HiDP by Zhang
and Mueller [14] for hierarchical GPU-programming. In addition
to the hierarchies of Obsidian and FCL, they add two sub-warp lev-
els of size 4 and 8, respectively. Parallelism is embodied as nested
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parallel-for loops (which are called map-blocks) together with a
set of built-in parallel array-operators (partition, reduce, scan, sort,
reverse). Arrays are multi-dimensional, and nested irregular seg-
mented arrays are built-in. For optimization purposes, it is how-
ever also possible to use regular arrays. Fusion decisions and use of
shared-memory are completely controlled by the compiler.

The language discussed by Dubach et al. [18] is also related to
FCL, operating at a similarly low-level. The main idea is to build
a language can be automatically tuned to hardware, by applying
search strategies on the provided set of rewrite rules. It might
be interesting to build a similar search-based rewrite-engine on
top of FCL, and allow the user to express rewrite-rules. Another
interesting aspect of this work is its support for programming with
vector-instructions (such as adding two int4 in OpenCL), which
would correspond to a layer between warp-level and thread-level
in Obsidian and FCL.

The hierarchy in FCL and Obsidian might also be compared to
the concept of locales and sublocales in the Chapel language [7].

Functional approaches to GPU computing have typically con-
centrated on optimizing compilers that are intended to shield the
user from the need to understand (or control) details of the GPU.
Examples include Futhark [12], Accelerate [6], Delite [5], Harlan
[13], and Nessie [3]. These projects might perhaps be considered
to be at roughly the same level as NVIDIA’s Thrust library [16].
FCL and Obsidian are rather at the level of NVIDIA’s CUB library,
which provides reusable software components for every level of the
GPU hierarchy [17].

7. Conclusion and Future Work

We have presented FCL, a functional language for GPU algorithms.
FCL is work in progress. Currently only device-code is generated,
and host-code has to be written manually. In addition, memory is
currently allocated implicitly, and it is thus not possible to reuse
the same memory. We would want the possibility of writing an in-
place version of reverse, writing the reserved array back to the
same global-array.

Our limitation of only having one-dimensional arrays will in
many cases lead to unnecessary shape-computations, as we saw in
the transpose example. We will thus investigate how shapes can be
introduced, such that split2DGrid, would split the array into a 2D
array of 2D arrays.

Future work also includes bank-conflict avoidance, use of vec-
torized GPU-instructions, and the addition of sequential loops with
array updates, perhaps in the style of Futhark [12].

Finally, we would like to implement some larger example pro-
grams in FCL, and attempt to use FCL as an intermediate language
for our APL-compiler [9].
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