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General-purpose computations of GPUs

Why are GPUs interesting for non-graphics programming:
Cost efficient highly parallel computers
∼500 processing cores (NVIDIA 295GTX)
Taste of the future, today!

Programming a 500 core machine is very different from a
2,4,8,16 core machine.
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GPUs and Graphics

GPUs are made to draw
Triangles. As many as
possible as quickly as
possible.
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Screenshot

Figure: Fallout 3, Bethesda Softworks.
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Vertex and Fragment programs

Vertex programs:
Executed per vertex.
3d to 2d transformations.

Geometry programs:

Fragment programs:

Executed per fragment
(potential pixel).
Computes a color value.
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Unified Architecture

 

Figure: The NVIDIA 8800GTX GPU architecture, with 8 pairs of
multiprocessors. Diagram courtesy of NVIDIA.
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Unified Architecture

In each multiprocessor:
16Kb Shared memory.
8192 32-bit registers.

Memory:
Uncached device
memory.
Read-only constant
memory.
Read-only texture
memory.
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CUDA

NVIDIA Compute Unified Device Architecture:
NVIDIA’s Hardware architecture + programming model.
Provides compiler and libraries.

Extension to C.

Enables/Simplifies implementing general purpose
algorithms on the GPU
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Simple CUDA Example

__global__ static void sum(int * values,int n)
{
extern __shared__ int shared[];
const int tid = threadIdx.x;
shared[tid] = values[tid];
for (int j = 1; j < n; j *= 2) {
__syncthreads();
if ((tid + 1) % (2*j) == 0)
shared[tid] += shared[tid - j];

}
values[tid] = shared[tid];

}
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More CUDA

The code listing on the previous slide defines a Kernel:
A kernel is executed by a block of threads:

Up to 512 threads per block.
Run on one multiprocessor.

The threads are further divided into Warps
The scheduled unit.
Group of 32 threads.

Many blocks can be executed concurrently:
Referred to as a Grid of Blocks.

Joel Svensson Obsidian: GPGPU Programming in Haskell



__synchtreads()

Barrier synchronisation primitive:
Barrier across all the threads of a block.
Used to coordinate communication

Within a block.

if (even(tid)) {
/* do something */
__syncthreads();

}
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More __syncthreads()
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Obsidian

Obsidian Outline:
Embedded in Haskell.
Tries to stay in the spirit of Lava.

Combinator library.
Higher level of abstraction compared to CUDA.

While still assuming knowledge of architecture
characteristics in the programmer.
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Our aims with Obsidian

Generate efficient code for GPUs from short and clean
high level descriptions.
Make design decisions easy.

Where to place data in the memory hierarchy.
What to compute where, and when.

We are not there yet.
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Simple Obsidian Example

sumUp :: Int -> Arr IntE :-> Arr IntE
sumUp 0 = Pure id
sumUp n = Pure (pairwise (uncurry (+))) ->- sync

->- sumUp (n-1)

Joel Svensson Obsidian: GPGPU Programming in Haskell



Running an Obsidian program on the GPU

Obsidian> execute GPU (sumUp 4) [0..15]
[120]
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The generated code

__global__ void generated(unsigned int* input,unsigned int* result){
unsigned int tid = (unsigned int)threadIdx.x;
extern __shared__ unsigned int s_data[];
unsigned int __attribute__((unused)) *sm1 = &s_data[0];
unsigned int __attribute__((unused)) *sm2 = &s_data[8];
sm2[tid] = ((unsigned int)((input[(tid << 1)] + input[((tid << 1) + 1)])));
__syncthreads();
if (tid < 4){
sm1[tid] = ((unsigned int)((((int)(sm2[(tid << 1)])) + ((int)(sm2[((tid << 1) + 1)])))));
}
__syncthreads();
if (tid < 2){
sm2[tid] = ((unsigned int)((((int)(sm1[(tid << 1)])) + ((int)(sm1[((tid << 1) + 1)])))));
}
__syncthreads();
if (tid < 1){
sm1[tid] = ((unsigned int)((((int)(sm2[(tid << 1)])) + ((int)(sm2[((tid << 1) + 1)])))));
}
__syncthreads();
if (tid < 1){
result[tid] = ((unsigned int)(sm1[tid]));
}
}
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Inside Obsidian

Key parts of Obsidian:
Arrays
data Arr a = Arr (IxExp -> a) Int

Obsidian programs
data a :-> b

= Pure (a -> b)
| Sync (a -> Arr FData) (Arr FData :-> b)

Collection of combinators and functions.
two, ->-, sync, pair, unpair, zipp, unzipp, etc
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About sync

The Obsidian sync has many roles :
Values are stored in shared memory.

Enables sharing of computed results between threads.

Introduces parallelism.
Assigns work to threads.

The length of the input array specifies the number of
threads.

sync :: (Flatten a) => Arr a :-> Arr a

instances of Flatten have functions toFData and fromFData
defined on them.
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Implementation of sync

sync :: Flatten a => Arr a :-> Arr a
sync = Sync (fmap toFData) (Pure (fmap fromFData))

Joel Svensson Obsidian: GPGPU Programming in Haskell



Example: sync Introduces Parallelism

sumUp :: Int -> Arr IntE :-> Arr IntE
sumUp 0 = Pure id
sumUp n = Pure (pairwise (uncurry (+))) ->- sync

->- sumUp (n-1)

sumUp2 :: Int -> Arr IntE :-> Arr IntE
sumUp2 0 = Pure id
sumUp2 n = Pure (pairwise (uncurry (+)))

->- sumUp2 (n-1)
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Example: sync Assigns work to threads

addOne :: Arr IntE :-> Arr IntE
addOne = Pure (fmap (+1)) ->- sync

addOne’ :: Arr IntE :-> Arr (IntE,IntE)
addOne’ = Pure (fmap (+1)) ->-

Pure pair ->- sync

Obsidian> execute GPU addOne [0..7]
[1,2,3,4,5,6,7,8]

Obsidian> execute GPU addOne’ [0..7]
[(1,2),(3,4),(5,6),(7,8)]
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Parallel prefix

sklansky :: (Flatten a, Choice a) =>
(a -> a -> a) -> Int -> (Arr a :-> Arr a)

sklansky op 0 = Pure id
sklansky op n = two (sklansky op (n-1)) ->- Pure (fan op) ->- sync

fan op arr = conc (a1, (mapArray (op c) a2))
where (a1,a2) = halve arr

c = a1 ! (fromIntegral (len a1 - 1))

Obsidian> execute GPU (sklansky (+) 3) ([0..7] :: [IntE])
[0,1,3,6,10,15,21,28]
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Drawing a Sklansky
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Generated code

__global__ void generated(unsigned int* input,unsigned int* result){
unsigned int tid = (unsigned int)threadIdx.x;
extern __shared__ unsigned int s_data[];
unsigned int __attribute__((unused)) *sm1 = &s_data[0];
unsigned int __attribute__((unused)) *sm2 = &s_data[8];
sm2[tid] = ((unsigned int)((((tid & 0xfffffff9) < 1) ?
((int)(input[tid])) :
(((int)(input[(tid & 0x6)])) + ((int)(input[tid]))))));
__syncthreads();
sm1[tid] = ((unsigned int)((((tid & 0xfffffffb) < 2) ?
((int)(sm2[tid])) :
(((int)(sm2[((tid & 0x4) | 0x1)])) + ((int)(sm2[tid]))))));
__syncthreads();
sm2[tid] = ((unsigned int)(((tid < 4) ?
((int)(sm1[tid])) :
(((int)(sm1[3])) + ((int)(sm1[tid]))))));
__syncthreads();
result[tid] = ((unsigned int)(sm2[tid]));
}
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Conclusions

Obsidian is work in progress.
Changing rapidly.

Promising: for some applications we are generating quite
efficient code.

More needs to be done.
Generalise.
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Conclusions cont.

Applications:
Sorting.
Parallel prefix.
Reduction.
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End.

More Questions?
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