

Mind the gap!

The gap!
● Interesting hardware on one side

– Fast
– Special purpose
– Energy efficient
– Resource constrained

● Languages with nice properties on the other
– Terse/elegant/powerful
– Safe
– Secure
– Pure

GPU Programming

DRAM

Registers

Processing

Shared memory

DRAM

Registers

Processing
Registers

Processing

Instruction
 unit

GPU Programming

OpenCL
CUDA

Obsidian Accelerate Harlan

GPU Programming

OpenCL
CUDA

Obsidian Accelerate Harlan

GPU Programming

OpenCL
CUDA

Obsidian Accelerate Harlan

GPU Programming

OpenCL
CUDA

Obsidian Accelerate Harlan

Multicore CPU with Wide SIMD

Core

Cache

SIMD

Core

Cache

SIMD

Core

Cache

SIMD

Cache

Multicore CPU with Wide SIMD

__m512i vresult1 = _mm512_maddubs_epi16(v1_int8, v2_int8);
__m512i vresult2 = _mm512_madd_epi16(vresult1, v4_int16);
vresult = _mm512_add_epi32(vresult2, v3_int);
_mm512_storeu_si512((void *) result, vresult);

Or, bridge the gap

Intel ArBB and our EmbArBB

Programming Microcontrollers

Let’s program a robot
sMove :: Program ()
sMove = cond sensor turnRight
move

followWall :: Program ()
followWall =
 while (return true) $
 cond checkLeft sMove $
 do turnLeft
 move

checkLeft :: Program BoolE
checkLeft = do
 turnLeft
 s <- sensor
 turnRight
 return s

sMove :: Program ()
sMove = cond sensor turnRight move

followWall :: Program ()
followWall =
 while (return true) $
 cond checkLeft sMove $
 do turnLeft
 move

checkLeft :: Program BoolE
checkLeft = do
 turnLeft
 s <- sensor
 turnRight
 return s

sMove :: Program ()
sMove = cond sensor turnRight move

followWall :: Program ()
followWall =
 while (return true) $
 cond checkLeft sMove $
 do turnLeft
 move

checkLeft :: Program BoolE
checkLeft = do
 turnLeft
 s <- sensor
 turnRight
 return s

turnRight?

Current lines of work

The
Hardware

SynchronVM

LispBMScoria

https://abhiroop.github.io/pubs/sensevm_mplr.pdf

https://abhiroop.github.io/pubs/sensevm_mplr.pdf

Current lines of work

The
Hardware

SynchronVM

LispBMScoria

Robert krook
Koen Claessen
Stephen Edwards
John Hui

Mary Sheeran
Abhiroop Sarkar

Benjamin Vedder

SynchronVM

The
Hardware

SynchronVM

HAL Drivers Bridge
Time Mailbox Memory

handling

Bytecode
Interpreter

Synch.
Message
Passing

Concurrency

SynchronVM

The
Hardware

SynchronVM

HAL Drivers Bridge
Time Mailbox Memory

handling

Bytecode
Interpreter

Synch.
Message
Passing

Concurrency

SynchronVM

The
Hardware

HAL Drivers Bridge
Time Mailbox

Concurrency

Source
Code

Compiler

SynchronVM

Synch.
Message
Passing

Bytecode
InterpreterMemory

handling

SynchronVM

HAL
Drivers Bridge

Mailbox
recv butchan

send ledchan

Drivers BridgeHAL

Concurrency

Synch.
Message
Passing

Bytecode
Interpreter

Performance testing

Performance testing – v0

Scriptabletester

SynchronVM performance testing

NRF52

STM32F4

SynchronVM performance testing

SynchronVM performance testing

LispBM

LispBM

Existing Application

HAL

Extensions

Memory
handling

Evaluator
Asynch.
Message
Passing

Concurrency

LispBM – Scriptable Motorcontroller
case study

Concluding

We have seen approaches to bridging the gap
between interesting hardware and nice
languages.

1. Embedded domain specific languages.
Sometimes multiple layers and JiT compilers involved.

2. Runtime systems.

Concluding

“Nice” has been mostly focused on terse,
elegant and powerful but also touches on safe.

Lays a foundation for secure, perhaps?

Thoughts

Can we move nice languages even further
across the divide?

There is interesting code on all levels that could
potentially benefit from EDSL code generating
approaches.

Thoughts

Performance and size of code becomes very
important the closer to hardware we get.

Thoughts

SynchronVM

HAL Drivers Bridge
Time Mailbox Memory

handling

Bytecode
Interpreter

Synch.
Message
Passing

Concurrency

1751 pages

Credits
Mary Sheeran

Koen Claessen

Josef Svenningsson

Ryan Newton

Buddhika Chamith

Erik Holk

Mike Vollmer

Luke Dalessandro

Trevor McDonell

Prajith Ramakrishnan Geethakumari

Anders Thorsén

Kathrine Jahnberg

Eva Axelsson

Ayche Riza

Roger Johansson

Monica Månhammar

Marianne Pleen-Schreiber

Elisabeth Smedberg

Ioannis Sourdis

Pedro Trancoso

Vincenzo Gulisano

Javier San Martin

Ainhoa Cortés

Leticia Zamora-Cadenas

Benjamin Vedder

Jonny Vinter

Magnus Jonsson

Martin Dybdal

Martin Elsman

Robert Krook

Abhiroop Sarkar

Andrea Svensson

Rolf Snedsböl

Lars Svensson

Yinan Yu

Anneli Storberg

Thanks to all ex-colleagues at RISE and all current colleagues
at Chalmers!

Links

https://github.com/eholk/harlan
https://github.com/AccelerateHS/accelerate

https://abhiroop.github.io/pubs/sensevm_mplr.pdf

http://svenssonjoel.github.io/writing/MetaAuto.pdf
http://svenssonjoel.github.io/writing/bb.pdf

http://svenssonjoel.github.io/writing/almost_free.pdf

https://github.com/eholk/harlan
https://github.com/AccelerateHS/accelerate
https://abhiroop.github.io/pubs/sensevm_mplr.pdf
http://svenssonjoel.github.io/writing/MetaAuto.pdf
http://svenssonjoel.github.io/writing/bb.pdf
http://svenssonjoel.github.io/writing/almost_free.pdf

Abstract
There is a divide that makes modern software development methodologies and tools
inaccessible to programmers of many very interesting kinds of computer platforms.
GPUs, for example, are very efficient for certain types of computations, but are
programmed mainly in extensions to C with support for the quirky data-parallism
where the GPU excels. Microcontrollers are limited in resources which makes it hard
to support modern managed languages and runtime systems. GPUs and
Microcontrollers are examples of two very fun, useful and ubiquitous computer
platforms which are hard to program using high-level languages.

In this talk I outline my research history in programming of quirky hardware using
functional languages and go more in depth on our current line of work in developing
runtime systems that can support functional programming on microcontroller
systems.

