| Svensson
Sheeran
versity

\\/

GPUs

Offer much performance per $

Designed for the highly data-parallel computations of
graphics

GPGPU: General-Purpose Computations on the GPU

Exploit the GPU for general-purpose computations
» Sorting

> Bioinformatics
> Physics Modelling

GPU vs CPU GFLOPS Chart

Source: NVIDIA CUDA Programming Manual

GFLOPS
-) G80GL
G80GL = Quadro 5600 FX G80
] GBO = GeForce 8800 GTX
300 -
: G71 = GeForce 7900 GTX
G70 = GeForce 7800 GTX G70-5 137 !
200 - NV40 = GeForce 6800 Ultra G70
- NV35 = GeForce FX 5950 Ultra
NV30 = GeForce FX 5800
1001 —_— 3.0 GHz
: NV35 Intel Corg2 Duo
1NV3
: = o— i
O |l | 1 = I 1 1
Jan Jun Apr May Nov Mar Nov
2003 2004 2005 2006

/ e

An example of GPU hardware

NVIDIA GeForce 8800 GTX

e 128 Processing elements

e Divided into 16 Multiprocessors

e Exists with up to 768MB of Device memory
e 384-bit bus

» 86.4GB/sec Bandwidth

www.nvidia.com/page/geforce _8800.html

A Set of SIMD I\/Iultlprocessors

* In each Multiprocessor .
e Shared Memory :
(currently 16Kb) Mikproceszor2
e 32 bit registers (8192)
°* Memory
e Uncached Device e -
Memory
e Read-only constant
memory
e Read-only texture
memory

Source: NVIDIA CUDA Programming manual

NVIDIA CUDA

CUDA: Compute Unified Device Architecture
e Simplifies GPGPU programming by:
» Supplying a C compiler and libraries
 Giving a general purpose interface to the GPU

e Available for high end NVIDIA GPUs

www.nvidia.com/cuda

CUDA Programming Model

Execute a high number of threads in parallel

 Block of threads
« Up to 512 threads
« Executed by a multiprocessor
» Blocks are organized into grids
Maximum grid dimensions: 6553665536

e Thread Warp

» 32 threads
« Scheduled unit
o SIMD execution

Multip. 1

CUDA Programming Model

A program written to execute on the GPU is called a
Kernel.

e A kernel is executed by a block of threads
e Can be replicated across a number of blocks.

The Block and Grid dimensions are specified when the
kernel is launched.

CUDA Programming Model

A number of constants are available to the
programmer.

e threadldx
A vector specifying thread ID in <x,y,z>

e blockldx

 Avector specifying block ID in <x,y>
e blockDim

« The dimensions of the block of threads.
e gridDim

» The dimensions of the grid of blocks.

RR—

CUDA Syncronisation

CUDA supplies a synchronisation primitive,
__syncthreads()

e Barrier synchronisation
e Across all the threads of a block

e Coordinate communication

= . T s oo L —
Obsidian
Embedded in Haskell

High level programming interface

e Using features such as higher order functions
Targeting NVIDIA GPUs

e Generating CUDA C code

Exploring similarities between structural hardware
design and data-parallel programming.

e Borrowing ideas from Lava.

Obsidian and Lava: Parallel
programming and Hardware design

Lava
e Language for structural hardware design.
e Uses combinators that capture connection patterns.

Obsidian

e Explores if a similar programming style is applicable to
data-parallel programming.

Obsidian and Lava

Obsidian Lava
* Generates C code. * Generates netlists.
* Can output parameterized * Recursion

code.

¢ Jteration inside kernels

Obsidian Programming

A small example, reverse and increment:

N e s e e p e e e e e
reviinera=lirevieSeiitin a1y

Code is

Generated,
*Obsrdian>iexecute s reviriner ailanilo]

e R

Compiled and
it is Executed
on the GPU

Obsidian Programming

CUDA C code generated from rev incr:

vregdobalvirvstatiervoidirevincritiin e tvalues, i nt iy

{

exrerarsharedae g hiared o

int *source = shared;
int *target = &shared[n];

congintrEndusirhraadildsasis

e Emps
S oY B Y 0 = 5 o T B A SRy ¢ I R = Vst B o e O

rrreynerhreadeityny

target[tid] = (source[((n - 1) - tid)] + 1);
SO R A g =YY Y 4

tmp = source;

sQureeTrsrargety

e A L D T T O B

e AT R A SR e
values[tid] = source[tid];

About the generated Code

Generated code is executed by a single block of
threads.

Every Thread is responsible for writing to a particular
array index.
e Limits us to 512 elements. (given 512 threads)

Obsidian Programming

A larger example and a comparison of Lava and
Obsidan programming

e A sorter called Vsort is implemented in both Lava and
Obsidian

e Vsort

e Built around:
A two-sorter (sort?2)
A shuffle exchange network (shex)
And a wiring pattern here called (taul)

Lava Vsort

 Shuftle exchange network

e
ATR R s ey s G g G

b = AR
e

Shexrnbvaniannaira R le e seranrarics

Shuffle Exchange Network

on cmp cIa
on cmp cIa
on crap cra

Lava Vsort

* Periodic merger using taul and shex

R et M I N

taul = unriffle ->- one reverse Haskell list reverse

mergelt n = taul ->- shex n sort?2

® Vsort in Lava

vsortIt n = rep n (mergelt n)

Obsidian Vsort

one f = parl return f

B A L e e e _

shex n £f = rep n (riffle ->- evens f) Rep primitive

Tanlwserrahaesernrsaort?

mergerltir

vsortIt n = rep n (mergelt n)

Vsort

Vsort> simulate (vsortIt 3) [3,2,6,5,1,8,7,4]
e 3 56 87

Vsorteraimilatemitveo iyl drdip i deeber S b @ubed sl SO Ol s el
e e S o e s e o o el o Ao M S b L S S 1

emulate 1s

WA SH N o e 90 <0400 AR B Y S AU Rt T ad e) AR D AR S VAT TR0 S0 VAR S AT A Y . .
simialar to

[1121314/5/617’8]

execute but

the code is run
on the CPU

Obsidian applications

We have used Obsidian in implementing
e Sorting algorithms

» A comparison of sorters is coming up.
e A parallel prefix (Scan) algorithm
e Reduction of an array (fold of associative operator)

Comparison of Sorters

Seconds

80

75

70
65

60

35

30
45

40
35
30+
25
20 1
15 A
10 4
5

0 4

iilllz

SOrtOET

vsortlt

vsortl2

vsordtHO bitonic-
Sort CUDA

Implementation of Obsidian

Obsidian describes operations on Arrays

e Representation of an array in Obsidian
e data Arr a = Arr (IxExp -> a, IxExp)

e Helper functions
e mkKArray

e len

Implementation of Obsidian

® rev primitive

¢ Teverses an array

e T w el = e
rev arr =
et =l e ary
o B A

Implementation of Obsidian

® halve
A e i T
halve arr =
let n = len arr
nhalf = divi n 2
Wl s i mk APy R e e e s O e e R A T

i U ats bt P O b ot e A S) e il b e o B I e i £ i
in return (hl,h2)

Implementation of Obsidian

* Concatenate arrays: conc

aloigleii i Mlalo i el =it A G G aha e AR Y e a0 e A A B Gah aviio)
0 S A s 1 s A e 1 A i e
A=A Wi Bato a e Ve (B =RV D et o) =S A e B e A
IR rebirnasSymkArraoe e baser e s P h e il g el ek
6 s A)

6= i athe] U Gii Al g a o g g A

Implementation of Obsidian

* The W monad

e Writer monad
* Extended with functionality to generate Identifiers

» Loop indices

Implementation of Obsidian

The sync operation
e svne s Arer g —> W (Arr a)
e Operationally the identity function
e Representation of program written into W monad

e Position of syncs may impact performance of generated
code but not functionality.

Implementation of Obsidian

* The sync operation
e An example

Shies i e e e e e e S

shex no b = rap i e e e e s syne e e yan s)

Comparison of Sorters

Seconds

80

75

70
65

60

35

30
45

40
35
30+
25
20 1
15 A
10 4
5

0 4

iilllz

SOrtOET

vsortlt

vsortl2

vsordtHO bitonic-
Sort CUDA

Latest developments

o At the Kernel level

e Combinators that capture common recursive patterns

e mergePat

mergePat can be used to implement
a recursive sorter:

merger = pshex sort?2
recSort = mergePat (one rev ->- merger)

Latest developments

At the Kernel level

e Going beyond 1 element/thread
« A merger that operates on two elements per thread

e Important for efficiency

- High level decision that effects performance
« Hard in CUDA, easy in Obsidian
Has to be decided early in CUDA flow.

e Needs to be generalised
» Now allows 1 elem/thread and 2 elem/thread

Latest developments
At the block level

e Kernel Coordination Language
« Enable working on large arrays

- An FFI allowing coordnation of computations on the GPU
from within Haskell.

« Work in progress
» Large sorter based on Bitonic sort
Merge kernels and sort kernels generated by Obsidian

http://www.cs.um.edu.mt/DCCO08

Questions?

References

1. Guy E. Blelloch. NESL: A Nested Data-Parallel language. Technical
report CMU-CS-93-129, CMU Dept. Of Cumputer Science April 1993.

2. Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon P. Jones,
Gabriele Keller, and Simon Marlow. Data parallel haskell: a status
report. In DAMP '07: Proceedings of the 2007 workshop on Declarative
aspects of multicore programming, pages 10-18, New York, NY, USA,
2007. ACM Press.

3. Conal Elliot. Functional images. In The Fun of Programming,
Cornerstones of Computing. Palgrave, March 2003

4. Conal Elliot. Programming graphics processors functionally. In
Proceedings of the 2004 Haskell Workshop. ACM Press, 2004

5. Calle Lejdfors and Lennart Ohlsson. Implementing an embedded gpu

language by combining translation and generation. In SAC’'06:
Proceedings of the 2006 ACM symposium on Applied computiong, pages
1610-1614. New York, NY, USA, 2006. ACM

/ e o oA
Related Work
NESL [1]

e Functional language
e Nested data-parallelism
e Compiles into VCode

Data Parallel Haskell [2]

e Nested data-parallelism in Haskell

/ e e e L
Related Work

Pan [3]
» Embedded in Haskell
e Image synthesis
e Generates C code
Vertigo [4]
» Also embedded in Haskell
* Describes Shaders
e Generates GPU Programs

- |
Related Work

PyGPU 3]
e Embedded in Python
e Uses Pythons introspective abilities
e Graphics applications
e Generates code for GPUs

P — e oo o e

/V

Future Work

Optimisation of generated code.
e Currently no optimisations are performed .
The coordination of Kernels

e Enable computations on very large arrays by composing
kernels.

e Make use of entire GPU

» Currently work in progress

Capture more recursive patterns with combinators.

= . e
y

/V

Reflections

Currently Obsidian suffers from limitations
e Some will be helped by the Kernel coordination layer.

» Stuck in a block
512 elements

e More generality within a block is also needed
» Not only arrays of integers

» More expressive power
Combinators capturing recursive patterns

P — e oo o e

/V

Reflections

Obsidian supplies a high level programming interface
e Quick prototyping of Algorithms.
e Simplify data-parallel programming by its novel
programming style.
Usefulness of Obsidian will improve with:
e Kernel coordination layer
e More generality at the block level.

Obsidian Programming

An example using iteration:

revs arr = let n = len arr
in repE n rev arr

*Obsidian> execute revs [1..10]
[112/ 3/ 4/ 5/ 6/ 7/ 8/ 9/ 10]

*Obsidian> execute revs [1..11]
e s

Obsidian Programming

CUDA C code generated from revs:

ikl p e inatman O S R e M L A e e
target[tid] = source[((n - 1) - tid)];
Losvnethreadsi ()
3w el e w A b ol =
Sourcer=ribaragets
barget = thp;

s

-

Parametric Sorter

Lava and Obsidian

Very similar implementations of Vsort in Lava and
Obsidan.

But the above example does not use the generality of
Obsidian.

e Obsidian can be used to generate parametric code.

Parametric Vsort in Obsidian

Built around parametric versions of:
e The Shuffle exchange network (pshex)
e The periodic merger (pmergeIt)

e Using a slightly different version of the repetition
combinator called repE

Parametric Vsort in Obsidian

pshex f arr =
let n = log2i (len arr)
T e e e e

pmergelt = taul ->- pshex sort2
pYsorbitart =

let n = log2i (len arr)
in (repE n pmergelt) arr

VSort

WAS IO Nt ANyl DN ol A o ui Aot Yy A U e DG SR SRR IR S e el 1
[172737475767778]

Vsorkzremalabte pvsorbile bEd G 32 6 by bk Qg e S P b 2l]
A a2t Arads Ui dend ey haea S e SRR 18§ s A sedd 197 diaedd kAT gt g Lol e el v 010

