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GPUs

Offer much performance per $

Designed for the highly data-parallel computations of
graphics

GPGPU: General-Purpose Computations on the GPU

Exploit the GPU for general-purpose computations
» Sorting

> Bioinformatics
> Physics Modelling



GPU vs CPU GFLOPS Chart

Source: NVIDIA CUDA Programming Manual
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An example of GPU hardware

NVIDIA GeForce 8800 GTX

e 128 Processing elements

e Divided into 16 Multiprocessors

e Exists with up to 768MB of Device memory
e 384-bit bus

» 86.4GB/sec Bandwidth

www.nvidia.com/page/geforce _8800.html



A Set of SIMD I\/Iultlprocessors

* In each Multiprocessor .
e Shared Memory :
(currently 16Kb) Mikproceszor2
e 32 bit registers (8192)
°* Memory
e Uncached Device e -
Memory
e Read-only constant
memory
e Read-only texture
memory

Source: NVIDIA CUDA Programming manual



NVIDIA CUDA

CUDA: Compute Unified Device Architecture
e Simplifies GPGPU programming by:
» Supplying a C compiler and libraries
 Giving a general purpose interface to the GPU

e Available for high end NVIDIA GPUs

www.nvidia.com/cuda



CUDA Programming Model

Execute a high number of threads in parallel

 Block of threads
« Up to 512 threads
« Executed by a multiprocessor
» Blocks are organized into grids
Maximum grid dimensions: 6553665536

e Thread Warp

» 32 threads
« Scheduled unit
o SIMD execution
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CUDA Programming Model

A program written to execute on the GPU is called a
Kernel.

e A kernel is executed by a block of threads
e Can be replicated across a number of blocks.

The Block and Grid dimensions are specified when the
kernel is launched.



CUDA Programming Model

A number of constants are available to the
programmer.

e threadldx
A vector specifying thread ID in <x,y,z>

e blockldx

 Avector specifying block ID in <x,y>
e blockDim

« The dimensions of the block of threads.
e gridDim

» The dimensions of the grid of blocks.
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CUDA Syncronisation

CUDA supplies a synchronisation primitive,
__syncthreads()

e Barrier synchronisation
e Across all the threads of a block

e Coordinate communication
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Obsidian
Embedded in Haskell

High level programming interface

e Using features such as higher order functions
Targeting NVIDIA GPUs

e Generating CUDA C code

Exploring similarities between structural hardware
design and data-parallel programming.

e Borrowing ideas from Lava.



Obsidian and Lava: Parallel
programming and Hardware design

Lava
e Language for structural hardware design.
e Uses combinators that capture connection patterns.

Obsidian

e Explores if a similar programming style is applicable to
data-parallel programming.



Obsidian and Lava

Obsidian Lava
* Generates C code. * Generates netlists.
* Can output parameterized * Recursion

code.

¢ Jteration inside kernels



Obsidian Programming

A small example, reverse and increment:

N e s e e p e e e e e
reviinera=lirevieSeiitin a1y

Code is

Generated,
*Obsrdian>iexecute s reviriner ailanilo]

e R

Compiled and
it is Executed
on the GPU




Obsidian Programming

CUDA C code generated from rev incr:

vregdobalvirvstatiervoidirevincritiin e tvalues, i nt iy

{

exrerarsharedae g hiared o

int *source = shared;
int *target = &shared[n];

congintrEndusirhraadildsasis

e Emps
S oY B Y 0 = 5 o T B A SRy ¢ I R = Vst B o e O

rrreynerhreadeityny

target[tid] = (source[((n - 1) - tid)] + 1);
SO R A g =YY Y 4

tmp = source;

sQureeTrsrargety

e A L D T T O B

e AT R A SR e
values[tid] = source[tid];




About the generated Code

Generated code is executed by a single block of
threads.

Every Thread is responsible for writing to a particular
array index.
e Limits us to 512 elements. (given 512 threads)



Obsidian Programming

A larger example and a comparison of Lava and
Obsidan programming

e A sorter called Vsort is implemented in both Lava and
Obsidian

e Vsort

e Built around:
A two-sorter (sort?2)
A shuffle exchange network (shex)
And a wiring pattern here called (taul)



Lava Vsort

 Shuftle exchange network

e
ATR R s ey s G g G

b = AR
e

Shexrnbvaniannaira R le e seranrarics



Shuffle Exchange Network

on cmp cIa
on cmp cIa
on crap cra




Lava Vsort

* Periodic merger using taul and shex

R et M I N

taul = unriffle ->- one reverse Haskell list reverse

mergelt n = taul ->- shex n sort?2

® Vsort in Lava

vsortIt n = rep n (mergelt n)



Obsidian Vsort

one f = parl return f

B A L e e e _

shex n £f = rep n (riffle ->- evens f) Rep primitive

Tanlwserrahaesernrsaort?

mergerltir

vsortIt n = rep n (mergelt n)



Vsort

Vsort> simulate (vsortIt 3) [3,2,6,5,1,8,7,4]
e 3 56 87

Vsorteraimilatemitveo iyl drdip i deeber S b @ubed sl SO Ol s el
e e S o e s e o o el o Ao M S b L S S 1

emulate 1s

WA SH N o e 90 <0400 AR B Y S AU Rt T ad e ) AR D AR S VAT TR0 S0 VAR S AT A Y . .
simialar to

[1121314/5/617’8]

execute but

the code is run
on the CPU




Obsidian applications

We have used Obsidian in implementing
e Sorting algorithms

» A comparison of sorters is coming up.
e A parallel prefix (Scan) algorithm
e Reduction of an array (fold of associative operator)



Comparison of Sorters
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Implementation of Obsidian

Obsidian describes operations on Arrays

e Representation of an array in Obsidian
e data Arr a = Arr (IxExp -> a, IxExp)

e Helper functions
e mkKArray

e len



Implementation of Obsidian

® rev primitive

¢ Teverses an array

e T w el = e
rev arr =
et =l e ary
o B A



Implementation of Obsidian

® halve
A e i T
halve arr =
let n = len arr
nhalf = divi n 2
Wl s i mk APy R e e e s O e e R A T

i U ats bt P O b ot e A S ) e il b e o B I e i £ i
in return (hl,h2)



Implementation of Obsidian

* Concatenate arrays: conc

aloigleii i Mlalo i el =it A G G aha e AR Y e a0 e A A B Gah aviio )
0 S A s 1 s A e 1 A i e
A=A Wi Bato a e Ve (B =RV D et o ) =S A e B e A
IR rebirnasSymkArraoe e baser e s P h e il g el ek
6 s A )

6= i athe ] U Gii Al g a o g g A



Implementation of Obsidian

* The W monad

e Writer monad
* Extended with functionality to generate Identifiers

» Loop indices



Implementation of Obsidian

The sync operation
e svne s Arer g —> W (Arr a)
e Operationally the identity function
e Representation of program written into W monad

e Position of syncs may impact performance of generated
code but not functionality.



Implementation of Obsidian

* The sync operation
e An example

Shies i e e e e e e S

shex no b = rap i e e e e s syne e e yan s )



Comparison of Sorters
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Latest developments

o At the Kernel level

e Combinators that capture common recursive patterns

e mergePat

mergePat can be used to implement
a recursive sorter:

merger = pshex sort?2
recSort = mergePat (one rev ->- merger)



Latest developments

At the Kernel level

e Going beyond 1 element/thread
« A merger that operates on two elements per thread

e Important for efficiency

- High level decision that effects performance
« Hard in CUDA, easy in Obsidian
Has to be decided early in CUDA flow.

e Needs to be generalised
» Now allows 1 elem/thread and 2 elem/thread



Latest developments
At the block level

e Kernel Coordination Language
« Enable working on large arrays

- An FFI allowing coordnation of computations on the GPU
from within Haskell.

« Work in progress
» Large sorter based on Bitonic sort
Merge kernels and sort kernels generated by Obsidian



http://www.cs.um.edu.mt/DCCO08

Questions?
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Related Work
NESL [1]

e Functional language
e Nested data-parallelism
e Compiles into VCode

Data Parallel Haskell [2]

e Nested data-parallelism in Haskell
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Related Work

Pan [3]
» Embedded in Haskell
e Image synthesis
e Generates C code
Vertigo [4]
» Also embedded in Haskell
* Describes Shaders
e Generates GPU Programs
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Related Work

PyGPU 3]
e Embedded in Python
e Uses Pythons introspective abilities
e Graphics applications
e Generates code for GPUs
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Future Work

Optimisation of generated code.
e Currently no optimisations are performed .
The coordination of Kernels

e Enable computations on very large arrays by composing
kernels.

e Make use of entire GPU

» Currently work in progress

Capture more recursive patterns with combinators.
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Reflections

Currently Obsidian suffers from limitations
e Some will be helped by the Kernel coordination layer.

» Stuck in a block
512 elements

e More generality within a block is also needed
» Not only arrays of integers

» More expressive power
Combinators capturing recursive patterns
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Reflections

Obsidian supplies a high level programming interface
e Quick prototyping of Algorithms.
e Simplify data-parallel programming by its novel
programming style.
Usefulness of Obsidian will improve with:
e Kernel coordination layer
e More generality at the block level.



Obsidian Programming

An example using iteration:

revs arr = let n = len arr
in repE n rev arr

*Obsidian> execute revs [1..10]
[112/ 3/ 4/ 5/ 6/ 7/ 8/ 9/ 10]

*Obsidian> execute revs [1..11]
e s



Obsidian Programming

CUDA C code generated from revs:

ikl p e inatman O S R e M L A e e
target[tid] = source[((n - 1) - tid)];
Losvnethreadsi ()
3w el e w A b ol =
Sourcer=ribaragets
barget = thp;
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Parametric Sorter




Lava and Obsidian

Very similar implementations of Vsort in Lava and
Obsidan.

But the above example does not use the generality of
Obsidian.

e Obsidian can be used to generate parametric code.



Parametric Vsort in Obsidian

Built around parametric versions of:
e The Shuffle exchange network (pshex)
e The periodic merger (pmergeIt)

e Using a slightly different version of the repetition
combinator called repE



Parametric Vsort in Obsidian

pshex f arr =
let n = log2i (len arr)
T e e e e

pmergelt = taul ->- pshex sort2
pYsorbitart =

let n = log2i (len arr)
in (repE n pmergelt) arr



VSort
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