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Abstract
Dynamic probe injection is now a widely used method to debug
performance in production. Current techniques for dynamic probing
of native code, however, rely on an expensive stop-the-world ap-
proach: binary changes are made within a safe state of the program—
typically in which all the program threads are halted—to ensure that
another thread executing the modified code region doesn’t step into
a partially-modified code.

Stop-the-world patching is not scalable. In contrast, low over-
head, scalable probes that can be rapidly toggled on and off in-place
would open up new use cases for statistical profilers and language
implementations, even traditional ahead-of-time, native-code com-
pilers. In this paper we introduce safe cross-modification protocols
that mutate x86 code between threads but do not require quiescing
threads, resulting in radically lower overheads compared to exist-
ing solutions. A key problem is handling instructions that straddle
cache lines. We empirically evaluate existing x86 architectures to
derive a safe policy given current processor behavior, and we argue
that future architectures should clarify the semantics of instruction
fetching to make cheap cross-modification easier and future proof.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging — Binary instrumentation; C.4 [Per-
formance of Systems]: Measurement Techniques

Keywords dynamic instrumentation, application profiling

1. Introduction
Modifying program binaries while they are running is an im-
portant technique in operating system kernels [1], JIT compil-
ers [20], and simulators [16]. Projects including DynInst [4] and
Intel Pin [12] have explored the role of binary instrumentation in
performance modeling and analysis. High-quality frameworks for
dynamic probes—such as DTrace [11]—have also popularized the
use of binary modification in interactive performance debugging.

In this paper we focus on probes rather than arbitrary rewrites
of binaries. We seek to determine whether modern x86 hardware
can support scalable, rapid-toggling dynamic probes. Semantically,
the concept of a probe is simple, and yet their uses are wide-

ranging. A probe is merely a conditional function call inserted into
an application at runtime or compile time:

if (probe_active) (*funptr)( probe_id );

The user of the probing library determines the function to attach
(funptr), and we assume some identifier, probe_id, to distinguish
from which probe site the call originates. Probes inserted statically
are guarded by a conditional, as above. Yet this incurs overhead—not
just branches, but loading distinct probe_active flags for each probe
site. If we aim to insert probes into all functions of an application
some of the time, then this application can contain thousands of
probe sites.

The alternative is to insert probes dynamically. Yet, in spite of a
great deal of work on binary instrumentation tools for x86 (reviewed
in Section 11), to our knowledge there are no solutions for scalable
probes, scaling to large numbers of threads, probes, and toggle
events. Specifically, we seek a solution meeting these criteria:

• Minimal startup overhead on the critical path
• No global barriers across application threads
• Rapid, threadsafe toggling of individual probes
• Low or no overhead for inactive probes

The development of such a tool would enable moving some
powerful offline analyses online. So why do existing solutions
use expensive strategies—out-of-place binary translation of all
instructions, ptrace to stop processes, or calls into the kernel on
every probe invocation? One reason is the need to support arbitrary
program transformation, not just dynamic probe insertion. But
another fundamental reason is the combination of mutating code in
place and running code on multiple cores can be unsafe.

Problems arise at the intersection of the architecture’s relaxed
memory model and instruction fetch behavior. A thread modifying
code running on other threads is called cross-modification. If a
thread modifies code memory, when will other threads see it? If
a modified instruction crosses a cache-line boundary, will other
threads observe partial writes?

This paper asks whether current x86 hardware can support safe
cross-modification in practice. And, further, what clarifications of
instruction fetch semantics would make cheap, scalable probes
officially supported by future processors? We quantify the benefits
of these cross-modification techniques as an argument for this future
clarification.

In this paper, we make the following contributions:

• We develop a model for x86 instruction fetch and determine
empirically that it is correct on modern x86 implementations.

• We use this model to create novel cross-modification algorithms
for x86 that do not rely on global barriers and demonstrate that
they outperform previous approaches.



// -- OPTION 1 --
Store modified code (as data) into code segment;
Jump to new code or an intermediate location;
Execute new code;

// -- OPTION 2 --
Store modified code (as data) into code segment;
Execute a serializing instruction;

// For example, CPUID instruction
Execute new code;

Figure 1. Portable self-modification protocols for single-threaded
applications. Reproduced from Intel’s Software Developer’s Manual,
Section 8.1.3 [15].

• We provide libraries for modifying arbitrary instructions in a
word (wordpatch), and enabling/disabling specific CALL instruc-
tions (callpatch).

• We show how to use wordpatch and callpatch capabilities to
build a proper user-facing probing library (libfastinst), and we
then evaluate these libraries in terms of (1) microbenchmarks and
(2) in the context of an example instrumentation-based profiler,
which we apply to parallel and sequential C/C++ applications.

2. Background: Memory Model
Imperative programmers are familiar with the traditional sequential
execution model where the system executes instructions one at a
time in program order, entirely completing each one before the next
one starts. Modern microprocessor architectures contain networks,
caches, write buffers, and out-of-order superscalar pipelines that
do everything they can to accelerate sequential programs short of
violating this model—except with respect to self-modifying code.

Instruction fetch and issue are often a bottleneck in a super-scalar
pipeline, particularly for complex instruction sets like x86 [28].
Much of Chapter 2 in Intel’s Software Developer’s Manual (SDM)
is devoted towards high-level descriptions of optimizations like
prefetching, macro-op fusion, µop fusion, µop caching, and loop
streaming, all of which transparently accelerate read-only code
execution but violate sequential execution for read-write code
execution [15].

In order to preserve sequential execution, portable self-modifying
x86 code is required to follow one of the two protocols laid out in
Section 8.1.3 of the SDM, reproduced in Figure 1. Ignoring these
protocols results in model-specific behavior. Historically however,
they are adequate for self-modifying code.

Shifting to parallel programs dramatically complicates the pic-
ture. New parallel programmers naively expect shared memory
systems to be sequentially consistent [19], naturally assuming that
there is global total order of memory operations that is consistent
with program order in each thread. Unfortunately, the architectural
optimizations detailed above that work so well for sequential code
permit execution histories that violate sequential consistency.

Modern programming languages like Java and C++ account for
this using programmer-centric memory consistency models that
allow application developers to synchronize their programs and
determine if they have data races or are data-race free, and thus
guaranteed to result in sequentially consistent executions [2, 21,
5]. Low-level programs written in assembly (or the object code
generated by a compiler) must instead base their expectation of
behavior on the hardware-specific memory consistency model for
their architecture [10].

The x86 memory consistency model, described in the SDM
and formalized as x86-TSO in [27], provides the lock prefix to
provide atomicity to loads, stores, exchanges, and some read-modify-

// -- Action of Modifying Processor --
memory_flag = 0;
Store modified code (as data) into code segment;
memory_flag = 1;

// -- Action of Executing Processor --
WHILE (memory_flag != 1)
Wait for code to update;
ELIHW;
Execute serializing instruction; // e.g: CPUID
Begin executing modified code;

Figure 2. Portable cross-modification protocol for multi-threaded
applications. Reproduced from Intel’s Software Developer’s Manual,
Section 8.1.3 [15].

write operations like compare-and-swap, and provides memory
fence instructions to constrain memory access ordering. While
complicated, this model allows experienced low-level programmers
to synchronize their applications and predict the possible execution
histories. As with the sequential model, violations of x86-TSO can
be observed by self-modifying code.

Again, the Intel SDM provides a portable protocol to follow to
constrain the execution of cross-modifying code—the label they give
to self-modifying code that may modify instructions being run on
a separate thread. This protocol leverages x86-TSO to synchronize
threads on normal data, safely converting cross-modification to
a form of data-race-free self-modification. Unlike the protocol
in Figure 1, Figure 2 is entirely inadequate for interesting use
cases. Though no formal model is provided by Intel, our reading
of Figure 2 is that correct cross-modification requires (1) that
no processor may execute code while it is being modified, and
(2) that each processor must execute a local CPUID instruction
after a modification completes but before executing the modified
code. Establishing (1) requires global synchronization before each
execution of code that may have been modified. This common-
case cost can be amortized using a stop-the-world-and-instrument
approach, but is the key bottleneck that we must avoid during high
frequency, toggled operation.

For our purposes, Figure 2 cannot be used to update arbitrary
executing code as the memory_flag metadata, and while control
flow, need to exist before the modification occurs, a catch 22
given that we are trying to modify x86 code without that existing
infrastructure. Furthermore, while the described protocol supports
a trivial one-shot style cross-modification, at least quiescence is
required to correctly toggle code locations—there is no other way
to ensure that a serializing instruction will be executed by every
thread each time a code location is toggled. (Note that Figure 2
does not establish condition (1) from above when the code location
undergoes a sequence of asynchronous modifications.)

Its scalability and/or latency notwithstanding, quiescence may
be reached in a number of ways, e.g., through synchronous barrier-
like code, timer or interprocessor interrupts, through ptrace, or
methods such as those used in, e.g., userspace read-copy-update
algorithms [9].

We reject these techniques as unsuitable for our purpose. For
scalable probes we must be able to perform cross-modification
without quiescence. The Intel SDM clearly states that ignoring the
protocol for cross-modification, i.e., introducing a modification race,
will result in implementation-specific behavior. Our task then is to
characterize the instruction fetch and dispatch operations of the x86
architecture according to a useful abstract model, verify this model
on a range of x86 implementations, and show how this model can
be used to effectively allow cross-modification on the x86 platform.



3. Formal Requirements
The cross-modification approach to instruction patching that we
describe in Section 5 will rely on two assumptions about the
instruction fetch pipeline: (1) that there exists an upper bound on
the time between when one processor stores a single byte to a code
location and all other processors observe this change, and (2) that
processors do not observe instruction byte values that were never
written. Furthermore, the actual algorithms defined in Sections 5
and 6 depend on the assumption that stores to words within cache
lines are atomic with respect to instruction fetch, i.e., that we can
store up to eight bytes (in x86_64) to a single cache line in a single
instruction and no processor will see a partial value from these
eight bytes. We formalize these assumptions relative to Sewell et
al.’s x86-TSO [27] here and validate them on a variety of x86_64
implementations in Section 8.1.

x86-TSO models a global memory plus a store-buffer per hard-
ware thread, and provides an event-based semantics structured
around six events: write, read, memory fence, lock, unlock, and
internal progress of writes from store buffers to shared memory.
Writes, Wp[a] = υ, and reads, Rp[a] = υ, are specific to a proces-
sor p, address a, and value read or written υ. But this model does not
deal with self-modifying code or misaligned or mixed-size accesses.
For our purposes we need to further model operations on memory
areas straddling cache lines.

Assume there exists a cache line size, B, (the size of read and
write events in x86-TSO). Assume also that there exists a word
size, W ≤ B, such that W contiguous bytes may be modified
atomically. While the x86-TSO model does not include misaligned
memory operations, we can model a write that straddles cache lines
as two write events. Likewise an atomic write, which is normally
locked, becomes a pair of events bracketed by lock and unlock
events, e.g.: Lp;Wp[a];Wp[a+ k];Up. Indeed, this corresponds to
the observed behavior that instructions such as compare-and-swap
work on misaligned addresses—at least on data accesses. Instruction
fetch on code memory is another matter.

Instruction fetch is not present in the x86-TSO formalism, so
we must add it. We assume all instructions are encodable at some
size I ∈ [Imin, Imax] where Imin ≤ Imax < B. We don’t directly
account for architectural state or microarchitectural details, rather
we assume that processors fetch instructions by reads, RI . As with
writes, reading a straddling instruction requires two separate reads to
consecutive cache lines. However, instruction fetch follows a weaker
memory model than normal reads. First, lock/unlock instructions are
ignored, as specified in the SDM. Second, µop caches prevent some
reads to code memory from being issued. We capture this weaker
model as follows:

• Each processor logically issues an instruction read, RI
p[PC] =

υ, of the B-sized cache line containing PC, in a bounded time
window before each time it executes the instruction at PC (i.e.
changes register state).

• Instruction read eventsRI
p can be reordered past lock and unlock

events Lp/Up.
• An adversarial “µop cache”, marks a subset of read events as

elided. An elided event, E(RI
p[PC]), is still placed in the event

graph, but the value υ returned is the value of last preceding non-
elided read, RI

p[PC] = υ provided that there was a previous
read to cache.

• There exists an upper bound Tmax, such that a readRI
p[a] cannot

be elided if the time since last read RI
p[a] is greater than Tmax.

• Times such as Tmax are measured as real, continuous time,
which has a monotonic relationship with number of instructions
executed on each processor p, and where we assume an upper
bound on the real time between any two instructions on the same
processor.

// -- Wordpatch API --
bool patch(void *address, uint64_t value);
bool start_patch(void *address, uint64_t value);
bool finish_patch(void* address);

// Callpatch API
bool activate_call(void* address, uint32_t offset);
bool deactivate_call(void* address);

// Fasinst API
struct ProbeMetaData {

ProbeId probe_id;
string function_name;
enum ProbeType { ENTRY, EXIT};

}

void probe_discovery_callback(ProbeMetaData pmd);
void register_callback(void* callback);
bool activate(ProbeId probe_id, void* probe_ptr);
bool deactivate(ProbeId probe_id);

Figure 3. Lower-level patching APIs and fastinst probe API

Thus, while this models an incoherent instruction cache, the
upper bound Tmax, provides a form of eventual consistency, or more
precisely, a bounded staleness property. The algorithms described
in Section 5 are safe given the above model, and perform better
given smaller Tmax. The optimized call-site patching in Section 6
can operate even if Tmax does not exist, and example profiling
application we describe in Section 9 work even in the extreme
case of fully inconsistent, never-invalidated µop caches. Thus this
paper presents a sliding spectrum of solutions that improve with the
strength of architectural guarantees. And in all cases, our proposals
are more efficient than “stop the world” probing.

4. Programming Interface Overview
Now, with our memory model in mind, we describe the API we
provide for cross-modifying instructions in memory, starting at the
low-level and working up to a complete notion of dynamic probes.
Figure 3 illustrates the low level and higher level APIs in use.

Synchronous Word Patching: The basic patch operation in Fig-
ure 3 must replace a single word atomically, such that concurrent
threads will only execute the code before or after the patch. It is
blocking but may return failure under contention—our expectation
is that at least one concurrent patch operation will succeed, thus the
patch should be livelock free. The patch interface requires three
additional constraints for safe use.

• Writable code: The patch address must be writable. The client
may do this eagerly or lazily as part of a signal handler.

• Layout Equivalence: The patch operation must not modify the
set of valid PC addresses in the program. Furthermore, the patch
value may only modify bytes corresponding to a single PC, i.e.,
instruction.1

• Disjoint update: no addresses a1, a2 may be concurrently modi-
fied if 0 < |a1 − a2| < 8. This is because a locking implemen-
tation may map locations a1 and a2 to different locks.

Asynchronous Word Patching: patch provides a basic building
block that is sufficient for the full probing library we want. However,

1 This constraint can be relaxed. Given the implementation in Section 5
multiple PCs can be updated simultaneously with the same effect as
a sequence of independent updates to each instruction, with the added
constraint that the patches occur atomically. Furthermore it should be
safe to allow additional PCs to be introduced during patching, though this
complicates formalization greatly.



as we will demonstrate in Section 5, it may be a high latency
operation on platforms with a high Tmax. Thus we also implement
an asynchronous variant, that separates the act of initiating a patch
from finishing the patch. The start_patch operation in Figure 3
has the same interface constraints as patch but can return before the
patch is complete. The finish_patch operation must be called to
complete each patch operation, and will return true when the patch
completes successfully.

We implement both the synchronous and asynchronous word
patching interface in the libwordpatch library.

Call Toggling: While word patching allows the code to tran-
sition between any two valid sequences, our scalable probing
client works within a more restricted space—merely toggling
a five-byte CALL instruction on and off. We define the spe-
cific activate_call/deactivate_call interface for this operation,
where the offset argument to the activate_call instruction is the
appropriate four-byte position-independent offset to either the target
function or procedure-link-table entry for this call site.

As with the word patching interface, call sites must be writable.
Call patching will maintain layout equivalence internally, and still
requires disjoint updates. In addition the client must know the correct
four-byte offset values and thus each call patch site may require
additional initialization.

We implement the call patch interface in the libcallpatch
library.

Scalable Probes: Irrespective of which patching variant we use,
we must build up from one-word patches to full insertion of dynamic
probes. At that level, our goal is to dynamically attach an indirect
call to a function pointer. Providing this kind of API is the goal
of the fastinst interface in Figure 3 and corresponding library,
libfastinst (Section 7). Here we’ve abstracted from raw patch
address to probe_id locators, because a probe provider will have
its its own means of identifying and enumerating valid probe sites.
Because our approach relies on in-place modification, probe sites
are not arbitrary code locations; they must start out either:

• activated: containing a CALL/JMP instruction, or
• deactivated: containing any relocatable code sequence of at least

five bytes (often a NOOP)

Notice that on x86_64 the function pointer &myProbe is a 64-
bit virtual address. A call to this address would require more than
five bytes (with a register or memory indirect call). Thus, even
with the prerequisites above, there is not room at the patch site to
dynamically generate the full code for the call. Rather, we use the
standard technique of inserting a short relative jump which calls out-
of-line code to: do metadata lookup, execute displaced instructions
from the patch site (if needed), and execute the full call sequence to
the user-specified function pointer.

The client of the fastinst API also needs to register a callback
for probe discovery. Whenever the probe provider discovers a new
probe—either at startup or on first invocation—it will invoke this
callback with a probe metadata structure that includes: the function
in which it resides, if it is an entry or exit probe for that function, etc.
The client can cache the probe ids during discovery and use them in
subsequent probe API operations.

Finally, the APIs above are designed for process self-instrumentation,
rather than the traditional approach (used by DTrace, PIN, LTTng,
SystemTap, Dyninst, etc) of a separate process that conducts in-
strumentation and receives events. We make this choice in order
to support transparent and lightweight deployment inside existing
applications (with a single LD_PRELOAD), and in this respect we use
a similar design to DynamoRio [6].

// -- Write an interrupt byte into the address,
// returns true if the byte was already an interrupt --
void int3_lock(address)

return (atomic_swap_byte(address, INT3) != INT3);

bool patch(address, value)
if (not is_straddler(address))

*address = value;
return true;

else if (int3_lock(address))
wait();
write_back(address, value);
wait();
write_front(address, value);
return true;

else return false;

Figure 4. Synchronous word-patching algorithm

5. Word Patching
In this section we present an algorithm for applying patches for
words that may straddle cache line boundaries. The algorithm is
based on the processor model presented in Section 3 and uses wait
times that exceed Tmax to ensure that no partially written patches are
fetched for execution. By locking patch-sites, the patching algorithm
is also safe in situations where there is more than one thread
concurrently applying patches, with the aforementioned assumption
of no partially overlapping patch-sites.

The implementation of the patching algorithm, patch, is outlined
in Figure 4. Patches that do not straddle a cache line are applied as a
single store operation. Given our formal model, this operation can be
done consistently without extra synchronization, and is guaranteed
to be seen by concurrent processors within time Tmax.

The patches that do straddle a cache line boundary, however, are
applied as independent newfr and newbk parts, before and after the
cache line boundary, respectively. The contents of memory before
application of the patch will be referred to as the oldfr and oldbk.
When patching a straddler, patch performs the following operations:

• Try to lock the patch site: The int3_lock operation uses a trap
instruction to try to lock the patch site. The trap instruction also
protects the patch site from threads arriving at the address after
patching has been initiated. These threads will go into a signal
handler and spin until the patch has been completely applied.
This ensures consistency.

• Wait: A wait of Tmax prevents views of oldfr combined with
newbk.

• Apply back part of patch: write the newbk.
• Wait: This wait of Tmax prevents views of newfr and oldbk.
• Apply front part of patch: This completes the patch and also

unlocks the patch-site by overwriting the trap instruction.

In Figure 5 we show what the memory contents will be during
the process outlined above. The example shown straddles a cache
line boundary after the third byte and we exchange a call instruction
with a 5 byte NOOP. In Section Section 8.1 we estimate the Tmax

required between the writes in the algorithm by testing.

5.1 Asynchronous Protocol
Since the patch algorithm for patching straddlers involves periods
of waiting, it is natural to hide this latency with an asynchronous
implementation. The API for asynchronous patching consists of two
functions, start_patch (Figure 6) and finish_patch (Figure 7).

The start_patch operates on non-straddling addresses through
the same synchronous mechanism used in patch. For straddlers,
it adds a meta-data object, a Patch object, to a global table. The
Patch object is created in the add_patch function and contains: a



Figure 5. Patching straddlers

bool start_patch(address, value)
if (not is_straddler(address))

*address = value;
return true;

else if (int3_lock(address))
timestamp = get_current_time();
add_patch(address, value, timestamp);
return true;

else return false;

Figure 6. Algorithm to starting an asynchronous patch.

timestamp, patch value to apply, a lock, and a State indicating at
what stage of application this patch is in. The states are:

• FIRST_WAIT: The trap instruction has been written at the patch
address and we are waiting for Tmax time to elapse before
writing the back part of the patch.

• SECOND_WAIT: The back part has been written and we are waiting
for enough time to pass before writing the front.

• FINISHED: The patch has been completely applied.

The finish_patch function tries to move an active patch location
to a new state, returning true if the patch is FINISHED. It applies
the same basic protocol as the synchronous patch algorithm, and
can only transition state if enough time has passed since the patch
transitioned into the current state.

Both the synchronous and asynchronous protocols are fast
and scalable for non-straddling locations. Patching straddlers is
potentially slow but remains scalable. The actual straddler patch
latency depends on the system-specific Tmax and can be on the order
of several thousand cycles, which can also impact the read path given
the INT3 lock, however there are no global barriers for readers and
patch sites are independent. Furthermore separate threads can patch
disjoint locations without interfering. The asynchronous version
goes further and allows higher patching throughput by allowing
many outstanding, concurrent patches initiated by the same thread.
In Section 8 we thoroughly evaluate both protocols.

6. Restricted Call Toggling
Given the restricted interface provided for call toggling defined
in Figure 3, the observation that the patch operation in Figure 4

bool finish_patch(address)
if (not is_straddler(address))

return true;
Patch p = find_patch(address);
/* synchronize finish */
if (not trylock(p.lock))

return false;
else if (p.state == FINISHED)

unlock(p.lock);
return true;

else if (not t_max_elapsed(p.timestamp))
unlock(p.lock);
return false;

else if (p.state == FIRST_WAIT)
write_back(address, p.value);
p.timestamp = get_current_time();
p.state = SECOND_WAIT;
unlock(p.lock);
return false;

else if (p.state == SECOND_WAIT)
write_front(address, p.value);
p.timestamp = 0;
p.state = FINISHED;
unlock(p.lock);
return true;

/* unreachable */

Figure 7. Algorithm to further the asynchronous patch.

simply requires a single non-blocking store operation, and the
specific encoding of PC-relative CALL instructions in x86_64,
we can construct an algorithm to handle all PC-relative CALLs
without depending on WAIT and Tmax. We consider each possible
straddle point within the CALL instruction separately, and find a
(de)activation solution that requires changing only single cache
line—either front or back, but not both. As with word patching, call
patching depends on the eventual visibility of modified instructions,
i.e., that there exists a Tmax, but the value of Tmax does not
bound the toggle performance. The guarantee to clients, in turn,
is eventual delivery of the modified behavior, which is useful for
instrumentation applications that are statistical in nature to start with.
Even with an unbounded Tmax it would still be possible to use the
callpatch API with the assumption that only the current core will
see the changes, but that nothing will go wrong in other cores.

As a short PC-relative CALL requires five bytes, an 0xE8 prefix,
and a four-byte little endian offset. The instruction will push the PC
plus 5 bytes onto the stack as the return value, add the immediate
offset to the current PC and jump to that new location. We examine
the four possible interior straddling points, transforming them from
straddler patches to non-straddling operations.

• 1|4 split: In this case the straddle point occurs right after the
CALL instruction opcode (0xE8). To deactivate the call we
change the back 4 bytes to the relative address of a degenerate
trampoline (a ret instruction). In our current implementation
we generate such a trampoline lying within a 232-byte offset
and then cache the trampoline address so that it can be used in
subsequent deactivations of any patch sites within reach of the
trampoline2. Patching in the original 4 byte offset reactivates the
call.

• 2|3 split: In this case we deactivate the call by rewriting the two
bytes in front of the split into a two-byte relative jump to the that

2 A number of alternatives exist. If the target is a PLT entry—common since
the probe libraries are often dynamically linked—we may use the unused
linkage bytes there. It is also possible to use a return instruction lying inside
the function being patched as the trampoline. This is also a good fall back
in the unlikely case that we cannot find space for a trampoline due to the
virtual memory being dense in that region.



void __cyg_profile_func_enter(void* func_addr,
void* call_site_addr);

void __cyg_profile_func_exit(void* func_addr,
void* call_site_addr);

Figure 8. -finstrument-functions added functions.

skips over the back of the instruction. Restoring the original two
bytes reactivates it.

• 3|2 and 4|1 splits: These cases can be reduced to the 2|3 case
where only the first two bytes of the front cache line are modified.

7. Full Dynamic-Probe Implementations
The main concern of call toggling and word patching is to safely
apply the specified patch. A full probing implementation requires
a mechanism for enumerating these patch sites and calculating
the byte sequences to be patched in for (de)activating the probes,
potentially caching them per probe site for efficiency reasons. We
provide this at the high-level libfastinst library that dynamically
attaches calls to full 64-bit function pointers.

Conventions for probe starting state and location discovery are
tightly coupled. Many different compiler conventions are possible
for automatically inserting and recording the locations of probes.
Here we focus on the widely available -finstrument-functions
probe provider, where the basic idea is to have the compiler
arrange for call instructions to be already present, but at un-
known locations in the application. In this provider, we use the
-finstrument-functions compiler option to systematically create
call instructions to known destinations. This flag instructs the C/C++
compiler to add the calls in Figure 8 to profiling enter/exit symbols
at function entry and exits.

Our probe provider in turn implements these cyg_* functions
and we link them using LD_PRELOAD at program start. Thus probes
start on and are deactivated when called (or in the background by a
daemon thread).

The cyg_* functions act as trampolines containing a call to the
user’s function pointer. The function pointer is held as part of per-
probe-site metadata. Thus a transition between active states with
different function pointers requires only modifying the metadata
entry to point to a different function. The modification is done as a
regular atomic without any involvement of wordpatch—mutating
program data rather than code. In contrast, an active→ inactive
transition is performed by disabling the call instruction, i.e., we
disable the call to cyg_* function using call toggling or word
patching to a 5 byte NOOP sequence. To reactivate the probe-site,
the call is toggled or the NOOP sequence is swapped again with
the original byte sequence. We cache these byte sequences in probe
metadata so that they do not need to recalculated at each probe
toggle.

Optimized argument passing: The first invocation sets up the
probe-specific metadata in a global data structure and invokes the
discovery callback. Existing cyg_* call sites could be left as-is,
because these calls already pass the call_site_addr that uniquely
identifies the probe. But this calling convention can be improved,
so the initialization routine also optionally sets up a fast path for
future invocations by injecting the newly generated probe id as an
argument to the cyg_* function in place of the func_addr. This
modification mutates the call site of the cyg_* function (and must
use libwordpatch to do so). Subsequent invocations use the probe
id to do an efficient array lookup—instead of a hash lookup on
an address—for retrieving probe metadata, since the generated
probe ids are dense. The initialization cost here is incremental since
uninvoked probes do not get initialized.
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Figure 9. Experimentally determining Tmax for a selection of
microarchitectures.

Alternative probe providers: Although we have used
-finstrument-functions in this paper, alternatives exist. For exam-
ple, the Intel compiler provides a __notify_intrinsic that ensures
a six byte probe site consisting of displaceable (position indepen-
dent) instructions. The linker registers probe meta data such as probe
address in an ELF table. We have developed another experimental
probe provider for Intel based on the __notify_intrinsic. This
probe provider reads the ELF table at program startup and initializes
probes up front rather than on first invocation during runtime.

Compiler involvement is required, however, for both
-finstrument-functions and __notify_intrinsic providers. It is
possible to create a more dynamic probe provider by leveraging a
stop-the-world binary instrumentation infrastructure like Dyninst
to inject the probes at runtime. In that case probe injection will be
a one time overhead after which libfastinst could take over probe
toggling operations. Hence the fastinst API allows for different
types of provider implementations, based on the same patching
infrastructure provided by wordpatch or callpatch underneath.

8. Evaluation
In this section we determine Tmax on a number of x86_64 imple-
mentations and then analyze the cost and scalability of individual
probe actions for both our library and a couple of competitors. For
probe costs we profile microbenchmarks and applications from the
SPEC CPU 2006 suite. The microbenchmarks relating to probe op-
eration costs in 8.2, 8.3 and 8.5 were run once while the scalability
tests in 8.4 were run 9 times in each configuration.

All parallel applications were run with 16 threads. We used
a machine running a Linux 3.19.0-28 kernel on two Xeon E5-
2670 CPUs with hyperthreading disabled for the benchmarks unless
otherwise stated.

8.1 Validating the Model
The model of Section 3 and patching algorithms of Section 5 require
an upper bound, Tmax, on the duration of wait needed to ensure
writes are visible to instruction fetch on other cores. We have
developed a stress test to empirically determine Tmax. The results
are shown in Figure 9, and the test uses the following algorithm:

• A patcher thread repeatedly activates and deactivates a cache-
line-straddling call-site. The call instruction can straddle the
cache line boundary in 4 different ways depending on where
within the instruction the cache line boundary occurs. We let
S ∈ {1..4} indicate the straddling position.

• N executer threads to repeatedly execute the patched instruction
sequence in a tight loop. We vary N in the range {2..6}.
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Figure 10. Distribution of probe activation and deactivation latencies for wordpatch and callpatch ∼10% straddlers.

Benchmark Initialization Cost (%)

h264ref 0.8
bzip 0.01
sjeng 0.1
perl 0.07
nbody 0.05
hull 0.02
blackscholes 0.001

Table 1. Probe initialization cost as % of process runtime for
programs in the SPEC CPU 2006 suite.

• Each variant as defined by N and S is run 5 times for a total of
100 tests.

The test is finished once the patcher thread has toggled the call
on and off 50 million times. A test is considered a failure if the
program crashes as the result of executing an illegal instruction or a
segmentation fault, which result from mixed front and back portions
of the instruction.

We evaluate on a selection of Intel x86 microarchitectures:
Nahalem (Xeon E7-4830), Sandy Bridge (Xeon E5-2670) and Ivy
Bridge (Core I7-3770). We vary wait time, measured in rdtsc ticks,
over the interval 0 - 2400 in increments of 100. In all single-socket
configurations no failures occurred with a wait of 600 ticks (as
reported by rdtsc) or higher on any of the test systems. Some
systems required less wait to stop showing failures, such as the
I7-3770 and the E5-4830 that are both failure free from a wait of
400 ticks and upwards.

The dual-socket system shows failures at higher waits, but also
hits zero failures and stays there. We use this dual-socket system for
all our remaining benchmarks. And, after adding a safety margin,
we use a wait time of 3000 on this platform. To determine these
parameters, deploying the libwordpatch (but not libcallpatch)
library requires an installation-time benchmark of the system to
determine this platform-specific number. If hardware vendors in the
future publish more detailed cross-modification specs, that would
obsolete this step.

8.2 Probe Initialization Costs
Probes require a one-time initialization, and these costs must be
quantified in order to validate our principle of minimal startup
overhead in the critical path. We measured average initialization
cost of a probe with a synthetic benchmark consisting of 20,000
probes. On Sandy Bridge the initialization cost is ∼18,000 cycles
on average. Next we ran an application benchmark in which every
probe site is initialized upon first invocation, but then permanently
deactivated. We report probe initialization cost as a percentage
of application runtime for SPEC benchmark applications. Table 1
shows that this cost doesn’t exceed 1% across all applications, with

Method Activation Deactivation Invocation

fastinst (sync):
non straddlers 300 120 35
straddlers 8850 8435 35

fastinst (callpatch) 432 315 35
JVM VolatileCallSite 995 55
JVM MutableCallSite 1432 83
Dyninst 1,929,244 995,447 320
DTrace ∼70,771 1176

Table 2. Average cost, in TSC ticks, of probe operations with sev-
eral dynamic instrumentation methods. Note that Java doesn’t have
an explicit notion of deactivation, rather deactivation is accom-
plished by setting the target to a a NOOP-function. DTrace (1.12.1)
numbers come from a different machine—a MacBook Pro, mid
2014, because DTrace is still not well supported in Linux—and
represent the time it takes to enable an already compiled probe
when using libdtrace, ordinarily DTrace probes are enabled on the
command line, in about a second.

a geomean of 0.15%. Additionally, due to the on-demand nature of
the -finstrument-functions probe provider, this cost is not paid
up front at once during program initialization time, so the effect on
program initialization is minimal.

8.3 Probe Activation and Deactivation Costs
Next we measured the probe toggling cost at the libfastinst
layer. The cost includes probe metadata lookup in addition to the
underlying patching costs of libwordpatch and libcallpatch, with
wait setting of 3000 cycles for wait-based protocols. We generated a
synthetic application with large number of instrumented functions
(20,000 probes) so that some of the probes would be in straddling
positions. Then we ran a probe deactivation pass (all probes starts
in active state by default) measuring time for each deactivation
call. Next we ran a reactivation pass measuring activation costs.
The histograms in Figure 10 summarize individual probe toggle
latencies for each of those probe operations. Synchronous probe
deactivation displays a bimodal behavior with the expensive mode
corresponding to straddler deactivations (with multiple waits in the
critical path). Asynchronous patching and callpatch show unimodal,
normal cost distributions. The cost of asynchronous patching is low
since it pushes the wait costs to a different thread than the calling
thread. The probe activation cost also follows a very similar pattern.

The average cost of probe activation/deactivation/invocation
are the vital statistics for any probing implementation. We count
invocation cost as the overhead to invoke an empty probe function
at the probe site. In our -finstrument-functions probe provider,
invocation cost is the cost of multiple jumps via cyg_* trampoline
calls as well as the cost of probe meta data lookup within cyg_*.
Invocation cost also includes time to execute additional instructions
relating to the calls to cyg_* (argument passing). Table 2 compares
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Figure 11. FastInst activate/activate throughput (left) and activate/deactivate throughput (right). Here we see that throughput is affected by
toggle rate, but scalability is not. Adding more threads executing the same probe site increases throughput linearly.
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the costs of several dynamic instrumentation methods executing on
a single core. We used Java OpenJDK 1.8 with a VolatileCallSite
for invokedynamic results.

One pattern we see is that many solutions—like DynInst and
DTrace, but also Intel Pin and others—support efficient invocation
once instrumentation is complete, but not rapid activation/deactiva-
tion. In order to support applications that rely on high-frequency
toggling—like the profiler in Section 9—first, libfastinst needs
to demonstrate lower constant factors for activation/deactivation,
which it does in Table 2. Second, it is necessary to scale to many
threads executing probe sites as well as toggling probes. Thus, in
the next section, we turn to scalability.

8.4 Scalability
In order measure the effect of probe toggling on hot code we again,
as in Section 8.1, use one thread that patches a hot probe site while
multiple threads execute. We varied the number of executor threads
and toggling frequency while observing the throughput of total
function calls through the probe site.

We tested two probe toggling modes with libfastinst run-
ning on libcallpatch. Activate/activate toggling mode replaces
an existing function pointer with another, while activate/deactivate

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1  10  100  1000  10000  100000  1e+06  1e+07

C
a
lls

 p
e
r 

se
co

n
d

Toggles per second

wordpatch non-straddler
wordpatch straddler

callpatch non-straddler

callpatch straddler
Java InvokeDynamic

Figure 13. Java invokedynamic with a VolatileCallSite and our
raw patch calls exhibit a similar pattern of throughput as frequency
of mutation of code memory increases. This shows the deleterious
effects of mutating hot code, but this stress test shows toggle rates
that are unrealistic even in aggressive instrumentation applications.

mutates the code to remove the call site. As outlined in Figure 12 the
throughput remains high and unaffected by toggling through 100K
toggles per second. Figure 11 illustrates the parallel scalability of
activate/activate and activate/deactive toggling.

Next, in Figure 13, we compared raw patch toggling between
two calls, compared against Java VolatileCallSite, which is
a version of MutableCallSite with similar semantics to patch.
All variants show degradation in throughput at sufficiently high
frequencies, but wordpatch-straddler and Java fare much worse.
Java’s VolatileCallSite API would appear to be the only solution,
other than libfastinst, we’re aware of that is designed to support
rapid toggling. The documentation in JDK 8 states that it “sees
updates to its call site target immediately, even if the update occurs
in another thread”. In our experiments, however, the behavior was
not consistent with this. Even though throughput, as in Figure 13, is
reasonable, the balance—how many calls to one probe state or the
other—was chaotic. For example, over all the runs in Figure 13, the
geometric mean imbalance factor (ratio of the more frequently to
less frequently observed state) for Java was 38.7× versus 2.5× for
wordpatch and 2.7× for callpatch.



Benchmark # probes # toggles/sec # samples/sec slowdown % toggle %

h264ref 638 24,015 115,526 6 0.1
bzip 162 2231 10,638 0.6 0.01
sjeng 142 14,616 73,060 3 0.06
perl 1408 42,276 211,346 11 0.2

nbody 252 8052 34,888 2 0.02
hull 164 1185 5636 0.2 0.005
blackscholes 8 730 3650 1 0.002

Table 3. Slowdown when running in profiler mode, measured in CPU time. The toggle overhead contribution is the percentage of extra CPU
time due to probe toggles. The # samples/sec is the number of profiler library invocations per second via probe sites. The # probes is the
number of probe sites discovered during the application run.
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8.5 Latent Costs
A deactivated probe with wordpatch is a 5 byte NOOP. However a
probe deactivated using callpatch might contain a relative CAL-
L/JMP instruction as a part of the inactive state if the probe site is a
straddler. We compared the increased cost of running a deactivated
probe in a loop, compared to an empty loop. The cost on our test
platform was 1-2 cycles for straddle points that allow a short relative
jump, and 4 cycles for the “1|4” straddle point that requires calling
and returning from a trampoline. This is one reason that compilers
should avoid straddling probe sites, if possible.

9. Case Study : Sampling Profiler
In order to measure probe overheads “in the wild” in real appli-
cations, we developed a custom latency profiler. Unlike typical
statistical profilers, which sample instants in time, this profiler sam-
ples intervals of time by instrumenting, e.g., the start and end of a
function call. The profiler still uses statistical sampling, turning on
and off instrumentation dynamically. The instrumentation measures
the duration of each function call in addition to counting how many
times each function has been invoked. When a certain sample size
threshold is exceeded the instrumentation self-deactivates. The pro-
filer spawns a daemon thread at program startup which wakes up
once per each epoch and activates all the probes that self-deactivated
since the last epoch check. The sample size was fixed at 10 and
epoch period at 10ms. We used the same SPEC benchmarks from
Section 8.2.

First, we collected statistics on the occurrence of straddlers at
call sites in the applications considered. This gives an indication on
the relative effect of straddler handling protocols on the overhead for
each application. As shown in Figure 14, the proportion of straddlers
to the total number of patch sites is relatively stable around 10%
across the applications.

Next we ran the applications with profiling and measured the
slowdown. Table 3 shows that the overhead varies widely though
never exceeding 11%, and this holds in spite of applications doing
as many as 42,276 probe toggles and 213,346 samples per second.
Bzip shows very little overhead potentially due to memory bound
nature of the benchmark. The majority of functions in hull are long
lived thus the effect of instrumentation is not significant.

We measured toggling related overhead as percentage of applica-
tion runtime without profiling enabled. It stays below 0.2% for our
benchmark applications. Table 3 outlines the results. This profiler
is a small prototype meant to demonstrate that dynamic probing
can scale to large numbers of probe invocations and probe toggles,
even spread across 16 application threads, and with a small effect
on application throughput.

Finally, this case study serves as an example of how to use
libfastinst for process self instrumentation. The application needs
to be compiled with -finstrument-functions since we are using
the -finstrument-functions based probe provider. Our profiler
implementation uses the Fastinst API and provides a higher-level
abstraction for enabling or disabling instrumentation at a function-
level granularity, and implements callbacks for capturing timing
information. Also the profiler implementation specifies the scheme
according to which the probes are toggled on (by the daemon thread)
and off, based on the sample size threshold. Here libfastinst
serves as the probing infrastructure, on to which any custom in-
strumentation and probe toggling scheme can be attached by the
client of the library. On the other hand wordpatch can be used to
safely patch arbitrary words of memory (callpatch for ones with
call instructions) without any dependency on probe providers (e.g:
without the requirement of -finstrument-functions) with possible
applications in tools such as live software updaters.

10. Discussion: Other Applications
Here we highlighted one example profiling approach, but other ap-
plications of rapid toggling to performance monitoring are possible.
For instance, the Intel Cilk parallel scheduler contains latent probes
to record and analyze the parallel task graph (e.g., work vs span),
but only in an expensive offline mode with probes activated in a
single pass by Intel Pin [26]. Fast and scalable probe toggling, how-
ever, could enable periodically running this analysis online, as in a
running, highly-parallel application.

Or, in another example, scalable probes could enable narrowly
focused interactive performance analysis techniques to become
always-on unattended measurements. Today, a performance engineer
can log into a server and ask precise questions in real time with
DTrace (a microscope). And conversely Google gathers coarse
statistical profiling data [25] for entire data centers (a macroscope),
but sufficiently cheap probes enable bringing certain precision
measurements from the former, to the latter.



Viewed another way, cheap, scalable dynamic probes have the
potential to bring online profiling opportunities—some of which are
already available to JITs—to compilers and language runtimes that
use ahead-of-time native code compilation, e.g., for C++, Fortran,
Haskell, Go, Rust, etc. For example, in the case of the Intel Cilk
runtime, mentioned above, dynamic probes run custom code to
traverse data structures—functionality that cannot be provided by
traditional PC-sampling and interrupt-driven profiling.

11. Related Work
Dynamic instrumentation strategies like DTrace already avoid the
overheads of static instrumentation, allowing a probe to have zero
cost when it is deactivated, and thus time overhead proportional
to the number of active probes. And yet, existing approaches to
dynamic probes have scalability bottlenecks:

• Stop-the-world code mutation: dynamic probing provided by
DTrace, LTTng [8], DynInst [4] and SystemTap [23] require a
separate instrumentor process that pauses application threads
while activating or deactivating probes. Indeed, even the HotSpot
JVM, which controls code generation, applies modifications at
“safe points” where bytecode threads are stopped [7].

• Single-pass design: Systems like Intel Pin are designed to
translate code into a code cache (usually once, at the cost of
significant start-up overhead); thus probe insertion is trivial but
probe toggling is not directly supported and would be extremely
expensive if it invalidates the code cache.

Profiling techniques - Bursty Tracing: Our profiler implementa-
tion was included here only as a benchmark of rapid-toggling. It
is worth noting, however, that this idea of a instrumentation-plus-
backoff was introduced almost twenty years ago, although it is
rarely, if ever, deployed in modern tools. In 1996, [14] described an
adaptive profiling framework that combines the instrumentation and
sampling approaches—activating and deactivating profiling dynam-
ically to adjust overhead. Arnold Ryder sampling [3] and “bursty
tracing” followed a few years later and expanded on this concept
[13]. However, this work predated modern multicore architectures,
and did not include a cheap and scalable framework for toggling the
instrumentation.

Probe and instrumentation frameworks: Throughout this paper,
we have mentioned several software systems that can provide
dynamic probes, including Intel Pin [12], DynInst [4], DTrace [11],
LTTng [8], and SystemTap [23]. Many of these were developed
as commercial software, but there have been major academic
developments as well, including DynamoRio [6] and the long-
running Paradyn/Dyninst project 3. Linux kernel has supported
dynamic probes via kernel level kprobes [23] and user level uprobes
[17] for some time. Uprobes uses INT3 breakpoints and requires
kernel intervention for enabling probe points. DynInst has evolved
substantially over the years and has been used in many contexts.
VampirTrace, for example, uses DynInst to inject tracing code that
logs program events [18]. Some configurations of DynInst use an
in-process agent to accomplish self-propelled instrumentation which
can follow control flow between processes and even machines [22].

12. Conclusions and Future Work
In this paper we presented algorithms for scalable probe toggling
along with an analysis of the low-level performance of toggling that
has been absent from previous work in this area. The conclusion
is that out-of-place instrumentation is slow to activate, and in-
place instrumentation based on traps (and typically involving the

3 Found on the web at: http://www.dyninst.org/

kernel) are slow to invoke once activated. We believe that in-place
instrumentation with cross-modification is the way forward for
scalable probes. We provide an à la carte menu of solutions to
achieve this that can work in different software and hardware
contexts.

Our work complements existing instrumentation frameworks
such as Dyninst that provide general-purpose binary modification.
The scalable code-patching and call-patching approach we’ve de-
scribed in this paper is a basic building block that could be poten-
tially integrated with these more general approaches. For example,
there has already been substantial effort into deconstructing Dyninst,
into suite of narrowly-focused tools [24]. One prospect in the future
would be to equip Dyninst with a highly-restricted version of its
binary patching API (a curtailed version of BPatch), which could
optionally be implemented with the techniques described in this pa-
per. Likewise, probe-focused libraries like DTrace could be further
optimized using the technique described in this paper.

As presented, our work is specific to the x86 instruction set
architecture. However we see no inherent difficulty in applying it to
other variable-length instruction architectures which have similar or
even more relaxed memory models (including ARM, Power, etc),
as long as they can provide an atomic, aligned, word-width, store
operation, Tmax, and appropriate call instruction encoding.

Ultimately, we believe better support for toggle-able probes
should be provided by ahead-of-time native code compilers, fol-
lowing the lead of the Intel compiler, and in future work we plan to
address this gap in one or more major open-source compilers. For
example, there is a particular need for instrumentation support in
non-C languages such as Rust and Haskell. Where possible, bet-
ter compiler support can remove the need for probes that start in
an active state, or for probes that cross cache line boundaries, but
cannot eliminate the need for scalable probe toggling via cross-
modification.

Finally, absent compiler support, in the future processors could
take a number of different paths to improve their support for cross-
modification. They could respect one or more designated atomic
instructions in instruction fetch. They could publish an upper bound
on visibility, which could be reported per-processor with a special
instruction (similar to cpuid). In the meantime, operating systems
can create an artificial Tmax if needed by executing a serializing
instruction when preempting a thread.
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