
OpenCL Reduction on the ZYNQ

The ZYNQ is not a GPU

Bo Joel Svensson
bo.joel.svensson@gmail.com

1 Introduction

It is well known that OpenCL, while being portable, is not “performance”-portable[2, 3]. In other words, code
written in OpenCL can be expected to “work” on any OpenCL platform but there are no guarantees that the
performance characteristics transfer from one system to the next.

This document presents the results of applying a set of optimisations from a GPU tutorial onto a ZYNQ.
The computation that is being optimized is reduction (sum) of an array of integers and the optimisation steps
are taken from an NVIDIA tutorial [1].

GPUs and FPGAs are both massively parallel platforms. It does not seem impossible that a single decom-
position of a computation performs well on both systems. The experiments presented in this document show
that this is not the case. At least, this is not the case under the current hardware synthesis methodology as
applied by Vivado onto OpenCL kernels.

1.1 Experimental setup

All reduction performance experiments are performed on a ZYNQ 7010. The hardware kernels are generated
using VIVADO HLS 2016.3 and synthesized using VIVADO 2016.3.

The NVIDIA reduction tutorial [1] kernels written in CUDA have been translated to OpenCL where appli-
cable. This resulted in six reduction kernels being synthesized and tested on the ZYNQ. The NVIDIA tutorial
present more steps than six, but some of these related to warp level optimisations. It is possible that warp-level
optimisations could be applied to the OpenCL code if the wavefront size is known. It is, however, unclear to
me what the generated wavefront size is on a hardware synthesized OpenCL kernel (more thoughts on this in
section 4).

2 Refinement of a Reduction Kernel

In this section a reduction kernel is refined step by step. The optimisation steps mimic those performed in the
NVIDIA reduction tutorial[1]. The starting point is a kernel that may appear idiomatic, at least to a GPU
programmer. The refined kernels (reduce2 - reduce6) are all collected in section 6.

1



Kernel 1
1 __kernel void __attribute((reqd_work_group_size(BLOCKSIZE,1,1)))

2 reduce1(__global int *input, __global int* output) {

3

4 __local int sdata [BLOCKSIZE];

5

6 int lid = get_local_id(0);

7 int bid = get_group_id(0);

8 int i = bid * BLOCKSIZE + lid;

9

10 sdata[lid] = input[i];

11 barrier(CLK_LOCAL_MEM_FENCE);

12

13 for (int s = 1; s < BLOCKSIZE; s*=2) {

14 if (lid % (2*s) == 0) {

15 sdata[lid] += sdata[lid + s];

16 }

17 barrier(CLK_LOCAL_MEM_FENCE);

18 }

19 if (lid == 0) output[bid] = sdata[0];

20 }

21

The table below shows the performance obtained when doing a 4million elements reduction on the ZYNQ
compared to the G80 used in the NVIDIA reduction tutorial. Note that the purpose is not to compare the
absolute levels of performance between the platforms. Rather the interesting bit is the relative increase in
performance between steps. These optimisations steps clearly are more beneficial on the G80.

ZYNQ ZYNQ ZYNQ ZYNQ G80 G80 G80 G80
Time MB/s % Bandwidth Speedup Time GB/s % Bandwidth speedup
(ms) 1 HP-AXI IF (ms)

Kernel1 4702.01 3.4 0.4 8.054 2.083 2.4
Kernel2 2081.66 7.7 1 2.26 3.456 4.854 5.6 2.33
Kernel3 1447.12 11.1 1.4 3.25 1.722 9.741 11.3 4.68
Kernel4 1503.3 10.6 1.3 3.13 0.965 17.377 20.1 8.34
Kernel5 1373.96 11.7 1.5 3.42 0.536 31.289 36.2 15.01
Kernel6 804.46 19.9 2.5 5.85 0.268 62.671 73 30.04

The performance of these kernels on the ZYNQ is quite horrible. The kernel used as a starting point is only
able to reach 3.4MBps of throughput over the AXI interface. The best kernel only makes use of 2.5% of the
memory bandwidth of a single high performance AXI interface. However, each optimisation step does seem to
improve performance, see figure 1. The final optimisation step (reduce6) adds sequential computation. In the
next section we push sequentiality to the extreme and investigates what happens.

2



Figure 1

3 Starting over!

In the previous section, a bunch of OpenCL kernels where evaluated with very poor results on the ZYNQ. Here,
degenerate OpenCL kernels are implemented and tested for performance. The first of these degenerate kernels
is entirely sequentialised and uses no shared memory.

Kernel 0
1 __kernel void __attribute__ ((reqd_work_group_size(1,1,1)))

2 reduce0(__global int *input, __global int *output) {

3

4 int bid = get_group_id(0);

5

6 int i = 0;

7 int acc = 0;

8 int index = index = bid * BLOCKSIZE;

9

10 for (i = 0; i < BLOCKSIZE; i ++) {

11 acc += input[index + i];

12 }

13 output[bid] = acc;

14 }

The performance of this kernel , again on 4million elements, is about 6x that of the best performing kernel
in the section before. It achieved approximately 34x the throughput compared to the first kernel, reduce1. The
analysis of why this kernel is performing so much better than the previous ones is saved until section 4.

The next kernel, reduce0a, applies unrolling to the degenerate sequential kernel.

3



Figure 2

Kernel 0a
1 __kernel void __attribute__ ((reqd_work_group_size(1,1,1)))

2 reduce0a(__global int *input, __global int *output) {

3

4 int bid = get_group_id(0);

5

6 int i = 0;

7 int acc = 0;

8 int index = bid * BLOCKSIZE;

9

10

11 for (i = 0; i < BLOCKSIZE; i ++) {

12 #pragma HLS UNROLL

13 acc += input[index + i];

14 }

15 output[bid] = acc;

16 }

And the next attempt applies pipelining and some parallelism. The parallelism in this case comes from using
a vector type, int2, for loading values and computing intermediate results. The += operator is overloaded in
the code below for operation of vectors of length 2.

Kernel 0b
1 __kernel void __attribute__ ((reqd_work_group_size(1,1,1)))

2 reduce0b(__global int2 *input, __global int *output) {

3

4 int bid = get_group_id(0);

5

6 int i = 0;

7 int2 acc = (int2)(0,0);

8 int index = bid * BLOCKSIZE;

9

10

11 for (i = 0; i < BLOCKSIZE; i ++) {

12 #pragma HLS PIPELINE

13 acc += input[index + i];

14 }

15 output[bid] = acc.s0 + acc.s1;

16 }

4



Figure 3

When writing this final kernel, reduce0b, different vector sizes was chosen but with no particular increase
in performance over going to 2-wide vectors.

4 Conclusion

This section presents some thoughts on what possible reasons for the various performance characteristics of the
reduction kernels.

4.1 The NVIDIA Reduction Tutorial Experiment

Kernels 1 - 6 were all OpenCL adaptations of CUDA code written for a GPU. All of these kernels loaded data
into local memory before starting to sum the values up. The storing of data locally does only make sense if
there is a way to hide the latency this loading. On an NVIDIA GPU groups of 32 threads (a CUDA Warp,
OpenCL Wavefront) execute together as unit of work. The GPU has a scheduler that schedules these groups
of 32 threads individually. If threads in one these groups hit a load instruction, the group can be swapped out
and another take its place and thus hide the latency of the memory read.

That the reduction kernels that load data into local memory behave so badly on the ZYNQ seems to indicate
that the synthesized hardware has no means to hide memory latencies by swapping other work. In other words
the wavefront (warp) size is very likely as large as the workgroup in the generated hardware.

4.2 The Degenerate Sequential Kernels

The degenerate kernels are run as a workgroup (block, for CUDA programmers) of size one, containing a
sequential loop that performs the reduction. The degenerate kernels are also different from the more idiomatic
OpenCL kernels by not using any local memory. These kernels load a value and directly accumulate the sum
in a register.

If, as hypothesised above, the generated OpenCL hardware has no means to hide the memory load latency,
these degenerate kernels have an advantage. As soon as an element is loaded it can be added to the accumulator
and we are done with that element. The earlier kernels would have two distinct phases. One phase for loading
all data into local memory and another phase for computing the sum, both phases being O(N) work.

Making changes to the degenerate kernel (unrolling, pipelining and vectorizing) also had big impact compared
to changes done to the idiomatic OpenCL kernels. This makes sense given that we do not have latency hiding
capability and that we read all data through a single 64bit interface. The 64bit High performance AXI interface
allows us to read one 64bit quantity each clock cycle (theoretically). This setup favors an approach that can be
pipelined. Going to a vector size of 2x32bit quantities also makes sense given the 64bit AXI interface.

5



4.3 Architectural Differences

The comparison presented in this document is not really between a GPU and an FPGA. It would be more fair
to say that the comparison is between a GPU and one out of all the possible ways to generate hardware for an
OpenCL kernel for execution on an FPGA. So far we have seen that it is likely the case that:

• Hardware generated for an OpenCL kernel has no ability to hide memory read latencies.

• Hardware generated for an OpenCL kernel uses a single 64 or 32bit interface for all its reads and writes.
Thus favoring pipelining over massive data parallelism.

For a GPU, the ability to hide memory read latencies is key to performance. GPUs also have wider memory
interfaces and are tailored to data parallel mode operation.

GPUs also have resources for simultaneous execution of multiple workgroups (CUDA Blocks), essentially
a indexed instance of a kernel, in parallel. On the FPGA (using vivado hls) this can be configured by the
programmer. The single hardware unit generated for the kernel can be instantiated multiple times and hooked
up to different memory interfaces giving workgroup (block) level parallelism.

5 Future Work

This document shows that if you approach the ZYNQ with the mind set of GPU programmer, you will have poor
performance. The document, however, does not go deeply into figuring out how exactly to write your code for
obtaining good performance on the ZYNQ. If we say that reaching 70% of the theoretical bandwidth is good (as
with the G80 values presented), then on the ZYNQ platform used here a throughput of approximately 1.5GB/s
is needed. Achieving this level of performance is not possible using a single high performance AXI interface that
maxes out at 800MB/s. Either hardware units with more than one interface is needed or several single-interface
hardware units has to be used in parallel[4]. It is left as future work to explore exactly how to implement high
performance reduction on the ZYNQ using either C based or OpenCL based high level synthesis.

The conclusions reached in section 4 are guesses based on what one can see when measuring the performance.
It is left as future work to figure out exactly what the generated hardware looks like when using OpenCL based
high level synthesis. It is also interesting to see if there is any way to achieve asynchronous memory copy
operations (there is for example an async work group copy in OpenCL).

6 Kernel Code
Kernel 2

1 __kernel void __attribute((reqd_work_group_size(BLOCKSIZE,1,1)))

2 reduce2(__global int *input, __global int* output) {

3

4 __local int sdata [BLOCKSIZE];

5

6 int lid = get_local_id(0);

7 int bid = get_group_id(0);

8 int i = bid * BLOCKSIZE + lid;

9

10 sdata[lid] = input[i];

11 barrier(CLK_LOCAL_MEM_FENCE);

12

13 for (int s = 1; s < BLOCKSIZE; s*=2) {

14 int index = 2 * s * lid;

15

16 if (index < BLOCKSIZE) {

17 sdata[index] += sdata[index + s];

18 }

19 barrier(CLK_LOCAL_MEM_FENCE);

20 }

21 if (lid == 0) output[bid] = sdata[0];

22

6



Kernel 3
1 __kernel void __attribute((reqd_work_group_size(BLOCKSIZE,1,1)))

2 reduce3(__global int *input, __global int* output) {

3

4 __local int sdata [BLOCKSIZE];

5

6 int lid = get_local_id(0);

7 int bid = get_group_id(0);

8 int i = bid * BLOCKSIZE + lid;

9

10 sdata[lid] = input[i];

11 barrier(CLK_LOCAL_MEM_FENCE);

12

13 for (int s = BLOCKSIZE / 2; s > 0; s >>=1) {

14 if (lid < s) {

15 sdata[lid] += sdata[lid + s];

16 }

17 barrier(CLK_LOCAL_MEM_FENCE);

18 }

19 if (lid == 0) output[bid] = sdata[0];

Kernel 4
1 __kernel void __attribute((reqd_work_group_size(HALF_BLOCKSIZE,1,1)))

2 reduce4(__global int *input, __global int* output) {

3

4 __local int sdata [HALF_BLOCKSIZE];

5

6 int lid = get_local_id(0);

7 int bid = get_group_id(0);

8 int i = bid * BLOCKSIZE + lid;

9

10 sdata[lid] = input[i] + input[i + HALF_BLOCKSIZE];

11 barrier(CLK_LOCAL_MEM_FENCE);

12

13 for (int s = HALF_BLOCKSIZE; s > 0; s >>=1) {

14 if (lid < s) {

15 sdata[lid] += sdata[lid + s];

16 }

17 barrier(CLK_LOCAL_MEM_FENCE);

18 }

19 if (lid == 0) output[bid] = sdata[0];

7



Kernel 5
1 __kernel void __attribute__ ((reqd_work_group_size(HALF_BLOCKSIZE,1,1)))

2 reduce5(__global int *input, __global int *output) {

3

4 __local int sdata[HALF_BLOCKSIZE];

5

6 int lid = get_local_id(0);

7 int bid = get_group_id(0);

8

9 int i = bid * BLOCKSIZE + lid;

10

11 sdata[lid] = input[i] + input[i + HALF_BLOCKSIZE];

12

13 barrier(CLK_LOCAL_MEM_FENCE);

14

15 if(lid < 64) { sdata[lid] += sdata[lid + 64];} barrier(CLK_LOCAL_MEM_FENCE);

16 if(lid < 32) { sdata[lid] += sdata[lid + 32];} barrier(CLK_LOCAL_MEM_FENCE);

17 if(lid < 16) { sdata[lid] += sdata[lid + 16];} barrier(CLK_LOCAL_MEM_FENCE);

18 if(lid < 8) { sdata[lid] += sdata[lid + 8];} barrier(CLK_LOCAL_MEM_FENCE);

19 if(lid < 4) { sdata[lid] += sdata[lid + 4];} barrier(CLK_LOCAL_MEM_FENCE);

20 if(lid < 2) { sdata[lid] += sdata[lid + 2];} barrier(CLK_LOCAL_MEM_FENCE);

21 if(lid < 1) {

22 sdata[lid] += sdata[lid + 1];

23 output[bid] = sdata[0];

24 }

25 }

Kernel 6
1 __kernel void __attribute__ ((reqd_work_group_size(BLOCKSIZE,1,1)))

2 reduce6(__global int *input, __global int *output, int n) {

3

4 __local int sdata[BLOCKSIZE];

5

6 int lid = get_local_id(0);

7 int bid = get_group_id(0);

8 int num_blocks = get_num_groups(0);

9 int gridsize = BLOCKSIZE * 2 * num_blocks;

10 int i = bid * (BLOCKSIZE * 2) + lid;

11

12 sdata[lid] = 0;

13

14 while (i < n) {

15 sdata[lid] += input[i] + input[i + BLOCKSIZE];

16 i += gridsize;

17 }

18 barrier(CLK_LOCAL_MEM_FENCE);

19

20 if(lid < 64) { sdata[lid] += sdata[lid + 64];} barrier(CLK_LOCAL_MEM_FENCE);

21 if(lid < 32) { sdata[lid] += sdata[lid + 32];} barrier(CLK_LOCAL_MEM_FENCE);

22 if(lid < 16) { sdata[lid] += sdata[lid + 16];} barrier(CLK_LOCAL_MEM_FENCE);

23 if(lid < 8) { sdata[lid] += sdata[lid + 8];} barrier(CLK_LOCAL_MEM_FENCE);

24 if(lid < 4) { sdata[lid] += sdata[lid + 4];} barrier(CLK_LOCAL_MEM_FENCE);

25 if(lid < 2) { sdata[lid] += sdata[lid + 2];} barrier(CLK_LOCAL_MEM_FENCE);

26 if(lid < 1) {

27 sdata[lid] += sdata[lid + 1];

28 output[bid] = sdata[0];

29 }

30 }

References

[1] Mark Harris. Optimizing parallel reduction in cuda. http://developer.download.nvidia.com/assets/

cuda/files/reduction.pdf.

8

http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf


[2] Kazuhiko Komatsu, Katsuto Sato, Yusuke Arai, Kentaro Koyama, Hiroyuki Takizawa, and Hiroaki
Kobayashi. Evaluating performance and portability of opencl programs. In The fifth international workshop
on automatic performance tuning, volume 66, 2010.

[3] Sean Rul, Hans Vandierendonck, Joris D’Haene, and Koen De Bosschere. An experimental study on perfor-
mance portability of opencl kernels. In 2010 Symposium on Application Accelerators in High Performance
Computing (SAAHPC’10), 2010.

[4] Bo Joel Svensson. Exploring OpenCL Memory Throughput on the Zynq. Technical Report no: 2016:04,
Chalmers University of Technology.

9


	Introduction
	Experimental setup

	Refinement of a Reduction Kernel
	Starting over!
	Conclusion
	The NVIDIA Reduction Tutorial Experiment
	The Degenerate Sequential Kernels
	Architectural Differences

	Future Work
	Kernel Code

