
Defunctionalizing Push Arrays

Bo Joel Svensson
Indiana University

joelsven@indiana.edu

Josef Svenningsson
Chalmers University of Technology

josefs@chalmers.se

Abstract
Recent work on embedded domain specific languages (EDSLs) for
high performance array programming has given rise to a number
of array representations. In Feldspar and Obsidian there are two
different kinds of arrays, called Pull and Push arrays. Both Pull and
Push arrays are deferred; they are methods of computing arrays,
rather than elements stored in memory. The reason for having
multiple array types is to obtain code that performs better. Pull
and Push arrays provide this by guaranteeing that operations fuse
automatically. It is also the case that some operations are easily
implemented and perform well on Pull arrays, while for some
operations, Push arrays provide better implementations. But do we
really need to have more than one array representation? In this
paper we derive a new array representation from Push arrays that
have all the good qualities of Pull and Push arrays combined. This
new array representation is obtained via defunctionalization of a
Push array API.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

General Terms term1, term2

Keywords keyword1, keyword2

1. Introduction
Recent developments in high performance functional array pro-
gramming has given rise to two complementary array representa-
tions, Pull and Push arrays. Pull and Push arrays are both deferred;
they represent two different ways to produce values. A Pull array is
a function from an indices to a values (Figure 1). A consumer of a
Pull array iterates over the indices of interest and applies the func-
tion to each of those indices. Push arrays, on the other hand, encode
their own iteration schema (Figure 2). A consumer of a Push array
provides a write-function that is instantiated into the body of the
Push array’s predefined iteration schema.

The reason there are two types of arrays is that they comple-
ment each other. Some operations, like indexing, can be imple-
mented efficiently for Pull arrays but not for Push arrays. Other
operations, such as concatenation, are more efficient on Push ar-
rays compared to Pull arrays. Pull and Push array implementation
details are shown in sections 2.2 and 2.3.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FHPC’14, September 04, 2014, Gothenburg, Sweden.
Copyright is held by the owner/author(s).
ACM 978-1-4503-3040-4/14/09.
http://dx.doi.org/10.1145/2636228.2636231

Figure 1. Pull array: a length and a function from index to value.

Figure 2. Push array: a higher order function that accepts a mech-
anism for writing (Ix -> a -> CM ()) an element to memory. CM
is the code generating monad used throughout this paper.

Push and Pull arrays have the following properties:

• They are easily parallelizable. It is straightforward to generate
efficient, parallel code from Pull and Push arrays, making them
suitable for inclusion in high performance DSLs.

• They allow for a compositional programming style. It is easy
to formulate high level, reusable combinators operating on Pull
and Push arrays.

• Operations fuse aggressively. When composing two array func-
tions the intermediate array is guaranteed to be fused away and
not allocated in memory at runtime. This fusion takes place
even when resulting in work duplication. The programmer is,
however, given tools to control explicitly when fusion should
not take place.

Despite these desirable properties, Push and Pull arrays have
the following disadvantages: Given for example a Push array, it is
not possible to inspect its history, how it was created. Any oper-
ation on a Push array must be implemented using its functional
representation, and is effectively limited to applying it to a write-
function to obtain its elements or composing operations with the
function representing the Push array. If, however, there was a con-
crete representation of Push arrays that could be traversed and an-
alyzed, new Push array functionality could be obtained. Further-
more, If this concrete representation supported the implementation
of an indexing function that avoided computing the entire array of
elements, there would be no need for a separate Pull array type.
Finding this concrete representation means providing a deep em-
bedding of Push arrays.

Fortunately there is a proven method for obtaining precisely
this kind of concrete representation; it is called defunctionalization
[23]. Applying defunctionalization to a Push array API provides a
data type and an associated compiler semi-automatically (Figure



(Ix -> a -> CM ()) -> CM ()

apply (Map f p) = ...
apply ...

PushT b
Map :: (a -> b)

-> PushT a
-> PushT b

...

Figure 3. Using defunctionalization to go from a higher order
function to a data type and apply function (compiler).

3). Moreover, the compiler gives the same fusion guarantees as the
functional representation of Push arrays have.

This paper presents a unified array library which inherits the
benefits of Pull and Push arrays, yet has only a single type of array.

• We present a single array type which replaces both Pull and
Push arrays (section 5).

• We show how to derive our new array type by applying defunc-
tionalization on push arrays (section 4).

• Our array library can support all known safe operations on Pull
and Push arrays. See section 7.2 for a discussion.

• We present our new array library in the context of an embedded
code-generating DSL (section 2.1). Using a code-generating
DSL makes it easy to demonstrate that operations fuse. Sec-
tion 7.1 outlines how to achieve fusion for our library in the
context of Haskell.

Before presenting the contributions we will give an introduction
to Pull and Push arrays in section 2.2 and 2.3. We will also review
defunctionalization in section 3.

2. Background
This paper presents Pull and Push arrays as part of a small code-
generating embedded language, a compiled EDSL. This sec-
tion gives enough background material to make the paper self-
contained. This section contains no new material, the embedded
language techniques closely resemble those in the seminal “Com-
piling Embedded Languages” paper [15].

2.1 Embedded Code-Generating DSL
The embedded language used throughout this paper is compiled
into a small imperative language with for loops and memory op-
erations (allocate, write), a simple C-like language. The Code data
type below is used to represent compiled programs.

type Id = String

data Code = Skip
| Code :>>: Code
| For Id Exp Code
| Allocate Id Length
| Write Id Exp Exp

The :>>: constructor is for sequential composition of pro-
grams. The empty program, Skip and :>>: allows a Monoid in-
stance for Code.

There are also scalar expressions in the target language. These
are represented by a data type called Exp. Here all the usual arith-
metic operations, indexing and expression level conditionals are
found.

-- Memory operations
write :: Expable a => CMMem a -> Ix -> a -> CM ()

cmIndex :: Expable a => CMMem a -> Ix -> a

-- for loop
for_ :: Expable a => Expr Int -> (a -> CM ()) -> CM ()

Figure 4. Memory operations and flow control

data Value = IntVal Int
| FloatVal Float
| BoolVal Bool

data Exp = Var Id
| Literal Value
| Index Id Exp
| Exp :+: Exp
| Exp :-: Exp
| Exp :*: Exp
| Mod Exp Exp
| Div Exp Exp
| Eq Exp Exp
| Gt Exp Exp
| LEq Exp Exp
| Min Exp Exp
| IfThenElse Exp Exp Exp

Phantom types provide a typed interface to expressions, while
it allows a simple (not GADT based) implementation. Again this
follows the presentation of the “Compiling Embedded Languages”
paper [15].

data Expr a = E {unE :: Exp}

An Expable class sets up conversions to and from the Exp data
type. Compilation will require that data elements are an instance of
this class.

class Expable a where
toExp :: a -> Exp
fromExp :: Exp -> a

The Haskell class system is also used to overload the common
arithmetic operators. For the expressions in this EDSL, only in-
stances of the Num class are provided, overloading +, - and *. Other
functions are given names identical to their Haskell counterpart but
ending with an underscore, such as mod_ and div_. Conditionals
are expressed using an ifThenElse function. Finally, the compar-
ison operators with boolean result are <=*, ==* and >*.

Compilation down to Code is performed within a monad, a
Compile Monad (CM).

newtype CM a = CM (StateT Integer (Writer Code) a)
deriving (Monad,

MonadState Integer,
MonadWriter Code)

CM is a Code generating monad implemented as a writer/state
combination. The state is used to construct new identifiers, while
the writer accumulates generated code (requiring that code is a
monoid). Figure 4 shows type signatures of some essential func-
tions that are used in the rest of the paper. The CMMem data type
represents arrays in memory and is defined as a length and an iden-
tifier.

The Code data type can be seen as a deeply embedded core lan-
guage. For the purposes of this paper, consider Code the compiler
result even though more steps are needed to actually run the code
on an actual machine.



map :: (a -> b) -> Pull a -> Pull b
map f (Pull l ixf) = Pull l (f . ixf)

index :: Pull a -> Ix -> a
index (Pull _ ixf) i = ixf i

zipWith :: (a -> b -> c) -> Pull a -> Pull b -> Pull c
zipWith f (Pull l1 ixf1) (Pull l2 ixf2) =

Pull (min l1 l2) (\i -> f (ixf1 i) (ixf2 i))

halve :: Pull a -> (Pull a, Pull a)
halve (Pull l ixf) = (Pull l2 ixf, Pull (l - l2) ixf’)

where l2 = l ‘div_‘ 2
ixf’ i = ixf (i + l2)

reverse :: Pull a -> Pull a
reverse (Pull l ixf) =

Pull l (\ix -> ixf (l - 1 - ix))

rotate :: Length -> Pull a -> Pull a
rotate r (Pull l ixf) =

Pull l (\ix -> ixf ((ix+r) ‘mod_‘ l))

Figure 5. Examples of operations on Pull arrays

On top of the deeply embedded Code language, the two array
representations (Pull and Push) are implemented as shallow em-
beddings [24]. Lengths and indices for these arrays are represented
by integer expressions.

type Length = Expr Int
type Ix = Expr Int

The following sections will show the implementation and prop-
erties of Pull and Push arrays.

2.2 Pull Arrays
A well known, and often used, representation of arrays is as a
function from index to value. A value at a given index of an array
is computed by applying the function to that given index. That is,
pulling at an index provides a value. We refer to arrays that are
implemented using this representation as Pull arrays.

data Pull a = Pull Length (Ix -> a)

Examples of operations on Pull arrays are shown in Figure 5.
A notable thing about Pull arrays and its functions is that they are
non-recursive. This has the effect that it is very easy to fuse Pull
arrays such that any intermediate array is removed, in particular in
the context of embedded DSLs [24]. As an example, consider the
expression zipWith f (map g a1) (map h a2) where a1 and
a2 are Pull arrays. When this expression is evaluated by the Haskell
runtime the definition of the individual functions will be unfolded
as follows:

zipWith f (map g (Pull l1 ixf1)) (map h (Pull l2 ixf2))
=> zipWith f (map g (Pull l1 ixf1)) (Pull l2 (h . ixf2))
=> zipWith f (Pull l1 (g . ixf1)) (Pull l2 (h . ixf2))
=> Pull (min l1 l2) (\i -> f (g (ixf1 i)) (h (ixf2 i)))

The end result is a single Pull array and all the intermediate
arrays have been eliminated.

Pull arrays are not named areas of memory containing data.
Instead, a Pull array describes how the values can be computed.
However, sometimes it is necessary to be able to compute and store
the array as data in memory, for example to facilitate sharing of
computed results. This can be done by adding a force primitive to
the Pull array API.

force :: Expable a => Pull a -> CM (Pull a)

The force function is monadic (in the CM monad). Using the
force function accumulates code into the writer part of the monad.
The code accumulated is a program that iterates over, computes
and stores all the elements of the input array to memory. Using
force is the only way to stop operations on Pull arrays from fusing.
The array returned from force contains the exact same data as the
input, only they are now represented in memory.

2.3 Push Arrays
Push arrays are a complement to Pull arrays, first introduced in Ob-
sidian [10]. Since then, Push arrays have also been implemented
in Feldspar1, in Nikola2 and in meta-repa [5]. Push arrays also ap-
pear in other settings; for example, Kulkarni and Newton use push
arrays as part of an embedded language for stream processing [20].

Push arrays were introduced in Obsidian and Feldspar in order
to deal with very specific performance issues. In particular, array
concatenation and interleaving introduces conditionals in the Pull
array indexing function. When forcing an array, such conditionals
can lead to bad performance on both CPUs and GPUs.

The example below shows a situation that may occur when
working with pull arrays and concatenation. The code on the left
executes a conditional in every iteration of the loop body. To the
right, the loop is split into two separate loops, neither containing a
conditional.

for i in 0..(m + n-1)
data[i] = if (i < m)

then ...
else ...

for i in 0..(m-1)
data[i] = ...

for i in 0..(n-1)
data[i+m] = ...

Many optimizing compilers would be able to perform this par-
ticular transformation, so a natural question is whether one could
rely on them instead of having two array representations. The prob-
lem is that the optimizations are heuristics by necessity and there
will always be cases where they fail to transform the loop into the
desired form. By using Push arrays the programmer can be cer-
tain that the right loop structure is generated, and doesn’t have to
second-guess the optimizer.

Another example, that occurs when flattening an array of pairs,
is a loop which executes twice as many times as the array of pairs
is long. In each iteration it selects the first or second component of
the pair depending on whether the index is even or not.

for i in 0..(2*n-1)
data[i] = if even(i)

then fst(...)
else snd(...)

for i in 0..(n-1)
data[2*i] = fst(...)
data[2*i+1] = snd(...)

When working with Pull arrays, the loop structures to the left
in the examples above are obtained. However, the code on the right
is preferred. By switching to Push arrays the loop structures on the
right can also be implemented.

Push arrays move the responsibility of setting up the iteration
schema from the consumer (as with Pull arrays) to the producer.
This provided, concatenation, interleaving and pair flattening can
be given more efficient Push array implementations.

Just like the Pull arrays, Push arrays are added to the language
as a shallow embedding.

data Push a = Push ((Ix -> a -> CM ()) -> CM ()) Length

1 github.com/Feldspar/feldspar-language
2 github.com/mainland/nikola/blob/master/src/Data/Array/Nikola/Repr/Push.hs



The Push array is a higher order function whose result is a
monadic computation. As input, this higher order function takes
a write-function (Ix -> a -> CM ()), that represents a way to
consume the elements produced (for example by writing them
to memory). In essence a Push array is a function accepting a
continuation.

2.4 Push Array Library Functions
Figure 6 lists the Push array API used as basis for the defunctional-
ization in the upcoming sections. The selection of functions in the
API is based on our experience with Push arrays from working with
embedded languages.

Note that there is no arbitrary permutation, ixMap, in the library.

ixMap :: (Ix -> Ix) -> Push a -> Push a
ixMap f (Push p l) =

Push (\k -> p (\i a -> k (f i) a)) l

This, somewhat naı̈ve, ixMap function is dangerous and can
lead to uninitialized elements in the resulting array, or race condi-
tions where more than one element is written to the same location
in the array. Instead we argue for using a set of fixed permutations,
such as reverse and rotate. For the discussion in section 5, it is
also important that these permutations are invertible.

2.5 Pull and Push Array Interplay
Pull and Push arrays complement one another and when program-
ming it is nice to have both. Some functions are efficient and in-
tuitive on Pull arrays. Function such as zipWith and halve, are
Pully in nature, while (++) is more efficient on Push arrays, call it
Pushy.

Converting a Pull array to a Push array is cheap and is also sub-
ject to fusion. The function push below implements this conver-
sion.

push :: Pull a -> Push a
push (Pull n ixf) =

Push (\k -> for_ n $ \i -> k i (ixf i)) n

Converting a Push array to a Pull array, however, requires com-
puting and storing all elements to memory. The function pull, im-
plemented below, is an example of this.

pull :: Push a -> CM (Pull a)
pull (Push p n) =

do arr <- allocate n
p $ write arr
return $ Pull n (\i -> cmIndex arr i)

This encourages the following pattern when programming with
Pull and Push arrays: A function takes one or several Pull arrays as
arguments. These arrays are split apart and some processing is done
on the individual parts. As a final step the arrays are assembled
together again and produces a Push array. This Push array can then
be stored to memory which then can be read back as a Pull array
again, if needed. Since memory accesses are an important factor in
application performance on many platforms, the number of Push to
Pull conversions can be used as a crude indicator of performance.
Few such conversions is likely to be better.

An example of this pattern can be seen below in the function
halfCleaner below. For an array of size 8 it performs compare
and swap on pairs of elements at the following positions (0,4), (1,5),
(2,6) and (3,7). This is achieved by first splitting the array in half.
Then the two halves are zipped together and compare and swap is
performed on the pairs. Finally, the new halves are unzipped and
concatenated together, thereby producing the final array.

A half cleaner is an integral part in bitonic sorts and a similar
pattern can be used to implement the butterfly network in FFT.

swap (a,b) = IfThenElse (a <=* b) (a,b) (b,a)

halfCleaner :: Pull (Expr a) ->
Push (Expr a)

halfCleaner =
uncurry (++) . unzip . map swap . uncurry zip . halve

Note that the splitting and zipping must be done on a Pull array
as those operations cannot be efficiently implemented using Push
arrays. Mapping and unzipping can be done on either representa-
tion but in this case it is done on Pull arrays. Only the last step,
concatenation, results in a Push array.

While Pull and Push arrays work well together and form power-
ful abstractions for expression and control of computations, having
just one array representation is alluring.

3. Defunctionalization
Defunctionalization is a program transformation introduced by
Reynolds [23]. It is used to convert functions to first order data
types which means it can be used as a way to implement higher
order languages. We work in a typed setting and will follow the
presentation of Pottier and Gauthier [22].

To illustrate defunctionalization we present a small example,
originally due to Olivier Danvy [13]. The following program flat-
tens trees into lists. A naı̈ve flattening function has a worst case
quadratic time complexity, because of nested calls to append. The
version below is linear by using the standard trick of John Hughes
[18] to represent lists as functions from lists to lists.

data Tree a = Leaf a
| Node (Tree a) (Tree a)

cons :: a -> ([a] -> [a])
cons x = \xs -> x : xs

o :: (b -> c) -> (a -> b) -> a -> c
f ‘o‘ g = \x -> f (g x)

flatten :: Tree t -> [t]
flatten t = walk t []

walk :: Tree t -> ([t] -> [t])
walk (Leaf x) = cons x
walk (Node t1 t2) = walk t1 ‘o‘ walk t2

The function walk is currently higher order. One way to make
it a first order function is to eta-expand it and inline cons and o.
We will instead use the example to demonstrate defunctionalization
and how it can be used to make a first order version of the whole
program.

Defunctionalization works in three steps. First, the function
space which will be defunctionalized is replaced by an algebraic
data type. Second, lambda abstractions are replaced by constructors
in that data type. And third, function application is replaced by a
new function which interprets the algebraic data type such that the
semantics of the program is preserved.

For the program above a new data type, Lam a, is created, which
replaces the functions from lists to lists, i.e. [a] -> [a]. There are
two lambda abstractions which will be turned into constructors of
the Lam data type. They are underlined in the code above. When
replacing lambda abstractions by constructors it is important to
capture the free variables as arguments to the constructor. In the
lambda abstraction occurring in cons there is one free variable,
x. Therefore there will be a constructor to Lam, which takes one
argument of type a. Similarly for the abstraction in o, there are
two free variables f and g. Since they are function arguments,
they will turn into elements of the data type Lam a and hence
the constructor to replace the lambda abstraction will have two
recursive arguments.



-- Array creation
generate :: Length -> (Ix -> a) -> Push a
generate n ixf = Push (\k -> for_ n $ \i ->

k i (ixf i)) n

-- Map
map :: Expable a => (a -> b) -> Push a -> Push b
map f (Push p l) = Push (\k -> p (\i a -> k i (f a))) l

imap :: Expable a => (Ix -> a -> b) -> Push a -> Push b
imap f (Push p l) =

Push (\k -> p (\i a -> k i (f i a))) l

-- Permutations
reverse :: Push a -> Push a
reverse (Push p n) =

Push (\k -> p (\i a -> k (n - 1 - i) a)) n

rotate :: Length -> Push a -> Push a
rotate d (Push p n) =

Push (\k -> p (\i a -> k ((i + d) ‘mod_‘ n) a)) n

-- Combining Push arrays
(++) :: Push a -> Push a -> Push a
(Push p1 l1) ++ (Push p2 l2) = Push r (l1 + l2)

where r k = do p1 k
p2 (\i a -> k (l1 + i) a)

interleave :: Push a -> Push a -> Push a
interleave (Push p m) (Push q n) = Push r l

where r k = do p (\i a -> k (2*i) a)
q (\i a -> k (2*i+1) a)

l = 2 * min_ m n

-- Loading/storing a Push array from/to memory
use :: Expable a => CMMem a -> Push a
use mem@(CMMem _ n) = Push p n

where p k = do for_ n $ \i ->
k i (cmIndex mem i)

toVector :: Expable a => Push a -> CM (CMMem a)
toVector (Push p l) =

do arr <- allocate l
p $ write arr
return arr

Figure 6. Push array API. It contains a representative subset of the Push array libraries found in Obsidian and Feldspar.

The final step is to create the function apply which interprets
the constructors. Since the Lam a type represents functions over
lists the apply function will have type Lam a -> ([a] -> [a]).
The function apply is defined with one case per constructor, where
the result is the corresponding lambda abstraction in the original
program which the constructor replaced. Having defined apply, it
also needs to be inserted at the appropriate places in the program.
In the running example it will be in the function flatten which
applies the function from walk. It is also needed in the definition
of apply when composing the two defunctionalized functions.

The final result of defunctionalizing the example program can
be seen below.

data Lam a = LamCons a
| LamO (Lam a) (Lam a)

apply :: Lam a -> [a] -> [a]
apply (LamCons x) xs = x : xs
apply (LamO f1 f2) xs = apply f1 (apply f2 xs)

cons_def :: a -> Lam a
cons_def x = LamCons x

o_def :: Lam a -> Lam a -> Lam a
o_def f1 f2 = LamO f1 f2

flatten_def :: Tree t -> [t]
flatten_def t = apply (walk_def t) []

walk_def :: Tree t -> Lam t
walk_def (Leaf x) = cons_def x
walk_def (Node t1 t2) = o_def (walk_def t1) (walk_def t2)

A key observation in this example is that the defunctionalization
is completely local. If the above code was contained in a module
which only exported the Tree data type and the flatten function,
then the defunctionalization could have been done completely in-
dependently of the rest of the program. So even though defunction-
alization is in general a whole program transformation, there are
programs where it can be applied locally. The defunctionalization
of Push arrays in the next section depends on this fact.

4. Defunctionalizing Push Arrays
We now turn to applying defunctionalization in Push arrays. There
are two potential functions to defunctionalize in the definition of
Push arrays. We are going to focus on the outermost function,
which takes the write function as argument and returns CM () as
result. Defunctionalizing any of the other functions will not help us
towards the goal of a unifying array representation.

Applying defunctionalization to the outer function result in a
data type (PushT) with constructors that represent our operations
on Push arrays. We also obtain an apply function, which becomes
a compiler for our new Push array language.

The defunctionalization of map and (++) is shown in full detail.
The other functions from the API follow the same procedure. The
procedure begins by investigating the body of the map function.

map :: Expable a => (a -> b) -> Push a -> Push b
map f (Push p l) = Push (\k -> p (\i a -> k i (f a))) l

The free variables in the underlined body are p and f. These two
will be arguments to our Map constructor that is added to the PushT
data type.

data PushT b where
Map :: Expable a => (a -> b) -> PushT a -> PushT b

The implementation of the map function exposed to the pro-
grammer is simply the Map constructor.

map :: Expable a => (a -> b) -> PushT a -> PushT b
map = Map

The apply function is given from the body of the original map
function, \k -> p (\i a -> k i (f a)). However, p is no
longer a function. So an application of apply is needed to make
the types match up.

apply :: (...) => PushT a -> (Ix -> a -> CM ()) -> CM ()
apply (Map f p) = \k -> apply p (\i a -> k i (f a))

Note that in our original definition of Push arrays, the length
was stored with the array. The defunctionalized definition of Push
arrays does not have this associated length. Instead the length is



found by traversing the PushT data type. This is just a stylistic
choice, to make the presentation cleaner.

Defunctionalizing (++), as with map, begins by looking at the
body of the function. In this case, essentially the where clause.

(++) :: Push a -> Push a -> Push a
(Push p1 l1) ++ (Push p2 l2) = Push r (l1 + l2)

where r k = do p1 k

p2 (\i a -> k (l1 + i) a)

The free variables are p1, p2 and l1. The constructor Append
is chosen to represent this operation and is added to the PushT data
type.

data PushT b where
Map :: Expable a => (a -> b) -> PushT a -> PushT b
Append :: Ix -> PushT b -> PushT b -> PushT b

The apply functions gets a new case for Append.

apply :: (...) => PushT a -> (Ix -> a -> m ()) -> m ()
apply (Map f p) =

\k -> apply p (\i a -> k i (f a))
apply (Append l p1 p2) =

\k -> apply p1 k >>
apply p2 (\i a -> k (l + i) a)

As with map the new (++) function is implemented directly
from the Append constructor.

(++) :: PushT a -> PushT a -> PushT a
p1 ++ p2 = Append (len p1) p1 p2

This procedure is repeated for all operations in the Push array
API resulting in the data type and apply function shown in figure 7.

5. A New Expressive Library
The previous section showed how to defunctionalize Push arrays.
But there is seemingly no advantage to performing defunctionaliza-
tion: the library still contains the same functions and they all still do
the same thing. Here is the key insight: now that there is a concrete
data type instead of a function, it is possible to write new functions
on this data type by analyzing the tree and taking it apart. In par-
ticular, it is possible to write functions for the new library which
previously belonged in the realm of Pull arrays.

Sections 2.5 showed how to convert from Pull arrays to Push
arrays, which means that it is also possible to convert from Pull
arrays to PushT. If there is also a way to convert from PushT to
Pull arrays then all Pull array functions can be expressed used the
PushT data type. Pull arrays are completely characterized by their
indexing function and length. All that is needed is to implement the
conversion to Pull arrays is implementing an indexing function for
the PushT type.

One characteristic of Push arrays is that in order to look at
a specific index, potentially all elements must be computed. On
the defunctionalized Push arrays it is possible to implement an
indexing function that is more efficient. No elements other than the
one of interest will be computed.

index :: Expable a => PushT a -> Ix -> a
index (Generate n ixf) ix = ixf ix
index (Map f p) ix = f (index p ix)
index (Use l mem) ix = cmIndex mem ix
index (IMap f p) ix = f ix (index p ix)
index (Append l p1 p2) ix =

ifThenElse (ix >* l)
(index p2 (ix - l))
(index p1 ix)

index (Interleave p1 p2) ix =
ifThenElse (ix ‘mod_‘ 2 ==* 0)

(index p1 (ix ‘div_‘ 2))
(index p2 (ix ‘div_‘ 2))

index (Reverse p) ix =
index p (len p - 1 - ix)

index (Rotate dist p) ix =
index p ((ix - dist) ‘mod‘ (len p))

The implementation of index places restrictions on the opera-
tions used in the defunctionalization. For example the permutation
functions must be invertible. This is another reason for why ixMap
has been excluded from the language.

The index function allows the implementation of a Push to Pull
conversion function that does not make the whole array manifest in
memory before returning a Pull array.

convert :: Expable a => PushT a -> Pull a
convert p = Pull (\ix -> index p ix) (len p)

Being able to index into Push arrays and to convert them to Pull
arrays, opens up for implementation of functions that are consid-
ered Pully also on Push arrays. One such function is zipWith.

zipWith :: (Expable a, Expable b)
=> (a -> b -> c)
-> PushT a -> PushT b -> PushT c

zipWith f a1 a2 =
generate (min (length a1) (length a2))

(\i -> f (index a1 i) (index a2 i))

Using traditional Push arrays, the zipWith function would re-
quire one of the input arrays to be a Pull array.

6. Fusion and Compilation Output
One major benefit of Push arrays is that operations on them fuse
automatically. This becomes very clear in the setting of a code
generating DSL; just generate the code and count the number of
loops. The first example shows that operations are fused. Here an
input array is passed through three operations, map (+1), reverse
and rotate 3.

ex1 :: (Expable b, Num b) => PushT b -> PushT b
ex1 = rotate 3 . reverse . map (+1)

Compiling this program requires that the element type is instan-
tiated, in this case to a Expr Int.

myVec = CMMem "input" 10

compileEx1 = runCM 0 $
toVector ((ex1 arr) :: PushT (Expr Int))

where arr = use myVec

The code generated from compiling this program allocates one
array, and performs one loop over the input data. This is exactly the
expected result from a completely fused program.

Allocate "v0" 10 :>>:
For "v1" 10 (

Write "v0" ((((10 - 1) - v1) + 3) % 10) (input[v1] + 1)
)



data PushT b where
Generate :: Length

-> (Ix -> b)
-> PushT b

Use :: Expable b
=> CMMem b
-> PushT b

Map :: Expable a
=> (a -> b)
-> PushT a
-> PushT b

IMap :: Expable a
=> (Ix -> a -> b)
-> PushT a
-> PushT b

Append :: Length
-> PushT b
-> PushT b
-> PushT b

Interleave :: PushT b
-> PushT b
-> PushT b

Reverse :: PushT b
-> PushT b

Rotate :: Length
-> PushT b
-> PushT b

apply :: Expable b => PushT b -> ((Ix -> b -> CM ()) -> CM ())
apply (Generate n ixf) =

\k -> do for_ n $ \i ->
k i (ixf i)

apply (Use mem@(CMMem _ n)) =
\k -> do for_ n $ \i ->

k i (cmIndex mem i)

apply (Map f p) =
\k -> apply p (\i a -> k i (f a))

apply (IMap f p) =
\k -> apply p (\i a -> k i (f i a))

apply (Append n p1 p2) =
\k -> apply p1 k >>

apply p2 (\i a -> k (n + i) a)

apply (Interleave p1 p2) =
\k -> apply p1 (\i a -> k (2*i) a) >>

apply p2 (\i a -> k (2*i+1) a)

apply (Reverse p) =
\k -> apply p (\i a -> k ((len p) - 1 - i) a)

apply (Rotate n p) =
\k -> apply p (\i a -> k ((i+n) ‘mod_‘ (len p)) a)

Figure 7. The PushT data type and apply function that is obtained from defunctionalization of our Push array API.

The next compilation example is the saxpy (Single-Precision
A*X Plus Y) operation. This is an operation that typically would be
implemented using Pull arrays, but it is now possible to implement
it entirely using PushT.

saxpy :: Expr Float
-> PushT (Expr Float)
-> PushT (Expr Float)
-> PushT (Expr Float)

saxpy a xs ys = zipWith f xs ys
where f x y = a * x + y

We compile saxpy with two Push arrays that are created by a
direct application of use.

i1 = CMMem "input1" 10
i2 = CMMem "input2" 10

compileSaxpy = runCM 0 $
toVector (let as = use i1

bs = use i2
in saxpy 2 as bs)

This results in the following program.

Allocate "v0" 10 :>>:
For "v1" 10 (

Write "v0" v1 ((2.0 * input1[v1]) + input2[v1])
)

However, in the case of saxpy that uses the index function, it
is more interesting to see the compiler output when at least one of
the arrays is not simply created by a use. For example if the first

example ex1 is applied to one of the input arrays, before applying
saxpy.

i1 = CMMem "input1" 10
i2 = CMMem "input2" 10

compileSaxpy = runCM 0 $
toVector (let as = use i1

bs = ex1 $ use i2
in saxpy 2 as bs)

In this case the permutations and map (+1) from ex1 has been
completely inlined.

Allocate "v0" 10 :>>:
For "v1" 10 (

Write "v0" v1
((2.0 * input1[v1]) +
(input2[((10 - 1) - ((v1 - 3) % 10))] + 1.0)))

The code generated from the saxpy together with ex1 example
above is exactly the same as the code obtained when using Pull
arrays. To show this the example is reimplemented using Pull array
versions of the functions reverse, rotate, map and zipWith. The
implementation of these functions are shown in Figure 5. The Pull
array version of saxpy is identical to the Push array version, only
the type signatures change.



saxpy :: Expr Float
-> Pull (Expr Float)
-> Pull (Expr Float)
-> Pull (Expr Float)

ex1 :: Num b => Pull b -> Pull b

To generate code from the Pull array version of saxpy there
needs to be a loop iterating over the elements of the resulting array.
Each iteration writes a single element to memory. Here this is done
by using a freezePull function.

freezePull :: Expable a => Pull a -> CM (CMMem a)
freezePull (Pull n ixf) =

do arr <- allocate n
for_ n $ \i ->

write arr i (ixf i)
return arr

The listing below compiles the Pull array version of saxpy with
ex1 applied to one of the inputs.

ip1, ip2 :: Pull (Expr Float)
ip1 = Pull 10 (\ix -> (E (Index "input1" (unE ix))))
ip2 = Pull 10 (\ix -> (E (Index "input2" (unE ix))))

compileSaxpy = runCM 0 $
freezePull $ saxpy 2 ip1 (ex1 ip2)

The generated code in this case looks exactly like the code
generated from the Push array version of saxpy.

Allocate "v0" 10 :>>:
For "v1" 10 (

Write "v0" v1
((2.0 * input1[v1]) +
(input2[((10 - 1) - ((v1 + 3) % 10))] + 1.0)))

This is the desired result. When using functions of a pully
character the new array representation generates the same code a
Pull array program would.

7. Discussion
This paper shows that it is possible to unify Pull and Push arrays
and obtain an array DSL with only a single array type, while
maintaining the benefits that Pull and Push arrays bring separately.
The key step is to defunctionalize the Push array library.

The main benefit of creating a concrete data type for Push array
programming is that the index function can be implemented. This
function instantly provides the programmer with all the flexibility
of Pull arrays. The net effect is a library which can express all
the functions provided by both Pull and Push arrays and give the
same guarantees about fusion. When deriving the new library one
must be extra careful with what Push array operations to start out
with. They must be safe, permutations need to be invertible and all
elements defined.

In this paper defunctionalization is used as a means to obtain
a concrete representation of Push arrays. Now, looking at the API
used as a starting point, coming up with a data type that represents
those operations is not hard and could be done in a more ad hoc
way. Defunctionalization, however, provides a method that is both
tried and tested and in this case semi-automatically provides us with
both the concrete representation and the compiler.

On a more general note, we have a mantra for dealing with pro-
grams written in continuation passing style: “Always defunctional-
ize the continuation!” Following that mantra almost always yields
insights into programs. In some cases a defunctionalized continua-
tion leads to opportunities to write programs that were not possible
before, as we have demonstrated in this paper with the index func-
tion.

7.1 Embedded vs Native
This paper targets arrays for embedded languages. But how does
our results translate to using a new array type natively in a language
without any embedding? It is entirely possible to do so but it
requires more work to provide the kind of fusion guarantees that the
embedded language approach provides. The types Push and Pull
are non-recursive and all functions on them are also non-recursive.
Achieving fusion for these types is just a matter of inlining and
beta-reductions, which are standard optimizations implemented by
most compilers. However, the type PushT is a recursive type and
the functions manipulating values of this type are also by necessity
recursive. In order to achieve fusion for PushT, shortcut fusion
or some similar technique [17] would be needed. We refrain from
going into details here.

7.2 Unsafe Index Operations
Some Push array libraries [10] contain functions which permutes
arrays by transforming indices, like the following:

ixMap :: (Ix -> Ix) -> Push a -> Push a
ixMap f (Push p l) =

Push (\k -> p (\i a -> k (f i) a)) l

These kinds of functions are problematic for the new array library.
The problem is that the index transformation function, f, which
permutes the indices is not guaranteed to be a proper permutation,
i.e. a bijection. If ixMap would have been included in the library
it wouldn’t have been possible to write the index function in
Section 5, because index would have needed to invert the index
transformation function. The library instead uses a fixed set of
combinators which provide specific permutation. This not only
solves the problem butx we also consider it to be a better library
design. The function ixMap is a potentially unsafe function and
would give undefined results if the programmer were to provide an
index transformation function which is not a proper permutation.
Another approach to dealing with functions such as ixMap would
have been to provide a type for permutations which can be inverted
and have that as an argument instead of the index transformation
function.

8. Related Work
8.1 Array programming
Many operations can be implemented efficiently on Pull arrays and
compose without inducing storage of data in memory. This is one of
the reasons why this representation of arrays is being used in many
embedded languages. Feldspar, is an example of such an embedded
language for digital signal processing [6].

Another property of Pull arrays is that they are parallelizable.
The elements of a Pull array are all computed independently and
could be computed in any order or in parallel. This property of
Pull arrays is used in the embedded language Obsidian, for general
purpose GPU programming [10].

In Pan [15], a similar representation is used for images and
in Repa [19], the delayed array is another example of the same
representation. Later versions of Repa contain a more refined array
representation which allows for efficiently implementing stencil
convolutions [21]. Our line of work is different in that we have
chosen to keep the simple Pull arrays and add Push arrays to be
able to efficiently implement stencil computation.

8.2 Defunctionalization
Defunctionalization is a technique introduced by Reynolds in his
seminal paper on definitional interpreters [23]. The transformation
has later been studied by Danvy and Nielsen [12]. Defunctionaliza-



tion for polymorphic languages has been developed by two differ-
ent groups [7, 22], and we make use of these results in this paper.

In a series of papers Olivier Danvy and his co-authors have used
defunctionalization and other techniques to establish correspon-
dences between interpreters and abstract machines, among other
things [1–4, 8, 9, 11, 14]. In particular, one key step of their cor-
respondence is to defunctionalize continuations to get a first order
representation. This is very similar to the work presented here, but
applied in a different context. However, we go further by looking
at the defunctionalized continuation and writing new functions on
this data type, functions which were not possible to write before.
An example is the index function which was not possible to write
for Push arrays before defunctionalization.

Another example of defunctionalizing continuations is pre-
sented by Filliâtre and Pottier [16]. The authors derive a very effi-
cient, first order algorithm for generating all ideals of a forest poset
as a Gray code from a functional specification.

9. Future Work
Push and Pull arrays have been central to our research in high per-
formance array programming for a while now. This work furthers
our understanding of Push arrays, and provides a way to unify func-
tionality of Pull and Push arrays using a single array representation.
However, this implementation of defunctionalized Push arrays is
just a proof of concept. A natural next step is to replace Pull and
Push arrays in one of our existing embedded DSLs, Obsidian or
Feldspar, with this single array representation and see how well
it fares under those conditions. A natural part of this work would
be to generalize the arrays to higher dimensions along the lines of
Repa [19].

Acknowledgments
Thanks Michal Palka, Anders Persson, Koen Claessen, Jean-
Philippe Bernardy, Mary Sheeran and Lindsey Kuper for their
valuable comments and feedback. We also thank the anonymous
reviewers, who helped improve this paper a lot.

This research has been funded by the Swedish Foundation for
Strategic Research (which funds the Resource Aware Functional
Programming (RAW FP) Project) and by the Swedish Research
Council.

References
[1] M. S. Ager, D. Biernacki, O. Danvy, and J. Midtgaard. A functional

correspondence between evaluators and abstract machines. In Pro-
ceedings of the 5th ACM SIGPLAN international conference on Prin-
ciples and practice of declaritive programming, pages 8–19. ACM,
2003.

[2] M. S. Ager, D. Biernacki, O. Danvy, and J. Midtgaard. From in-
terpreter to compiler and virtual machine: a functional derivation.
BRICS, Department of Computer Science, University of Aarhus,
2003.

[3] M. S. Ager, O. Danvy, and J. Midtgaard. A functional correspondence
between call-by-need evaluators and lazy abstract machines. Informa-
tion Processing Letters, 90(5):223–232, 2004.

[4] M. S. Ager, O. Danvy, and J. Midtgaard. A functional correspondence
between monadic evaluators and abstract machines for languages
with computational effects. BRICS, Department of Computer Science,
Univ., 2004.

[5] J. Ankner and J. D. Svenningsson. An EDSL Approach to High
Performance Haskell Programming. In Proceedings of the 2013 ACM
SIGPLAN Symposium on Haskell, Haskell ’13, pages 1–12, New York,
NY, USA, 2013. ACM. ISBN 978-1-4503-2383-3. . URL http:
//doi.acm.org/10.1145/2503778.2503789.

[6] E. Axelsson, K. Claessen, M. Sheeran, J. Svenningsson, D. Engdal,
and A. Persson. The Design and Implementation of Feldspar an

Embedded Language for Digital Signal Processing. In Proceedings of
the 22nd international conference on Implementation and application
of functional languages, IFL’10, pages 121–136, Berlin, Heidelberg,
2011. Springer Verlag. ISBN 978-3-642-24275-5. URL http://dl.
acm.org/citation.cfm?id=2050135.2050143.

[7] J. M. Bell, F. Bellegarde, and J. Hook. Type-driven defunctional-
ization. In Proceedings of the Second ACM SIGPLAN International
Conference on Functional Programming, ICFP ’97, pages 25–37,
New York, NY, USA, 1997. ACM. ISBN 0-89791-918-1. . URL
http://doi.acm.org/10.1145/258948.258953.

[8] M. Biernacka and O. Danvy. A syntactic correspondence between
context-sensitive calculi and abstract machines. Theoretical Computer
Science, 375(1):76–108, 2007.

[9] D. Biernacki and O. Danvy. From interpreter to logic engine by
defunctionalization. In M. Bruynooghe, editor, Logic Based Pro-
gram Synthesis and Transformation, volume 3018 of Lecture Notes in
Computer Science, pages 143–159. Springer Berlin Heidelberg, 2004.
ISBN 978-3-540-22174-6. . URL http://dx.doi.org/10.1007/
978-3-540-25938-1_13.

[10] K. Claessen, M. Sheeran, and B. J. Svensson. Expressive Array Con-
structs in an Embedded GPU Kernel Programming Language. In Pro-
ceedings of the 7th workshop on Declarative aspects and applications
of multicore programming, DAMP ’12, pages 21–30, New York, NY,
USA, 2012. ACM.

[11] O. Danvy. Defunctionalized interpreters for programming languages.
In Proceedings of the 13th ACM SIGPLAN international conference
on Functional programming, ICFP ’08, pages 131–142, New York,
NY, USA, 2008. ACM. ISBN 978-1-59593-919-7. . URL http:
//doi.acm.org/10.1145/1411204.1411206.

[12] O. Danvy and L. R. Nielsen. Defunctionalization at work. In Proceed-
ings of the 3rd ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming, PPDP ’01, pages 162–174,
New York, NY, USA, 2001. ACM. ISBN 1-58113-388-X. . URL
http://doi.acm.org/10.1145/773184.773202.

[13] O. Danvy and L. R. Nielsen. Defunctionalization at work. In Proceed-
ings of the 3rd ACM SIGPLAN international conference on Princi-
ples and practice of declarative programming, pages 162–174. ACM,
2001.

[14] O. Danvy, K. Millikin, J. Munk, and I. Zerny. Defunctionalized
interpreters for call-by-need evaluation. In Functional and Logic
Programming, pages 240–256. Springer, 2010.

[15] C. Elliott, S. Finne, and O. de Moor. Compiling embedded languages.
Journal of Functional Programming, 13(2), 2003. URL http://
conal.net/papers/jfp-saig/.

[16] J.-C. Filliâtre and F. Pottier. Producing all ideals of a forest, func-
tionally. Journal of Functional Programming, 13(5):945–956, Sept.
2003. URL http://gallium.inria.fr/~fpottier/publis/
filliatre-pottier.ps.gz.

[17] T. Harper. A library writer’s guide to shortcut fusion. In Proceedings
of the 4th ACM Symposium on Haskell, Haskell ’11, pages 47–58,
New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0860-1. . URL
http://doi.acm.org/10.1145/2034675.2034682.

[18] R. J. M. Hughes. A novel representation of lists and its application to
the function reverse. Information processing letters, 22(3):141–144,
1986.

[19] G. Keller, M. M. Chakravarty, R. Leshchinskiy, S. Peyton Jones, and
B. Lippmeier. Regular, shape-polymorphic, parallel arrays in haskell.
In Proceedings of the 15th ACM SIGPLAN international conference
on Functional programming, ICFP ’10, pages 261–272, New York,
NY, USA, 2010. ACM. ISBN 978-1-60558-794-3. . URL http:
//doi.acm.org/10.1145/1863543.1863582.

[20] A. Kulkarni and R. R. Newton. Embrace, Defend, Extend: A Method-
ology for Embedding Preexisting DSLs, 2013. Functional Program-
ming Concepts in Domain-Specific Languages (FPCDSL’13).

[21] B. Lippmeier and G. Keller. Efficient Parallel Stencil Convolu-
tion in Haskell. In Proceedings of the 4th ACM Symposium on
Haskell, Haskell ’11, pages 59–70, New York, NY, USA, 2011. ACM.



ISBN 978-1-4503-0860-1. . URL http://doi.acm.org/10.1145/
2034675.2034684.

[22] F. Pottier and N. Gauthier. Polymorphic typed defunctionalization.
In Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’04, pages 89–98, New
York, NY, USA, 2004. ACM. . URL http://doi.acm.org/10.
1145/964001.964009.

[23] J. C. Reynolds. Definitional interpreters for higher-order programming
languages. In Proceedings of the ACM annual conference - Volume 2,
ACM ’72, pages 717–740, New York, NY, USA, 1972. ACM. . URL
http://doi.acm.org/10.1145/800194.805852.

[24] J. Svenningsson and E. Axelsson. Combining Deep and Shallow
Embedding for EDSL. In H.-W. Loidl and R. Pea, editors, Trends in
Functional Programming, volume 7829 of Lecture Notes in Computer
Science, pages 21–36. Springer Berlin Heidelberg, 2013. . URL
http://dx.doi.org/10.1007/978-3-642-40447-4_2.


