Obsidian: GPGPU Programming in Haskell

Joel Svensson

Chalmers University of Technology

May 15, 2009

Joel Svensson Obsidian: GPGPU Programming in Haskell

General-purpose computations of GPUs

Why are GPUs interesting for non-graphics programming:
@ Cost efficient highly parallel computers

@ ~500 processing cores (NVIDIA 295GTX)
@ Taste of the future, today!

e Programming a 500 core machine is very different from a
2,4,8,16 core machine.

GeForce GTX 280

B

GDDRS Msmary infarface

) , - PGl Exprass Bus Interface 2o

Joel Svensson Obsidian: GPGPU Programming in Haskell

GPUs and Graphics

GPUs are made to draw
Triangles. As many as
possible as quickly as
possible.

Joel Svensson Obsidian: GPGPU Programming in Haskell

Figure: Fallout 3, Bethesda Softworks.

Joel Svensson Obsidian: GPGPU Programming in Haskell

Vertex and Fragment programs

Vertex programs:
@ Executed per vertex.
@ 3d to 2d transformations.

Fragment programs:
@ Executed per fragment] ﬁ
(potential pixel).

@ Computes a color value.

T
FIT
[smmm
4]

Obsidian: GPGPU Programming in Haskell

Joel Svensson

Vertex and Fragment programs

Vertex programs:

@ Executed per vertex.

@ 3d to 2d transformations.
Geometry programs:
Fragment programs:

@ Executed per fragment] ﬁ

(potential pixel).
@ Computes a color value. ol ’

T
FIT
[smmm
4]

Obsidian: GPGPU Programming in Haskell

Joel Svensson

Unified Architecture

Host
v
Input As‘sembler Setup / Rstr / ZCull
v
Vix Thread Issue Geom Thread Issue Pixel Thread Issue

Thread Processor

T MO OOy FO| OO OO
e e S R

Figure: The NVIDIA 8800GTX GPU architecture, with 8 pairs of
multiprocessors. Diagram courtesy of NVIDIA.

Joel Svensson Obsidian: GPGPU Programming in Haskell

Unified Architecture

In each multiprocessor: =
@ 16Kb Shared memory. _ o
@ 8192 32-bit registers. ,,,::
Memory:
@ Uncached device
memory.
@ Read-only constant
memory.

@ Read-only texture
memory.

Joel Svensson Obsidian: GPGPU Programming in Haskell

CUDA

NVIDIA Compute Unified Device Architecture:

@ NVIDIA’s Hardware architecture + programming model.
@ Provides compiler and libraries.
e Extension to C.

@ Enables/Simplifies implementing general purpose
algorithms on the GPU

Joel Svensson Obsidian: GPGPU Programming in Haskell

Simple CUDA Example

__global__ static void sum(int x values,int n)
{

extern _ shared__ int shared[];

const int tid = threadIdx.x;

shared[tid] = wvalues[tid];

for (int j =1

i J < n; Jo*=2) {
__syncthreads () ;
if ((tid + 1) & (2%3) == 0)
shared[tid] += shared[tid - j];

}
values[tid] = shared[tid];

Joel Svensson Obsidian: GPGPU Programming in Haskell

More CUDA

The code listing on the previous slide defines a Kernel:
@ A kernel is executed by a block of threads:

e Up to 512 threads per block.
e Run on one multiprocessor.

@ The threads are further divided into Warps

e The scheduled unit.
e Group of 32 threads.

@ Many blocks can be executed concurrently:
o Referred to as a Grid of Blocks.

Joel Svensson Obsidian: GPGPU Programming in Haskell

__synchtreads()

Barrier synchronisation primitive:
@ Barrier across all the threads of a block.

@ Used to coordinate communication
e Within a block.

if (even(tid)) |

/+ do something =/
__syncthreads () ;

Joel Svensson Obsidian: GPGPU Programming in Haskell

—~
A
n
©
(4]
()
S
e
e
(&)
C
>
w

More

__syncthreads(); i

o
Qe
o

__syncthreads(); i

AAAAbhadrAandiai

__syncthreads(); i

AAAAa AA A

ming in Haskell

GPGPU Progr

Obsidi

c
o
@
7]
c
[
>

(2]
[0}
o

3

Obsidian Outline:
@ Embedded in Haskell.
@ Tries to stay in the spirit of Lava.
e Combinator library.
@ Higher level of abstraction compared to CUDA.

e While still assuming knowledge of architecture
characteristics in the programmer.

Joel Svensson Obsidian: GPGPU Programming in Haskell

Our aims with Obsidian

@ Generate efficient code for GPUs from short and clean
high level descriptions.
@ Make design decisions easy.

e Where to place data in the memory hierarchy.
e What to compute where, and when.

Joel Svensson Obsidian: GPGPU Programming in Haskell

Our aims with Obsidian

@ Generate efficient code for GPUs from short and clean
high level descriptions.

@ Make design decisions easy.

e Where to place data in the memory hierarchy.
e What to compute where, and when.

@ We are not there yet.

Joel Svensson Obsidian: GPGPU Programming in Haskell

Simple Obsidian Example

sumUp :: Int —-> Arr IntE :-> Arr IntE
sumUp 0 = Pure id
sumUp n = Pure (pairwise (uncurry (+))) —->- sync

->-— sumUp (n-1)

Joel Svensson Obsidian: GPGPU Programming in Haskell

Running an Obsidian program on the GPU

Obsidian> execute GPU (sumUp 4) [0..15]
[120]

Joel Svensson Obsidian: GPGPU Programming in Haskell

The

__global__ void generated(unsigned intx input,unsigned intx result) {
unsigned int tid (unsigned int)threadIdx.x;

extern __shared__ unsigned int s_datal[];

unsigned int __attribute__ ((unused)) xsml = &s_datal[0];

unsigned int __attribute_ ((unused)) *sm2 = &s_datal[8];

sm2[tid] = ((unsigned int) ((input[(tid << 1)] + input[((tid << 1) + 1)1)));
__syncthreads () ;

if (tid < 4){

sml[tid] = ((unsigned int) ((((int) (sm2[(tid << 1)])) + ((int) (sm2[((tid << 1) + 1)1)))));
}

__syncthreads () ;

if (tid < 2){

sm2[tid] = ((unsigned int) ((((int) (sml[(tid << 1)])) + ((int) (sml[((tid << 1) + 1)]1)))));
}

__syncthreads () ;

if (tid < 1){

sml[tid] = ((unsigned int) ((((int) (sm2[(tid << 1)])) + ((int) (sm2[((tid << 1) + 1)])))));
}

__syncthreads () ;

if (tid < 1){

result[tid] = ((unsigned int) (sml[tid]));

}

}

oel Svenssol GPGPU Programming in Haskell

Inside Obsidian

Key parts of Obsidian:

@ Arrays
data Arr a = Arr (IxExp —-> a) Int

@ Obsidian programs

data a :=—> Db
= Pure (a —> Db)
| Sync (a —-> Arr FData) (Arr FData :-> b)

@ Collection of combinators and functions.
two, —>—, sync, pair, unpair, zipp, unzipp, etc

Joel Svensson Obsidian: GPGPU Programming in Haskell

The Obsidian sync has many roles :
@ Values are stored in shared memory.
e Enables sharing of computed results between threads.
@ Introduces parallelism.
@ Assigns work to threads.
e The length of the input array specifies the number of

threads.

sync :: (Flatten a) => Arr a :—> Arr a

instances of Flatten have functions toFData and fromFData
defined on them.

Joel Svensson Obsidian: GPGPU Programming in Haskell

Implementation of sync

sync :: Flatten a => Arr a :—> Arr a
sync = Sync (fmap toFData) (Pure (fmap fromFData))

Joel Svensson Obsidian: GPGPU Programming in Haskell

Example: sync Introduces Parallelism

sumUp :: Int —-> Arr IntE :-> Arr IntE
sumUp 0 = Pure id
sumUp n = Pure (pairwise (uncurry (+))) —->- sync

->- sumUp (n-1)

sumUp2 :: Int -> Arr IntE :-> Arr IntE

sumUp2 0 = Pure id

sumUp2 n = Pure (pairwise (uncurry (+)))
->— sumUp2 (n-1)

Joel Svensson Obsidian: GPGPU Programming in Haskell

Example: sync Assigns work to threads

addOne :: Arr IntE :—> Arr IntE

addOne = Pure (fmap (+1)) —->- sync
addOne’ :: Arr IntE :-> Arr (IntE,IntE)
addOne’ = Pure (fmap (+1)) ->-

Pure pair ->- sync

Obsidian> execute GPU addOne [0..7]
[112131415161718]

Obsidian> execute GPU addOne’ [0..7]
[(1,2),(3,4),(5,6), (7,8)]

Joel Svensson Obsidian: GPGPU Programming in Haskell

Parallel prefix

sklansky :: (Flatten a, Choice a) =>
(a -=> a -> a) -> Int -> (Arr a :-> Arr a)
sklansky op 0 = Pure id
sklansky op n = two (sklansky op (n-1)) ->- Pure (fan op) ->- sync

fan op arr = conc (al, (mapArray (op c) a2))

where (al,a2) = halve arr
c = al ! (fromIntegral (len al - 1))
Obsidian> execute GPU (sklansky (+) 3) ([0..7] :: [IntE])
(0,1,3,6,10,15,21,28]

Drawing a Sklansky

NN
A

[[/~

Joel Svensson Obsidian: GPGPU Programming in Haskell

__global__ void generated(unsigned int* input,unsigned ints result) {

unsigned int tid = (unsigned int)threadIdx.x;

extern __shared__ unsigned int s_datal];

unsigned int __attribute__ ((unused)) #*sml = &s_datal[0];
unsigned int __attribute__ ((unused)) #*sm2 = &s_datal[8];
sm2[tid] = ((unsigned int) ((((tid & Oxfffffff9) < 1) ?
((int) (input[tid]))

(((int) (input[(tid & 0x6)])) + ((int) (input[tid]))))));
__syncthreads () ;

sml[tid] = ((unsigned int) ((((tid & Oxfffffffb) < 2) ?
((int) (sm2[tid]))

(((int) (sm2[((tid & O0x4) | 0x1)])) + ((int) (sm2[tid]))))));
__syncthreads () ;

sm2[tid] = ((unsigned int) (((tid < 4) 2

((int) (sml[tid]))

(((int) (sml[3])) + ((int) (sml[tid]))))));

__syncthreads () ;

result[tid] = ((unsigned int) (sm2[tid]));

}

oel Svenssol GPGPU Programming in Haskell

Conclusions

@ Obsidian is work in progress.
e Changing rapidly.
@ Promising: for some applications we are generating quite
efficient code.

@ More needs to be done.
o Generalise.

Joel Svensson Obsidian: GPGPU Programming in Haskell

Conclusions cont.

Applications:
@ Sorting.
@ Parallel prefix.
@ Reduction.

Joel Svensson Obsidian: GPGPU Programming in Haskell

End.

More Questions?

Joel Svensson Obs| GPGPU Programming in Haskell

