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GPUs
 Offer much performance per $

 Designed for the highly data-parallel computations  of 
graphics

GPGPU: General-Purpose Computations on the GPU

Exploit  the GPU for general-purpose  computations

Sorting

Bioinformatics

Physics Modelling
www.gpgpu.org



GPU vs CPU GFLOPS Chart
Source: NVIDIA CUDA Programming Manual



An example of GPU hardware
 NVIDIA GeForce 8800 GTX 

 128 Processing elements 

 Divided into 16 Multiprocessors

 Exists with up to 768MB of Device memory

 384-bit bus 

 86.4GB/sec Bandwidth

www.nvidia.com/page/geforce_8800.html



A Set of SIMD Multiprocessors
 In each Multiprocessor
 Shared Memory 

(currently 16Kb)

 32 bit registers (8192)

 Memory 
 Uncached Device 

Memory

 Read-only constant 
memory

 Read-only texture 
memory 

Source: NVIDIA CUDA Programming manual



NVIDIA CUDA
 CUDA: Compute Unified Device Architecture

 Simplifies GPGPU programming by: 

 Supplying a C compiler and libraries

 Giving a general purpose interface to the GPU

 Available for high end NVIDIA GPUs

www.nvidia.com/cuda



CUDA Programming Model
 Execute a high number of threads in parallel

 Block of threads

 Up to 512 threads 

 Executed by a multiprocessor

 Blocks are organized into grids

 Maximum grid dimensions: 65536*65536

 Thread Warp

 32 threads 

 Scheduled unit 

 SIMD execution  
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CUDA Programming Model
 A program written to execute on the GPU is called a 
Kernel.

 A kernel is executed by a block of threads

 Can be replicated across  a number of blocks.

 The Block and Grid dimensions are specified when the 
kernel is launched.



CUDA Programming Model
 A number of constants are available to the 

programmer.

 threadIdx

 A vector specifying thread ID in <x,y,z>

 blockIdx

 A vector specifying block ID in <x,y>

 blockDim

 The dimensions of the block of threads.

 gridDim

 The dimensions of the grid of blocks.



CUDA Syncronisation
 CUDA supplies a synchronisation primitive, 

__syncthreads()

 Barrier synchronisation

 Across all the threads of a block

 Coordinate communication



Obsidian
 Embedded in Haskell

 High level programming interface

 Using features such as higher order functions

 Targeting NVIDIA GPUs

 Generating CUDA C code

 Exploring similarities between structural hardware 
design and data-parallel programming.

 Borrowing ideas from Lava.



Obsidian and Lava: Parallel 
programming and Hardware design

 Lava

 Language for structural hardware design.

 Uses combinators that capture connection patterns.

 Obsidian

 Explores if a similar programming style is applicable to 
data-parallel programming.



Obsidian and Lava
Obsidian Lava

 Generates C code.

 Can output parameterized 
code.

 Iteration inside kernels

 Generates netlists.

 Recursion



Obsidian Programming
A small example, reverse and increment:

rev_incr :: Arr (Exp Int) -> W (Arr (Exp Int))

rev_incr = rev ->- fun (+1)

*Obsidian> execute rev_incr [1..10]

[11,10,9,8,7,6,5,4,3,2]

Code is 
Generated, 

Compiled and 
it is Executed 
on the GPU



Obsidian Programming
CUDA C code generated from rev_incr:

__global__ static void rev_incr(int *values, int n)

{

extern __shared__ int shared[];

int *source = shared;

int *target = &shared[n];

const int tid = threadIdx.x;

int *tmp;

source[tid] = values[tid];

__syncthreads();

target[tid] = (source[((n - 1) - tid)] + 1);

__syncthreads();

tmp = source;

source = target;

target = tmp;

__syncthreads();

values[tid] = source[tid];

}

Setup

1

2



About the generated Code
 Generated code is executed by a single block of 

threads.

 Every Thread is responsible for writing to a particular 
array index.

 Limits us to 512 elements. (given 512 threads) 



Obsidian Programming
 A larger example and a comparison of Lava and 

Obsidan programming

 A sorter called Vsort is implemented in both Lava and 
Obsidian

 Vsort

 Built around:

 A two-sorter (sort2)

 A shuffle exchange network (shex)

 And a wiring pattern here called (tau1)



Lava Vsort
 Shuffle exchange network 

rep 0 f = id 

rep n f = f ->- rep (n-1) f 

shex n f = rep n (riffle ->- evens f)



Shuffle Exchange Network



Lava Vsort
 Periodic merger using tau1 and shex

 Vsort in Lava

one f = parl id f 

tau1 = unriffle ->- one reverse 

mergeIt n = tau1 ->- shex n sort2

vsortIt n = rep n (mergeIt n) 

Haskell list reverse



Obsidian Vsort
one f = parl return f 

tau1 = unriffle ->- one rev 

shex n f = rep n (riffle ->- evens f)

mergeIt n = tau1 ->- shex n sort2 

vsortIt n = rep n (mergeIt n)

Rep primitive



Vsort
Vsort> simulate (vsortIt 3) [3,2,6,5,1,8,7,4] 

[1,2,3,4,5,6,7,8]

Vsort> simulate (vsortIt 4) [14,16,3,2,6,5,15,1,8,7,4,13,9,10,12,11] 

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

Vsort> emulate (vsortIt 3) [3,2,6,5,1,8,7,4] 

[1,2,3,4,5,6,7,8]

emulate is 
simialar  to 
execute but 
the code is run 

on the CPU 



Obsidian applications
 We have used Obsidian in implementing

 Sorting algorithms

 A comparison of sorters is coming up.

 A parallel prefix (Scan) algorithm

 Reduction of an array (fold of associative operator)



Comparison of Sorters



Implementation of Obsidian
 Obsidian describes operations on Arrays

 Representation of an array in Obsidian
 data Arr a = Arr (IxExp -> a,IxExp)

 Helper functions
 mkArray

 len

 !



Implementation of Obsidian
 rev primitive

 reverses an array

rev :: Arr a -> W (Arr a)

rev arr = 

let n = len arr

in  return $ mkArray (\ix -> arr ! ((n  - 1) – ix)) n



Implementation of Obsidian
 halve

halve :: Arr a -> W (Arr a, Arr a)

halve arr = 

let n = len arr

nhalf = divi n 2

h1 = mkArray (\ix -> arr ! ix) (n - nhalf)

h2 = mkArray (\ix -> arr ! (ix + (n – nhalf))) nhalf

in  return (h1,h2) 



Implementation of Obsidian
 Concatenate arrays: conc

conc :: Choice a => (Arr a, Arr a) -> W (Arr a)

conc (arr1,arr2) = 

let (n,n’) = (len arr1, len arr2)

in  return $ mkArray (\ix -> ifThenElse (ix <* n)

(arr1 ! ix)

(arr2 ! (ix – n))) (n+n’)



Implementation of Obsidian
 The W monad

 Writer monad

 Extended with functionality to generate Identifiers

 Loop indices



Implementation of Obsidian
 The sync operation

 sync :: Arr a -> W (Arr a)

 Operationally the identity function

 Representation of program written into W monad

 Position of syncs may impact performance of generated 
code but not functionality.



Implementation of Obsidian
 The sync operation
 An example

shex n f = rep n (riffle ->- evens f)

shex n f = rep n (riffle ->- sync ->- evens f)



Comparison of Sorters



Latest developments
 At the Kernel level

 Combinators that capture common recursive patterns
 mergePat

mergePat can be used to implement 
a recursive sorter:

merger  = pshex sort2

recSort = mergePat (one rev ->- merger)



Latest developments
 At the Kernel level
 Going beyond 1 element/thread
 A merger that operates on two elements per thread

 Important for efficiency
 High level decision that effects performance 

 Hard in CUDA, easy in Obsidian

 Has to be decided early in CUDA flow.

 Needs to be generalised
 Now allows 1 elem/thread and 2 elem/thread 



Latest developments
 At the block level

 Kernel Coordination Language

 Enable working on large arrays

 An FFI allowing coordnation of computations on the GPU 
from within Haskell.

 Work in progress

 Large sorter based on Bitonic sort

 Merge kernels and sort kernels generated by Obsidian 
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Related Work
 NESL [1]

 Functional language

 Nested data-parallelism

 Compiles into VCode

 Data Parallel Haskell [2]

 Nested data-parallelism in Haskell



Related Work
 Pan [3]

 Embedded in Haskell

 Image synthesis

 Generates C code

 Vertigo [4]

 Also embedded in Haskell

 Describes Shaders

 Generates GPU Programs



Related Work
 PyGPU [5]

 Embedded in Python

 Uses Pythons introspective abilities

 Graphics applications

 Generates code for GPUs



Future Work
 Optimisation of generated code.

 Currently no optimisations are performed .

 The coordination of Kernels

 Enable computations on very large arrays by composing 
kernels.

 Make use of entire GPU

 Currently  work in progress

 Capture more recursive patterns with combinators.



Reflections
 Currently Obsidian suffers from limitations

 Some will be helped by the Kernel coordination layer.

 Stuck in a block

 512 elements

 More generality within a block is also needed

 Not only arrays of integers

 More expressive power 

 Combinators capturing recursive patterns



Reflections
 Obsidian supplies a high level programming interface

 Quick prototyping of Algorithms. 

 Simplify data-parallel programming by its novel 
programming style.

 Usefulness of Obsidian will improve with:

 Kernel coordination layer

 More generality at the block level. 



Obsidian Programming
An example using iteration:

revs arr = let n = len arr

in  repE n rev arr

*Obsidian> execute revs [1..10]

[1,2,3,4,5,6,7,8,9,10]

*Obsidian> execute revs [1..11]

[11,10,9,8,7,6,5,4,3,2,1]



Obsidian Programming
CUDA C code generated from revs:

for (int i0 = 0;(i0 < n);i0 = (i0 + 1)){

target[tid] = source[((n - 1) - tid)];

__syncthreads();

tmp = source;

source = target;

target = tmp;

}





Lava and Obsidian
 Very similar implementations of Vsort in Lava and 

Obsidan.

 But the above example does not use the generality of 
Obsidian.

 Obsidian can be used to generate parametric code.



Parametric Vsort in Obsidian
 Built around parametric versions of:

 The Shuffle exchange network (pshex)

 The periodic merger (pmergeIt)

 Using a slightly different version of the repetition 
combinator called repE



Parametric Vsort in Obsidian

pshex f arr = 

let n = log2i (len arr) 

in  repE n (riffle ->- evens f) arr

pmergeIt = tau1 ->- pshex sort2 

pvsortIt arr = 

let n = log2i (len arr)

in (repE n pmergeIt) arr



VSort
Vsort> emulate pvsortIt [3,2,6,5,1,8,7,4] 

[1,2,3,4,5,6,7,8]

Vsort> emulate pvsortIt [14,16,3,2,6,5,15,1,8,7,4,13,9,10,12,11] 

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]


