
  

Mind the gap!



  



  

The gap!
● Interesting hardware on one side 

– Fast
– Special purpose
– Energy efficient
– Resource constrained 

● Languages with nice properties on the other 
– Terse/elegant/powerful
– Safe
– Secure  
– Pure
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Multicore CPU with Wide SIMD

Core

Cache

SIMD

Core

Cache

SIMD

Core

Cache

SIMD

Cache



  

Multicore CPU with Wide SIMD

__m512i vresult1 = _mm512_maddubs_epi16(v1_int8, v2_int8);
__m512i vresult2 = _mm512_madd_epi16(vresult1, v4_int16);
vresult = _mm512_add_epi32(vresult2, v3_int);
_mm512_storeu_si512((void *) result, vresult);



  

Or, bridge the gap

Intel ArBB and our EmbArBB



  

Programming Microcontrollers



  

Let’s program a robot
sMove :: Program ()
sMove = cond sensor turnRight 
move

followWall :: Program ()
followWall =
  while (return true) $
    cond checkLeft sMove $
      do turnLeft
           move

checkLeft :: Program BoolE
checkLeft = do
  turnLeft
  s <- sensor
  turnRight
  return s
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Current lines of work

The 
Hardware

SynchronVM

LispBMScoria

https://abhiroop.github.io/pubs/sensevm_mplr.pdf

https://abhiroop.github.io/pubs/sensevm_mplr.pdf


  

Current lines of work

The 
Hardware

SynchronVM
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SynchronVM
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SynchronVM
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Performance testing



  

Performance testing – v0



  

Scriptabletester



  

SynchronVM performance testing

NRF52
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SynchronVM performance testing



  

SynchronVM performance testing



  

LispBM
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LispBM – Scriptable Motorcontroller 
case study



  



  



  



  



  



  



  



  



  



  



  

Concluding

We have seen approaches to bridging the gap 
between interesting hardware and nice 
languages.

1. Embedded domain specific languages.
Sometimes multiple layers and JiT compilers involved.

2. Runtime systems.



  

Concluding

“Nice” has been mostly focused on terse, 
elegant and powerful but also touches on safe.

Lays a foundation for secure, perhaps?  



  

Thoughts

Can we move nice languages even further 
across the divide? 

There is interesting code on all levels that could 
potentially benefit from EDSL code generating 
approaches.



  

Thoughts

Performance and size of code becomes very 
important the closer to hardware we get.



  

Thoughts
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Links

https://github.com/eholk/harlan
https://github.com/AccelerateHS/accelerate

https://abhiroop.github.io/pubs/sensevm_mplr.pdf

http://svenssonjoel.github.io/writing/MetaAuto.pdf
http://svenssonjoel.github.io/writing/bb.pdf

http://svenssonjoel.github.io/writing/almost_free.pdf

https://github.com/eholk/harlan
https://github.com/AccelerateHS/accelerate
https://abhiroop.github.io/pubs/sensevm_mplr.pdf
http://svenssonjoel.github.io/writing/MetaAuto.pdf
http://svenssonjoel.github.io/writing/bb.pdf
http://svenssonjoel.github.io/writing/almost_free.pdf


  

Abstract
There is a divide that makes modern software development methodologies and tools 
inaccessible to programmers of many very interesting kinds of computer platforms. 
GPUs, for example, are very efficient for certain types of computations, but are 
programmed mainly in extensions to C with support for the quirky data-parallism 
where the GPU excels. Microcontrollers are limited in resources which makes it hard 
to support modern managed languages and runtime systems. GPUs and 
Microcontrollers are examples of two very fun, useful and ubiquitous computer 
platforms which are hard to program using high-level languages.

In this talk I outline my research history in programming of quirky hardware using 
functional languages and go more in depth on our current line of work in developing 
runtime systems that can support functional programming on microcontroller 
systems.  


