
Obsidian: GPGPU Programming in Haskell

Joel Svensson

Chalmers University of Technology

May 15, 2009

Joel Svensson Obsidian: GPGPU Programming in Haskell



General-purpose computations of GPUs

Why are GPUs interesting for non-graphics programming:
Cost efficient highly parallel computers
∼500 processing cores (NVIDIA 295GTX)
Taste of the future, today!

Programming a 500 core machine is very different from a
2,4,8,16 core machine.

Joel Svensson Obsidian: GPGPU Programming in Haskell



GPUs and Graphics

GPUs are made to draw
Triangles. As many as
possible as quickly as
possible.

Joel Svensson Obsidian: GPGPU Programming in Haskell



Screenshot

Figure: Fallout 3, Bethesda Softworks.

Joel Svensson Obsidian: GPGPU Programming in Haskell



Vertex and Fragment programs

Vertex programs:
Executed per vertex.
3d to 2d transformations.

Geometry programs:

Fragment programs:

Executed per fragment
(potential pixel).
Computes a color value.

Joel Svensson Obsidian: GPGPU Programming in Haskell



Vertex and Fragment programs

Vertex programs:
Executed per vertex.
3d to 2d transformations.

Geometry programs:
Fragment programs:

Executed per fragment
(potential pixel).
Computes a color value.

Joel Svensson Obsidian: GPGPU Programming in Haskell



Unified Architecture

 

Figure: The NVIDIA 8800GTX GPU architecture, with 8 pairs of
multiprocessors. Diagram courtesy of NVIDIA.

Joel Svensson Obsidian: GPGPU Programming in Haskell



Unified Architecture

In each multiprocessor:
16Kb Shared memory.
8192 32-bit registers.

Memory:
Uncached device
memory.
Read-only constant
memory.
Read-only texture
memory.

Joel Svensson Obsidian: GPGPU Programming in Haskell



CUDA

NVIDIA Compute Unified Device Architecture:
NVIDIA’s Hardware architecture + programming model.
Provides compiler and libraries.

Extension to C.

Enables/Simplifies implementing general purpose
algorithms on the GPU

Joel Svensson Obsidian: GPGPU Programming in Haskell



Simple CUDA Example

__global__ static void sum(int * values,int n)
{
extern __shared__ int shared[];
const int tid = threadIdx.x;
shared[tid] = values[tid];
for (int j = 1; j < n; j *= 2) {
__syncthreads();
if ((tid + 1) % (2*j) == 0)
shared[tid] += shared[tid - j];

}
values[tid] = shared[tid];

}

Joel Svensson Obsidian: GPGPU Programming in Haskell



More CUDA

The code listing on the previous slide defines a Kernel:
A kernel is executed by a block of threads:

Up to 512 threads per block.
Run on one multiprocessor.

The threads are further divided into Warps
The scheduled unit.
Group of 32 threads.

Many blocks can be executed concurrently:
Referred to as a Grid of Blocks.

Joel Svensson Obsidian: GPGPU Programming in Haskell



__synchtreads()

Barrier synchronisation primitive:
Barrier across all the threads of a block.
Used to coordinate communication

Within a block.

if (even(tid)) {
/* do something */
__syncthreads();

}

Joel Svensson Obsidian: GPGPU Programming in Haskell



More __syncthreads()

Joel Svensson Obsidian: GPGPU Programming in Haskell



Obsidian

Obsidian Outline:
Embedded in Haskell.
Tries to stay in the spirit of Lava.

Combinator library.
Higher level of abstraction compared to CUDA.

While still assuming knowledge of architecture
characteristics in the programmer.

Joel Svensson Obsidian: GPGPU Programming in Haskell



Our aims with Obsidian

Generate efficient code for GPUs from short and clean
high level descriptions.
Make design decisions easy.

Where to place data in the memory hierarchy.
What to compute where, and when.

We are not there yet.

Joel Svensson Obsidian: GPGPU Programming in Haskell



Our aims with Obsidian

Generate efficient code for GPUs from short and clean
high level descriptions.
Make design decisions easy.

Where to place data in the memory hierarchy.
What to compute where, and when.

We are not there yet.

Joel Svensson Obsidian: GPGPU Programming in Haskell



Simple Obsidian Example

sumUp :: Int -> Arr IntE :-> Arr IntE
sumUp 0 = Pure id
sumUp n = Pure (pairwise (uncurry (+))) ->- sync

->- sumUp (n-1)

Joel Svensson Obsidian: GPGPU Programming in Haskell



Running an Obsidian program on the GPU

Obsidian> execute GPU (sumUp 4) [0..15]
[120]

Joel Svensson Obsidian: GPGPU Programming in Haskell



The generated code

__global__ void generated(unsigned int* input,unsigned int* result){
unsigned int tid = (unsigned int)threadIdx.x;
extern __shared__ unsigned int s_data[];
unsigned int __attribute__((unused)) *sm1 = &s_data[0];
unsigned int __attribute__((unused)) *sm2 = &s_data[8];
sm2[tid] = ((unsigned int)((input[(tid << 1)] + input[((tid << 1) + 1)])));
__syncthreads();
if (tid < 4){
sm1[tid] = ((unsigned int)((((int)(sm2[(tid << 1)])) + ((int)(sm2[((tid << 1) + 1)])))));
}
__syncthreads();
if (tid < 2){
sm2[tid] = ((unsigned int)((((int)(sm1[(tid << 1)])) + ((int)(sm1[((tid << 1) + 1)])))));
}
__syncthreads();
if (tid < 1){
sm1[tid] = ((unsigned int)((((int)(sm2[(tid << 1)])) + ((int)(sm2[((tid << 1) + 1)])))));
}
__syncthreads();
if (tid < 1){
result[tid] = ((unsigned int)(sm1[tid]));
}
}

Joel Svensson Obsidian: GPGPU Programming in Haskell



Inside Obsidian

Key parts of Obsidian:
Arrays
data Arr a = Arr (IxExp -> a) Int

Obsidian programs
data a :-> b

= Pure (a -> b)
| Sync (a -> Arr FData) (Arr FData :-> b)

Collection of combinators and functions.
two, ->-, sync, pair, unpair, zipp, unzipp, etc

Joel Svensson Obsidian: GPGPU Programming in Haskell



About sync

The Obsidian sync has many roles :
Values are stored in shared memory.

Enables sharing of computed results between threads.

Introduces parallelism.
Assigns work to threads.

The length of the input array specifies the number of
threads.

sync :: (Flatten a) => Arr a :-> Arr a

instances of Flatten have functions toFData and fromFData
defined on them.

Joel Svensson Obsidian: GPGPU Programming in Haskell



Implementation of sync

sync :: Flatten a => Arr a :-> Arr a
sync = Sync (fmap toFData) (Pure (fmap fromFData))

Joel Svensson Obsidian: GPGPU Programming in Haskell



Example: sync Introduces Parallelism

sumUp :: Int -> Arr IntE :-> Arr IntE
sumUp 0 = Pure id
sumUp n = Pure (pairwise (uncurry (+))) ->- sync

->- sumUp (n-1)

sumUp2 :: Int -> Arr IntE :-> Arr IntE
sumUp2 0 = Pure id
sumUp2 n = Pure (pairwise (uncurry (+)))

->- sumUp2 (n-1)

Joel Svensson Obsidian: GPGPU Programming in Haskell



Example: sync Assigns work to threads

addOne :: Arr IntE :-> Arr IntE
addOne = Pure (fmap (+1)) ->- sync

addOne’ :: Arr IntE :-> Arr (IntE,IntE)
addOne’ = Pure (fmap (+1)) ->-

Pure pair ->- sync

Obsidian> execute GPU addOne [0..7]
[1,2,3,4,5,6,7,8]

Obsidian> execute GPU addOne’ [0..7]
[(1,2),(3,4),(5,6),(7,8)]

Joel Svensson Obsidian: GPGPU Programming in Haskell



Parallel prefix

sklansky :: (Flatten a, Choice a) =>
(a -> a -> a) -> Int -> (Arr a :-> Arr a)

sklansky op 0 = Pure id
sklansky op n = two (sklansky op (n-1)) ->- Pure (fan op) ->- sync

fan op arr = conc (a1, (mapArray (op c) a2))
where (a1,a2) = halve arr

c = a1 ! (fromIntegral (len a1 - 1))

Obsidian> execute GPU (sklansky (+) 3) ([0..7] :: [IntE])
[0,1,3,6,10,15,21,28]

Joel Svensson Obsidian: GPGPU Programming in Haskell



Drawing a Sklansky

Joel Svensson Obsidian: GPGPU Programming in Haskell



Generated code

__global__ void generated(unsigned int* input,unsigned int* result){
unsigned int tid = (unsigned int)threadIdx.x;
extern __shared__ unsigned int s_data[];
unsigned int __attribute__((unused)) *sm1 = &s_data[0];
unsigned int __attribute__((unused)) *sm2 = &s_data[8];
sm2[tid] = ((unsigned int)((((tid & 0xfffffff9) < 1) ?
((int)(input[tid])) :
(((int)(input[(tid & 0x6)])) + ((int)(input[tid]))))));
__syncthreads();
sm1[tid] = ((unsigned int)((((tid & 0xfffffffb) < 2) ?
((int)(sm2[tid])) :
(((int)(sm2[((tid & 0x4) | 0x1)])) + ((int)(sm2[tid]))))));
__syncthreads();
sm2[tid] = ((unsigned int)(((tid < 4) ?
((int)(sm1[tid])) :
(((int)(sm1[3])) + ((int)(sm1[tid]))))));
__syncthreads();
result[tid] = ((unsigned int)(sm2[tid]));
}

Joel Svensson Obsidian: GPGPU Programming in Haskell



Conclusions

Obsidian is work in progress.
Changing rapidly.

Promising: for some applications we are generating quite
efficient code.

More needs to be done.
Generalise.

Joel Svensson Obsidian: GPGPU Programming in Haskell



Conclusions cont.

Applications:
Sorting.
Parallel prefix.
Reduction.

Joel Svensson Obsidian: GPGPU Programming in Haskell



End.

More Questions?

Joel Svensson Obsidian: GPGPU Programming in Haskell


