Blink a LED using the ZynqBerry

Bo Joel Svensson
bo.joel.svensson@gmail .com

Guide version 0.1
Last edited December 19, 2017
Board compatibility ZynqBerry
Tested Vivado versions 2016.3

Disclaimer

All content provided in this document is for informational purposes only. The authors makes no
guarantees as to the accuracy or completeness of any information within this document.

The authors will not be liable for any errors or omissions in this information nor for the availability
of this information. The authors will not be liable for any losses, injuries, or damages from the display
or use of this information.

1 Introduction

In this document I try to provide a detailed description of how to get started with 10 (in its
simplest form) towards the outside world using a ZYNQ. The example presented here is the
blinking of a led connected to a GPIO pin on the ZYNQ chip. I am a beginner when it comes to
electronics (FPGAs as well) and write this much for my own benefit. Often it is when you try
to explain something to someone else that you really learn it yourself. If someone else finds this
guide helpful, it is an extra bonus. Please help me improve my understanding of the concepts
(and improve this guide) by providing feedback, questions or tips, it is all greatly appreciated.
This guide is not going as in-depth in the details of every step compared to the earlier
Getting Started With OpenCL on the Zynq Guidd'] Since many of the concepts are exactly
the same you can refer to the Getting Started With OpenCL guide if more details are needed.
To follow the steps presented here, you need some materials:

e A ZYNQ 7000 based development board. I am using the ZyngBerry from Trenz. If you
are not using the ZynqgBerry, some extra research will be needed from your end.

A Breadboard or some other means of connecting up components.

An LED (Light Emitting Diode).

A resistor (exactly which resistor will depend on your choice of LED).

e Some wire.

Ihttps://www.researchgate.net/publication/302300881_Getting_Started_with_OpenCL_on_the_
ZYNQ

https://www.researchgate.net/publication/302300881_Getting_Started_with_OpenCL_on_the_ZYNQ
https://www.researchgate.net/publication/302300881_Getting_Started_with_OpenCL_on_the_ZYNQ

Blink a LED using the ZynqBerry Version: 0.1

The resistor I use is 220€2 and the output voltage on the GPIO pin at logical one is 3.3V. If we

assume a voltage drop across the diode of ~ 1V. These parameters give a current of 10.5mA

through the diode. For more information about LEDs see the following links: http://www.

theledlight.com/led101.html https://learn.sparkfun.com/tutorials/light-emitting-diodes-1
There is also some useful documentation to have at hand:

e ZyngBerry Technical Reference (TE0726 TRM): https://www.trenz-electronic.de/
fileadmin/docs/Trenz_Electronic/TE0726/REV0O3/Documents/TRM-TE0726-03.pdf

e AXI GPIO v2.0 LogiCORE IP Product Guide: https://www.xilinx.com/support/
documentation/ip_documentation/axi_gpio/v2_0/pglé4d-axi-gpio.pdf

1.1 Initial setup for the zyngberry

The ZynqBerry is a ZYNQ development /experiment /hobbyist board with the same form factor
as the Raspberry PI. The ZyngBerry board has gone through a number of revisions with
differences in for example the amount of DRAM. I assume that for the procedure outlined in
this document all revisions will behave the same.

It helps if you locate the board files for your particular board at the Trenz web page (browse
for downloads and you can find board files as part of reference designs associated with your
board) [

1.2 Setting up the Breadboard

This guide assumes the LED is connected to “J8 pin” 40. The J8 interface is the set of
connectors on along the “top” of the zyngberry if you have the HDMI port towards you. There
are 40 of these pins in total and pin 40 is the top-most right-most of the pins. I use parts of
an Raspberry PI CanaKitﬂ to make all the pins available on a breadboard. The picture below
shows this Can:cLKit breadboard setup.

N N R N YN S SRR ECR T B e m o o

®

o
o
o

OX3 ONS o

e ! IZ_51 21 35’ om aNe €z 8t
b e

If we look in the TE0726 TRM we can find out that pin 40 of the J8 interface is the same
thing as something called the Zynq Pin P15. This will be important as this is how we refer to
the pin in Vivado later on.

Connect the resistor between pin 40 and the anode (+) of the LED, then the cathode to (-)
on the breadboard. With this we are done with the wiring, now let us get to the design on the
FPGA side in Vivado.

’http://wuw.trenz-electronic.de/products/fpga-boards/trenz-electronic/te0726-zynq.html
3https://www.canakit.com/raspberry-pi/raspberry-pi-3-kits

http://www.theledlight.com/led101.html
http://www.theledlight.com/led101.html
https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds
https://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/TE0726/REV03/Documents/TRM-TE0726-03.pdf
https://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/TE0726/REV03/Documents/TRM-TE0726-03.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_gpio/v2_0/pg144-axi-gpio.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_gpio/v2_0/pg144-axi-gpio.pdf
http://www.trenz-electronic.de/products/fpga-boards/trenz-electronic/te0726-zynq.html
https://www.canakit.com/raspberry-pi/raspberry-pi-3-kits

Blink a LED using the ZynqBerry Version: 0.1

2 Creating the Design in Vivado

The work we need to do in Vivado is a three step process:
e Create the “Block Design”. Instantiate a GPIO block (AXI GPIO).

e Add a constraints file that describes how the GPIO output connects to a package pin on
the Zynq.

e And last, Synthesise the design.

2.1 Create a new Project

Creating a project is described very shortly here. If you need more information look at for
example the Getting Started With OpenCL GuideEl. Start up Vivado and perform the steps
that are listed below.

e Name it: “led”, or whatever you see fit.
e Project type (RTL Project - do not specify sources).
e Select board (If board files are in the right place, select your version of the ZynqBerry).

e Now you will be presented with a Project summary. Just click “finish”.

Now we should be at the “Project View” and ready to start with the design. Click on
“Create block design”.

Fle Edt Fow Tools Window Layout View Hep

oo lRh X DD XS K LG [SoefutLayut b & 2 Y Ready
Flow Navigator ? « | Project Manager led o
] sources 200 x| S ZRCLIEE
Az met RE ~
4 Project Manager Project Settings Edit
Design Sources

& Project Settings &-© Constraints Project name: led

@Y% Add Sources =& Smulation Sources Project location: £: VivadoWorkfled

¢ Language Templates sim_1 Product family:

iF 1P Catalog Project part

Top module name:
4 P Integrator

#F Create Block Design

Targetlanguage:

Simulator language: Mixed
5 ck Desigy
& o Hierarchy | Libraries | Compile Order et
P P00 X Display name 21NQ-7 TE726-02
4 Simulation il b
@ Smiaton sett = =05) Boardpartname: trenz.biz:te0726-02:partd: 1.1
= muaton SEings Repository path: E:/Xiinx Vivado/2016..3/data boards /board_files
@ Run Smulation s P
4 RIL Analysis Board overview: ZYNQ-7 TE0726-02 Board
& Elaboration Settings Select an object to see properties
% Open Elaborated Design
4 Synthesis Synthesis Implementation v
3 Synthesis Settings
& RunSynthesis Design Runs G 1o
B) Opery syt X Name Constraints Status ~ WNS TNS WHS THS TPWS TotalPower FaledRoutes LUT FF EBRAM URAM PCle% Start Eapsed Strategy
X B synth_t constrs_1 Notstarted Vivado Synthess Defauits (Vivado Synt
4 Implementation =] = impl_1 constrs_1 Notstarted Vivado Implementation Defaults (Vivadc
& Implementation Settings
> Run Implementation 7]
@ Open Implemented Design »
4 Program and Debug «
r3
5 Bitstream Settings
¥ Generate Bitstream o < o

@ Open Hardware Manager 15 Td Console Messages | [Log | %) Reports 3> Design Runs

“https://www.researchgate.net/publication/302300881_Getting_Started_with_OpenCL_on_the_
ZYNQ

https://www.researchgate.net/publication/302300881_Getting_Started_with_OpenCL_on_the_ZYNQ
https://www.researchgate.net/publication/302300881_Getting_Started_with_OpenCL_on_the_ZYNQ

Blink a LED using the ZynqBerry Version: 0.1

2.2 Create Block Design

Now we should have an empty diagram just as in the picture on the left below.

5= Diagram x 5 Diagram X | & Address Edtor X s oe x
3] i design_1 3] i desion_1

s processing_system?7_0
A e S TN

DDR 4 || s> DDR
FIXED_10 ||| e > FIXED_IO
UART 04
nc_o4

1280850/
‘2]

a USBIND_04-
- -

= ZYNO TTCO_WAVED_OUT;

& P * TTCO_WAVEL OUT|

TICO_WAVE2_OUT

FCLK_CLKO

FCLK_CLKL

FCLK_RESETO_N

ZYNQ7 Processing System

o

RoQw 'y
RO FGMHAZ

Add a Zynq Processing IP to the design and run “Connection automation” with “Apply
Board Presets” checkbox ticked.

Now we also need to enable one of the AXI GP master interfaces on the Zynq Processing
System. Double click on the Zynq Processing System block to enter into the configuration view
and activate the AXIT GPO Interface.

Then it is time to add the AXT GPIO IP Block and a Port that we will later connect to one
of the pins to the external world. Click the Add IP button (or right click and select Add IP).
Type “GPIO” in the search field and you should find it. Do not run any block automation at
this time.

e Diagram X [Address Edtor X 202X %o Diagram X | [Address Editor X 2o x
5] desgn_t 5[] i desgn_t

Q| (@ Designer Assistance avaiiable. Run Connection Automation ¢/ (@ Designer Assistance avaiable. Run Comection Automation

N S

i ™ K processing_system?_0

+ {D00R y o
+ {D FIXED_IO & {DDDR
#* = FIXED I {D FIXED_IO
* L= UART 04 DL
- % a nc_04
ZYNQ = USBIND_0+

AN M_AXI_GPO4
maceresax ZYNQ. oo waves our
TTCO_WAVEL OUT)

TTCO_WAVE2_OUT)

FCLK_CLKO

FCLK_CLK1|

FCLK_RESETO_N

ax_gpio_0.

Hlesax |
's_axi_adk GPI04 |||
5_axi_aresetn ‘

ZYNQ7 Processing System T AXI GPIO

Trorrod

CRO QWG

LCROQALFNGRHALOD TS

Double click on the AXI GPIO block to enter its configuration view. Here we want to
configure it to be “All Outputs” and set the “Width” to 1. This is because we are only
interested in one bit of output only data (blink one led).

Right click in the Diagram area (Block design area) and select “Create port”. Name the
port “LED” and make it an Output.

Now connect the GPIO port on the AXI GPIO block to the led. You may need to expand
the signals in the GPIO port by clicking on the “+7 directly after “GPIO”. Draw a line from
gpio_io o to the LED port.

Blink a LED using the ZynqBerry Version: 0.1

~|E= Diagram X | [Address Editor X ?00¢ x
+] 5 design_1

Q¢ (@ Designer Assistance available. Run Connection Automation

?\: processing_system?7_0

A g

5! DDR <5 ||} {—>DDR

) FIXED_IO<: ||} [FIXED_IO
= UART_0<= ||| > LED

(‘: 1c_o

e USBIND_0<¢ |||

e - M_AXI_GPO<k

= maacroadk 7N rroo wavesour

i TTCO_WAVEL_OUT

g TTCO_WAVE2_OUT axi_gpio_0

@ FCLK_CLK1 & +:d‘?;k GPI0=|||

) FCLK_RESETO_N i gpio_io_of0:0]»

3 ZYNQ7 Processing System AXI GPIO

o < o

Now run block automation! Everything should then be connected up and look like the
picture below:
|2 Diagram X | [Address Editor X > O %

3[] 4 design_1 »
Q
a;
&
Q} processing_system7_0
ST g=
- FIXED 10 1 FIXED_IO
'L:'J- UART 05 || axi_gpia_0 LED
nc.od | Psaa e
i umoin o4 I * _ goio o sl0:0p d
e L e aci Y M_AXT_GPO | resetn
. MAY ZYNQ. oo waveo our e
& xm: ret_ps7_0_50M
» FOK_QK0 sync_clik mib_reset)
N FOX_Qxi - bus struct_reset{0:0]
i¥ FK_RESETO Np-—| au reset_in peripherdl_resa{0:0] —m m§ﬁ MOD_AXI< i
g ZYNQ7 Processing System “prb_debug_zys_rst T :‘: =8
—dem_locked _ACLK
ﬁ 5 Processor System Reset
@ AXT Interconnect
¢l
. < LA
Now create the HDL-wrappers, see picture below:
Sources B Sl | A2
by | —3 7 sl
a Lf; #ig B
=+ Design Sources |
. 4 w
) & Source Node Properties... Ctrl+E
" 1 @ OpenFile Alt+0
Et-i?:. sim_1 (1)
eate HDL Wrapper...
View Instantiation Template
Generate Output Products. ..
Reset Output Products...

Hierarchy | IP Sources |L Replace File
Also take a look at the address editor and memorise the address that the AXI GPIO IP
registers are mapped to. we will use this information when writing C code to interact with the
LED later on.

Blink a LED using the ZyngBerry

Version: 0.1

e Disgram x | & Address Editor X 2 oe
A |cat Savelnterface BaseName Offset Address Range High Address

22 & & processing_system?_0

| - Data (32 address bits : 040000000 16

——— e

-

2.3 Create a Constraints File

In order to tell the hardware generation process to connect the LED port that we created to
an external pin on the Zynq package, we need to create a constraints file.
In the Sources window, right clock “constrs 17 and select “Edit Constraints”. Them click

Add (the plus sign) and “Create File”.

Sources T I P
A |
T = w et RE
=14 Design Sources (1]
-1 design_1 (design_1.bd) (4)
=i Constraints
|
== Simulation Soi '@ Constraint Set Properties... Ctrl+E
& sim_1(1) Hierarchy Update >
@ Refresh Hierarchy
IP Hierarchy »
Hierarchy | IPSou (‘Edit Constraints Sets.>
A Sources | | EJTSmilaton Sets...
¢ Edit Constraints Sets
Add or modify a constraints set. ‘
Specify constraint set: | i constrs_1 (active) »
+
=| AddFies...
1 3
3 -
Use Add Files or Create File buttons below
Add Files Create File
Copy constraints files into project
: o]|

¢ Edit Constraints Sets X

Add or modify a constraints set.

Spedfy constraint set: | & constrs_1 (active) >

‘-*Eﬂ
(-9

Use Add Files or Create File buttons below

Add Files Create File

Copy consiraints files into project

: i

¢ Create Constraints File *

Create a new constraints file and add it to your
project ¢

File type: 3 XDC -

Fie name: | constraints|

File location: |7 <Local to Project> -

? =]

Cancel

After creating and naming the constraint file it should now be visible in the sources window

¢

and have an “.xdc” file ending.

Blink a LED using the ZynqBerry Version: 0.1

Sources TR I I K.
A= waE RE
=J-{> Design Sources (1]
-3 design_1 (design_1.bd) (4
=-{ Constraints (1
=& constrs_1 (1

T constraints.xdc
=)-{= Simulation Sources (1)

2] sim_1 (1

Hierarchy IP Sources | Libraries | Compile Order

Edit the constraints file (just double click it) and add the following information:

G Diagram x | B Address Editor X | [} constraints.xdc X
B E:NivadoWork/led/led. sresjconstrs_1/new/constraints. xdc

o |1 set property PACKAGE PIN P15 [get ports {LED}]
~|Zset_property IOSTANDARD LVCMOS33 [get_ports [LED}]

D+ %5

X i

2.4 Synthesis

Now do in order:
e run synthesis
e run implementation

e run generate bitstream

3 C Code: Fade a LED In and Out

After generating the bitstream, export it (Export Hardware — Include bitstream) and launch
the SDK. Create a Xilinx project and start write C Code.

The code I present below cycles the led through different intensities by an ad-hoc attempt
to implement Pulse Width Modulation (PWM). Below is the code listing in full and after that
its broken apart and explained piece by piece.

Blink a LED using the ZynqBerry Version: 0.1

#include <stdio.h>
#include "platform.h"

volatile unsigned int *led = (volatile unsigned int*)0x41200000;

int main()

{
init_platform();
print ("Hello World\n\r");
int duty = 0;
int direction = 1;
const int cycle = 1000;
const int cycles = 50;
const int one_percent = cycle / 100;
int d;
while(1) {
for (int j = 0; j < cycles; j ++){
d = duty * one_percent;
for (int 1 = 0; i < cycle; i ++) {
if (d > 0) {
*led = 0x1;
} else {
*led = 0x0;
+
d--;
+
+
duty += direction;
if (duty >= 100 || duty <= 0) direction = -direction;
+
cleanup_platform();
return O;
b

In the C code we start off with declaring a name for (a pointer to) the memory address that
corresponds to the memory mapped register of the AXI GPIO module. Let us call this pointer
“led”

#include <stdio.h>
#include "platform.h"

volatile unsigned int *led = (volatile unsigned int*)0x41200000;

The main function starts out by calling init platform, this function is auto-generated for
us and performs some initial configurations. “Hello world” is printed for some feedback over

Blink a LED using the ZynqBerry Version: 0.1

the serial link. The constants cycle, cycles and one percent specify the number of iterations
of the innermost loop that constitute one cycle, the number of cycles to remain at one level
of intensity and how many iterations correspond to one percent of a cycle. the duty variable
specify how many percent of a cycle the led should be on. Last direction specify whether we
are in the up-in-intensity going phase or downwards.

int main()
{
init_platform();

print ("Hello World\n\r");

int duty = 0;

int direction = 1;

const int cycle = 1000;

const int cycles = 50;

const int one_percent = cycle / 100;

The d variable specify how many of the iterations of the innermost loop that the led should
be on. This value is set every iteration of the outer for loop is modified using the direction
value. Whenever the duty value reaches 101 or -1 the direction is changed (from upwards to
downwards for example).

int d;
while(1) {
for (int j = 0; j < cycles; j ++){
d = duty * one_percent;
for (int 1 = 0; i < cycle; i ++) {
if (d > 0) {
*led = 0x1;
} else {
*led = 0x0;
b
d--;
+
+
duty += direction;
if (duty >= 100 || duty <= 0) direction = -direction;
+

cleanup_platform();
return O;

4 Conclusion

I hope that following this guide has allowed you to get a led connected to your Zynq development
board to flash. I am also a beginner when it comes to hardware, electronics and FPGAs, so
please send me feedback on how to improve, add to or clarify the contents of this guide.

	Introduction
	Initial setup for the zynqberry
	Setting up the Breadboard

	Creating the Design in Vivado
	Create a new Project
	Create Block Design
	Create a Constraints File
	Synthesis

	C Code: Fade a LED In and Out
	Conclusion

