
GPU Programming in Haskell

Joel Svensson
Joint work with Koen Claessen and Mary Sheeran

Chalmers University

GPUs
 Offer much performance per $

 Designed for the highly data-parallel computations of
graphics

GPGPU: General-Purpose Computations on the GPU

Exploit the GPU for general-purpose computations

Sorting

Bioinformatics

Physics Modelling
www.gpgpu.org

GPU vs CPU GFLOPS Chart
Source: NVIDIA CUDA Programming Manual

An example of GPU hardware
 NVIDIA GeForce 8800 GTX

 128 Processing elements

 Divided into 16 Multiprocessors

 Exists with up to 768MB of Device memory

 384-bit bus

 86.4GB/sec Bandwidth

www.nvidia.com/page/geforce_8800.html

A Set of SIMD Multiprocessors
 In each Multiprocessor
 Shared Memory

(currently 16Kb)

 32 bit registers (8192)

 Memory
 Uncached Device

Memory

 Read-only constant
memory

 Read-only texture
memory

Source: NVIDIA CUDA Programming manual

NVIDIA CUDA
 CUDA: Compute Unified Device Architecture

 Simplifies GPGPU programming by:

 Supplying a C compiler and libraries

 Giving a general purpose interface to the GPU

 Available for high end NVIDIA GPUs

www.nvidia.com/cuda

CUDA Programming Model
 Execute a high number of threads in parallel

 Block of threads

 Up to 512 threads

 Executed by a multiprocessor

 Blocks are organized into grids

 Maximum grid dimensions: 65536*65536

 Thread Warp

 32 threads

 Scheduled unit

 SIMD execution

Multip. 1

Block 0

Warp 0

Warp 3
Warp 2

Warp 1

Multip. 2

Block 1

Warp 7

Warp 3
Warp 1

Warp 0

Multip. 3

Block 2

Warp 1

Warp 3
Warp 2

Warp 0

CUDA Programming Model
 A program written to execute on the GPU is called a
Kernel.

 A kernel is executed by a block of threads

 Can be replicated across a number of blocks.

 The Block and Grid dimensions are specified when the
kernel is launched.

CUDA Programming Model
 A number of constants are available to the

programmer.

 threadIdx

 A vector specifying thread ID in <x,y,z>

 blockIdx

 A vector specifying block ID in <x,y>

 blockDim

 The dimensions of the block of threads.

 gridDim

 The dimensions of the grid of blocks.

CUDA Syncronisation
 CUDA supplies a synchronisation primitive,

__syncthreads()

 Barrier synchronisation

 Across all the threads of a block

 Coordinate communication

Obsidian
 Embedded in Haskell

 High level programming interface

 Using features such as higher order functions

 Targeting NVIDIA GPUs

 Generating CUDA C code

 Exploring similarities between structural hardware
design and data-parallel programming.

 Borrowing ideas from Lava.

Obsidian and Lava: Parallel
programming and Hardware design

 Lava

 Language for structural hardware design.

 Uses combinators that capture connection patterns.

 Obsidian

 Explores if a similar programming style is applicable to
data-parallel programming.

Obsidian and Lava
Obsidian Lava

 Generates C code.

 Can output parameterized
code.

 Iteration inside kernels

 Generates netlists.

 Recursion

Obsidian Programming
A small example, reverse and increment:

rev_incr :: Arr (Exp Int) -> W (Arr (Exp Int))

rev_incr = rev ->- fun (+1)

*Obsidian> execute rev_incr [1..10]

[11,10,9,8,7,6,5,4,3,2]

Code is
Generated,

Compiled and
it is Executed
on the GPU

Obsidian Programming
CUDA C code generated from rev_incr:

__global__ static void rev_incr(int *values, int n)

{

extern __shared__ int shared[];

int *source = shared;

int *target = &shared[n];

const int tid = threadIdx.x;

int *tmp;

source[tid] = values[tid];

__syncthreads();

target[tid] = (source[((n - 1) - tid)] + 1);

__syncthreads();

tmp = source;

source = target;

target = tmp;

__syncthreads();

values[tid] = source[tid];

}

Setup

1

2

About the generated Code
 Generated code is executed by a single block of

threads.

 Every Thread is responsible for writing to a particular
array index.

 Limits us to 512 elements. (given 512 threads)

Obsidian Programming
 A larger example and a comparison of Lava and

Obsidan programming

 A sorter called Vsort is implemented in both Lava and
Obsidian

 Vsort

 Built around:

 A two-sorter (sort2)

 A shuffle exchange network (shex)

 And a wiring pattern here called (tau1)

Lava Vsort
 Shuffle exchange network

rep 0 f = id

rep n f = f ->- rep (n-1) f

shex n f = rep n (riffle ->- evens f)

Shuffle Exchange Network

Lava Vsort
 Periodic merger using tau1 and shex

 Vsort in Lava

one f = parl id f

tau1 = unriffle ->- one reverse

mergeIt n = tau1 ->- shex n sort2

vsortIt n = rep n (mergeIt n)

Haskell list reverse

Obsidian Vsort
one f = parl return f

tau1 = unriffle ->- one rev

shex n f = rep n (riffle ->- evens f)

mergeIt n = tau1 ->- shex n sort2

vsortIt n = rep n (mergeIt n)

Rep primitive

Vsort
Vsort> simulate (vsortIt 3) [3,2,6,5,1,8,7,4]

[1,2,3,4,5,6,7,8]

Vsort> simulate (vsortIt 4) [14,16,3,2,6,5,15,1,8,7,4,13,9,10,12,11]

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

Vsort> emulate (vsortIt 3) [3,2,6,5,1,8,7,4]

[1,2,3,4,5,6,7,8]

emulate is
simialar to
execute but
the code is run

on the CPU

Obsidian applications
 We have used Obsidian in implementing

 Sorting algorithms

 A comparison of sorters is coming up.

 A parallel prefix (Scan) algorithm

 Reduction of an array (fold of associative operator)

Comparison of Sorters

Implementation of Obsidian
 Obsidian describes operations on Arrays

 Representation of an array in Obsidian
 data Arr a = Arr (IxExp -> a,IxExp)

 Helper functions
 mkArray

 len

 !

Implementation of Obsidian
 rev primitive

 reverses an array

rev :: Arr a -> W (Arr a)

rev arr =

let n = len arr

in return $ mkArray (\ix -> arr ! ((n - 1) – ix)) n

Implementation of Obsidian
 halve

halve :: Arr a -> W (Arr a, Arr a)

halve arr =

let n = len arr

nhalf = divi n 2

h1 = mkArray (\ix -> arr ! ix) (n - nhalf)

h2 = mkArray (\ix -> arr ! (ix + (n – nhalf))) nhalf

in return (h1,h2)

Implementation of Obsidian
 Concatenate arrays: conc

conc :: Choice a => (Arr a, Arr a) -> W (Arr a)

conc (arr1,arr2) =

let (n,n’) = (len arr1, len arr2)

in return $ mkArray (\ix -> ifThenElse (ix <* n)

(arr1 ! ix)

(arr2 ! (ix – n))) (n+n’)

Implementation of Obsidian
 The W monad

 Writer monad

 Extended with functionality to generate Identifiers

 Loop indices

Implementation of Obsidian
 The sync operation

 sync :: Arr a -> W (Arr a)

 Operationally the identity function

 Representation of program written into W monad

 Position of syncs may impact performance of generated
code but not functionality.

Implementation of Obsidian
 The sync operation
 An example

shex n f = rep n (riffle ->- evens f)

shex n f = rep n (riffle ->- sync ->- evens f)

Comparison of Sorters

Latest developments
 At the Kernel level

 Combinators that capture common recursive patterns
 mergePat

mergePat can be used to implement
a recursive sorter:

merger = pshex sort2

recSort = mergePat (one rev ->- merger)

Latest developments
 At the Kernel level
 Going beyond 1 element/thread
 A merger that operates on two elements per thread

 Important for efficiency
 High level decision that effects performance

 Hard in CUDA, easy in Obsidian

 Has to be decided early in CUDA flow.

 Needs to be generalised
 Now allows 1 elem/thread and 2 elem/thread

Latest developments
 At the block level

 Kernel Coordination Language

 Enable working on large arrays

 An FFI allowing coordnation of computations on the GPU
from within Haskell.

 Work in progress

 Large sorter based on Bitonic sort

 Merge kernels and sort kernels generated by Obsidian

References

1. Guy E. Blelloch. NESL: A Nested Data-Parallel language. Technical

report CMU-CS-93-129, CMU Dept. Of Cumputer Science April 1993.

2. Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon P. Jones,

Gabriele Keller, and Simon Marlow. Data parallel haskell: a status

report. In DAMP ’07: Proceedings of the 2007 workshop on Declarative

aspects of multicore programming, pages 10–18, New York, NY, USA,

2007. ACM Press.

3. Conal Elliot. Functional images. In The Fun of Programming,

Cornerstones of Computing. Palgrave, March 2003

4. Conal Elliot. Programming graphics processors functionally. In

Proceedings of the 2004 Haskell Workshop. ACM Press, 2004

5. Calle Lejdfors and Lennart Ohlsson. Implementing an embedded gpu

language by combining translation and generation. In SAC’06:

Proceedings of the 2006 ACM symposium on Applied computiong, pages

1610-1614. New York, NY, USA, 2006. ACM

http://www.cs.um.edu.mt/DCC08

Related Work
 NESL [1]

 Functional language

 Nested data-parallelism

 Compiles into VCode

 Data Parallel Haskell [2]

 Nested data-parallelism in Haskell

Related Work
 Pan [3]

 Embedded in Haskell

 Image synthesis

 Generates C code

 Vertigo [4]

 Also embedded in Haskell

 Describes Shaders

 Generates GPU Programs

Related Work
 PyGPU [5]

 Embedded in Python

 Uses Pythons introspective abilities

 Graphics applications

 Generates code for GPUs

Future Work
 Optimisation of generated code.

 Currently no optimisations are performed .

 The coordination of Kernels

 Enable computations on very large arrays by composing
kernels.

 Make use of entire GPU

 Currently work in progress

 Capture more recursive patterns with combinators.

Reflections
 Currently Obsidian suffers from limitations

 Some will be helped by the Kernel coordination layer.

 Stuck in a block

 512 elements

 More generality within a block is also needed

 Not only arrays of integers

 More expressive power

 Combinators capturing recursive patterns

Reflections
 Obsidian supplies a high level programming interface

 Quick prototyping of Algorithms.

 Simplify data-parallel programming by its novel
programming style.

 Usefulness of Obsidian will improve with:

 Kernel coordination layer

 More generality at the block level.

Obsidian Programming
An example using iteration:

revs arr = let n = len arr

in repE n rev arr

*Obsidian> execute revs [1..10]

[1,2,3,4,5,6,7,8,9,10]

*Obsidian> execute revs [1..11]

[11,10,9,8,7,6,5,4,3,2,1]

Obsidian Programming
CUDA C code generated from revs:

for (int i0 = 0;(i0 < n);i0 = (i0 + 1)){

target[tid] = source[((n - 1) - tid)];

__syncthreads();

tmp = source;

source = target;

target = tmp;

}

Lava and Obsidian
 Very similar implementations of Vsort in Lava and

Obsidan.

 But the above example does not use the generality of
Obsidian.

 Obsidian can be used to generate parametric code.

Parametric Vsort in Obsidian
 Built around parametric versions of:

 The Shuffle exchange network (pshex)

 The periodic merger (pmergeIt)

 Using a slightly different version of the repetition
combinator called repE

Parametric Vsort in Obsidian

pshex f arr =

let n = log2i (len arr)

in repE n (riffle ->- evens f) arr

pmergeIt = tau1 ->- pshex sort2

pvsortIt arr =

let n = log2i (len arr)

in (repE n pmergeIt) arr

VSort
Vsort> emulate pvsortIt [3,2,6,5,1,8,7,4]

[1,2,3,4,5,6,7,8]

Vsort> emulate pvsortIt [14,16,3,2,6,5,15,1,8,7,4,13,9,10,12,11]

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

