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Abstract

Graphics Processing Units (GPUs) are evolving into powerful general purpose computing
platforms. At first, GPU performance was driven by the requirements of 3D graphics
computer games. To fit this workload, a GPU is a many-core processor suitable for the
data-parallel programming paradigm. Today, GPUs come with hundreds of processing
elements and a theoretical single precision floating point performance in the teraflop range.

Because of the computing power of modern GPUs, programmers are increasingly inter-
ested in making use of them for non-graphics applications. This desire has given rise to
the research field that studies General Purpose Computations on GPUs (GPGPU). The
manufacturers of GPUs are also acknowledging this trend and are tailoring their GPUs to
meet both the desires of those playing games and the GPGPU community.

CUDA is NVIDIA’s tool-set for GPGPU programming on their GPUs. CUDA is a big
improvement for the GPGPU programmer compared to what was available before. In
the early days, the GPGPU programmer was forced to express the algorithm being im-
plemented as a computer graphics computation. CUDA provides a C compiler and a set
of libraries for general purpose programming on the GPU, freeing the programmer from
graphics APIs. In CUDA, the programmer decomposes the problem into a set of kernels.
A kernel is an isolated data-parallel program executed by a number of threads on the GPU.
CUDA has some problems. For example, CUDA is a very low level interface to the GPU
capabilities and there is also the issue that CUDA kernels are not easily composable.

Obsidian is an embedded language for implementing kernels in the functional programming
language Haskell. From higher level descriptions of algorithms based on combinators,
CUDA code is generated. Using this approach, Obsidian kernels are more compositional
and also relieve the programmer from inventing the typically complex index arithmetic
expressions that are used to load and store data in data-parallel algorithms. The indexing
arithmetic is hidden away from the programmer in the set of combinators provided as a
library.

The performance obtained from the kernels generated using Obsidian is decent. It does
not compare to optimized handwritten code but if the implementation effort is taken into
consideration performance is good. Obsidian allows the programmer to think about the
problem at hand, rather than being weighed down by the lower level details.

In this thesis, two different implementations of Obsidian are shown. The first of these
implementations is based on monads and the second on arrows, two concepts familiar to
functional programmers. A number of applications are presented, expressed using the
arrow based version.
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Chapter 1

Introduction

1.1 Graphics Processing Unit: Supercomputer on

a PCIe card

Graphics Processing Units (GPUs) today are many-core processors with floating
point capabilities in the teraflop range. The performance development of GPUs
is driven by the requirements of the graphics used by modern games. Many-core
denotes a chip with a high number of small simple processing elements suitable for
the fine grained data-parallelism typical of graphics applications. Current GPUs
have several hundreds of processing elements on a single chip. For example, The
NVIDIA Fermi based GPUs come in models of up to 512 processing elements [27].
The number of processing elements per chip will most likely keep increasing at a
high rate. Lately there has been a shift in focus of processor design from single
threaded performance to multithreaded performance. For more information on this
development see [14, 23, 6].

The computing power available in GPUs makes them interesting in areas other than
graphics as well. Even before there were proper tools for general purpose program-
ming on GPUs, people used the graphics APIs in clever ways to exploit the GPU for
non-graphics algorithms [28]. In 2006 NVIDIA created CUDA (Compute Unified De-
vice Architecture) that provided a proper tool set for general purpose programming
on their GPUs [24]. Using GPUs as data-parallel computing devices is a popular
trend which can be seen by the number of languages and tools that have appeared
in order to make use of them. Following CUDA, OpenCL arrived. OpenCL is an
open API for general purpose programming that can be used with both NVIDIA
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and AMD GPUs. OpenCL can also be implemented independently of operating sys-
tem [19]. DirectCompute is also an API for general purpose programming on GPUs
DirectCompute is part of the Microsoft DirectX API.

1.2 Obsidian: Embedded language for GPU

computing

This thesis describes the implementation of Obsidian. Obsidian is an domain specific
language for general purpose programming on GPUs. Obsidian is implemented as an
embedded language using Haskell as host. The goal of Obsidian is to raise the level of
abstraction of GPU programming and offer the programmer a tool that encourages
experimentation. From the higher level descriptions, CUDA code is generated.

1.3 Research questions

• CUDA is a huge improvement for the GPU programmer. However, there are
some quirks that limit the compositionality of CUDA programs. Can an em-
bedded language improve upon this situation while maintaining some of the
low level control needed for performance?

• What are the useful combinators (higher order functions) for GPGPU pro-
gramming and is it possible to generate efficient code for these?

• Can combinators and a “connection pattern” mode of thought borrowed from
hardware description be used to alleviate the kind of indexing computations
that are ubiquitous in CUDA and similar data-parallel programming models?

• Details of a kernel’s implementation, such as number of threads used, should be
easily configurable by the programmer with minimum rewriting of code. Can
an embedded language approach provide help here?

1.4 Structure of this thesis

Chapter 1 contains an informal introduction to the area and a description of what
is to come in the following chapters. In this chapter a number of research questions
are posed.
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Chapter 2 is an introduction to the GPGPU area with a section developing a small
program in CUDA. This chapter also gives reference to other sources of information
on GPGPU programming and tools.

Chapter 3 contains an introduction to the embedded language approach to solving
problems.

Chapter 4 explains programming in Obsidian. In a series of examples the language
features are introduced and used.

Chapter 5 shows two different implementations of Obsidian.

Chapter 6 contains a few larger examples developed in Obsidian together with some
performance measurements.

Chapter 7 presents related work. Important influences as well as competing ap-
proaches to GPGPU programming are treated in this chapter.

Chapter 8 is the closing chapter where conclusions and reflections upon this work
are presented.
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Chapter 2

General purpose computations on
GPUs

2.1 Introduction

As graphics processors (GPUs) became more programmable, the desire to utilize
their parallel processing power for non-graphics applications arose. At first people
wanting to use GPUs for general purpose computations (GPGPU) had to express
their problem as a computer graphics computation. This was both limiting in what
was expressible and hard. The data to use as input was stored in textures (two
dimensional arrays optimized for image storage) and the algorithm to compute on
that data expressed using OpenGL or DirectX (the two leading Graphics APIs). For
a more in depth description of early (pre 2006) GPGPU methods see [28].

2.2 NVIDIA CUDA

The programmability and performance of GPUs kept rising and in 2006 NVIDIA
released the 8800GTX graphics card. The 8800GTX graphics card was the first
card with a unified GPU architecture released by NVIDIA [26]. Being a unified
architecture means that there is only a single kind of processing core on the chip.
This is different from earlier GPUs where there where different kinds of processing
elements to process vertex and fragment data. Vertex and fragment refer to the
computer graphics concepts, see for example [1] for more details.
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In order to simplify making use of the GPU for general purpose computations,
NVIDIA released CUDA at the introduction of their unified GPU architecture.
CUDA (Compute Unified Device Architecture) is the name of their programming
model for general purpose computations on NVIDIA GPUs [25]. CUDA is a big im-
provement compared to using the graphics APIs for general purpose programming.
The programmer is no longer required to translate the problem into a graphics con-
text. CUDA delivers a C compiler and a set of of tools and libraries for general
purpose parallel programming on NVIDIA GPUs.

The NVIDIA 8800GTX card came with 128 processing elements, 768MB of mem-
ory and had a theoretical peak single precision floating point capability of 518.4
gigaflops [26].Today, in 2010, NVIDIA’s top graphics card has 4 times the processing
elements (in a single chip) and double the amount of memory.

2.2.1 CUDA architecture

A CUDA enabled GPU comes with a number of multiprocessors. Each multiprocessor
contains a number of SIMD (Single Instruction Multiple Data) cores, load-store
units, special function units and a local, shared, memory. The local memory per
multiprocessor is called shared memory because it is used to share data between
threads running on a multiprocessor. The number of SIMD cores per multiprocessor
is today either 8 or 32 depending on GPU series. The latest version of the CUDA
architecture is called Fermi and GPUs based on this architecture have 32 SIMD cores
per multiprocessor [27]. The number of multiprocessors in a GPU chip ranges from
1 to 16 today. Thus the number of SIMD processing elements is in the range 8 to
512.

The shared memory per multiprocessor is configurable up to 48KB on Fermi and
a fixed 16KB on previous generations. Each multiprocessor also has a number of
registers, 32768x32bit registers on Fermi and half that amount in the previous gen-
erations.

On the graphics card there is also a global memory accessible by all multiprocessors.
This global memory, which is often referred to as “device memory”, is today in the
area of 1GB in size. There are also computing platforms built around the CUDA
enabled GPU specifically for general purpose computations. These devices usually
come with a larger global memory (4 GB).

The resources available in a multiprocessor determine the maximum number of
threads that can be maintained at any one time by that multiprocessor. On Fermi
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that number is 1024; for earlier generations it is 512. Now, 512 and 1024 are both
numbers greater than the number of SIMD cores per multiprocessor. The threads
are scheduled on those SIMD cores, maintained by a per multiprocessor scheduler.
Groups of 32 threads are executed simultaneously on the the SIMD cores. These
groups of 32 threads are called warps. Now, 32 is also a number larger than the
8 processing units available. These 32 threads are executed interleaved. threads 0
through 7 execute instruction 1 then threads 8 through 15 execute instruction 1 and
so on.

2.2.2 CUDA programming model

The CUDA programming language is based on C but with a small set of language
extensions for parallelism and synchronization. In CUDA, problems are solved by
specifying a hierarchy of threads. This hierarchy of threads mirrors the architecture.
The hierarchy consists of threads that belong to Blocks that are part of a Grid.

Blocks

Since a CUDA enabled GPU can come with varying numbers of multiprocessors,
programs needs to be specified in a way that scales with the number of multiproces-
sors [25]. This leads to a concept exposed to the programmer called blocks. A block
is a group of threads, at most 512 (1024 on Fermi), that cooperate in solving some
subproblem. A block of threads is executed in one multiprocessor and the threads of
the block may communicate using shared memory. Each block executes completely
independently from any other block, thus giving the desired scalability effect. If there
are more multiprocessors available the system simply launches more blocks in paral-
lel. If there is only a single multiprocessor, all blocks will be executed in sequence.
The program that is executed by a block is called a kernel. The kernel programming
model is based in the Single Program Multiple Data (SPMD) paradigm. The kernel
is a single program parameterized by a thread identity.

A block of threads can be specified to have one, two or three dimensions. This in-
fluences how threads are identified within that block. Threads are given an identity
called threadIdx that is a three dimensional vector. The three dimensions of the
identity are accessed as threadIdx.x, threadIdx.y and threadIdx.z. The maxi-
mum sizes of a block in x, y and z is 512, 512 and 64. However, the value x∗y∗z must
not be larger than 512 (1024 on Fermi). The kernel program may use the thread
identity and conditionally chose one path or another. If this happens in such a way



8

that threads within the same warp chooses different paths these execution paths will
execute in sequence, not in parallel. This is a result of the SIMD style execution of
the threads within a warp.

There is also a vector called blockDim that informs a thread of the size of the block
it is part of.

The warp concept mentioned in section 2.2.1 is related to the notion of blocks in the
sense that all blocks consist of a number of warps. The warp concept is not something
the programmer has influence over. The threads of a block are divided into warps
so that thread 0 to 31 is one warp, thread 32 to 63 is another and so on. However,
knowledge of the number of threads in a warp and how the threads are divided
into warps gives opportunity for performance optimizations. For example threads
within a warp may communicate using shared memory without using synchronization
primitives. This is because the threads of a warp will execute in SIMD style. That
is, each thread is at the same point of execution. Threads that belong to different
warps need to use a barrier synchronization primitive called __syncthreads() to
ensure a uniform view of the shared memory.

Grid

A grid is a collection of blocks that all execute the same kernel. A block is identified
within a grid by a blockIdx vector. One or two dimensional grids may be specified.
The maximum number of blocks in any dimension is 65535. So at most 65535*65535
blocks may be launched simultaneously on the GPU.

A thread can be globally identified within a grid by using the values of threadIdx,
blockDim and blockIdx. This will be shown in section 2.2.3.

The host

The host system is the computer that controls the CUDA enabled device. On this
system, a controlling CPU thread is in charge of launching grids of blocks on the
GPU available to the host. Grids are specified using special CUDA syntax that looks
as follows:

kernel<<<blocks,threads,sharedmem>>>(arg1, arg2, ..., argn);

This launches the kernel called kernel on the GPU in a number of blocks specified by
the vector blocks, a number of threads specified by threads and a shared memory
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size of sharedmem. The syntax also allows the blocks and threads to be specified
using scalars if the grid or block is one dimensional. The arg1, arg2 up to argn

are the arguments passed to the kernel. If these arguments are arrays of data, these
should reside in the device memory.

The host is also responsible for allocating memory on the device and uploading the
data needed to the GPU before launching kernels. Allocating storage in the device
memory is done using a cudaMalloc operation and memory transfer to and from the
device is done using cudaMemcpy.

Programmer view

The CUDA device is a computer system capable of managing a very high number
of threads. If it is possible to decompose a problem into pieces that are compatible
with the hierarchical thread capabilities of the GPU, the gains can be big. There are
reports of speed-ups in the range 10x to 1000x compared to CPU solutions, see for
example [24] where a number of success stories are posted.

When a programmer aims to solve a data-parallel programming problem using CUDA,
she must decompose the problem into subproblems that can be solved by a grid of
blocks. These subproblems must have the characteristic that the data can be di-
vided into chunks that can be computed on completely independently from any
other chunk. A kernel is designed that performs the desired computation per chunk.
Now, hopefully there is an efficient way to combine the results that this provides per
chunk into a solution of that particular sub-problem.

2.2.3 CUDA programming example

In this section, a CUDA program for computing the dot product of two large arrays
will be implemented. Computing the dot product has been chosen because it is a
simple problem to describe and yet provides room for quite a bit of experimentation
in the CUDA implementation. This gives the opportunity to show some of the
problems and opportunities presented to the CUDA programmer.

Given two sequences of numbers X and Y of length n, the dot product is given by
summing up the all the products Xi ∗ Yi for i ∈ 0..(n− 1).

A possible implementation of this operations is sequential C code is the following:
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float dotProduct(float *x, float *y, unsigned int n) {

float r = 0.0f;

for (int i = 0; i < n; ++i) {

r += x[i] * y[i];

}

return r;

}

As the dot product computation is presented above, it is an entirely sequential op-
eration. By splitting this algorithm up into a summing part and a multiplying
part, opportunities for parallelization present themselves. Computing each of the
products, Xi ∗ Yi, can be done completely independently and is easily parallelizable.
Computing the products is very easily transformed into CUDA. The naive kernel
that performs this operation is completely block size independent. This means that
the multiplication kernel can be applied on varying input data sizes without change.

__global__ void multKernel(float *result, float *x, float *y) {

unsigned int gtid = blockIdx.x * blockDim.x + threadIdx.x;

result[gtid] = x[gtid] * y[gtid];

}

The __global__ declaration of the multKernel specifies for the CUDA compiler
that this function is a GPU kernel. This kernel takes three pointers as arguments,
result, x and y. These pointers point to equal length arrays that reside in the device
memory.

The next line computes the global thread id that is used to index into the result
and input arrays. If this kernel is used to compute the element wise products of two
arrays of length 2000 then 2000 threads are needed to compute all the results. 2000
threads cannot be maintained in a single block, so a multitude of smaller sized blocks
must be launched. In this case, the programmer is free to launch for example ten
200-thread blocks to compute the products. This call to multKernel launches ten
200-thread blocks:

multKernel<<<10,200,0>>>(r,x,y);

Another option would be to launch 100 20-thread blocks to compute the same result.
But it is generally not recommended to choose a block size that is smaller than warp
size. Even in the 200-threads per block case, the situation is non-optimal. A multiple
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Figure 2.1: A binary tree summation kernel

of warp size would have been better. But forcing the block size to a multiple of warp
size would in this case mean the input data would need to have been padded or extra
bounds checking code inserted into the kernel. Inserting bounds checking would be
impractical because every instance of the kernel would need to execute some extra
conditional but only one of them is on the boundary.

Even when implementing this very simple operation as a CUDA kernel there are
a number of choices that could have been made differently. The implementation
above uses one thread to compute each result. Instead, each thread could compute a
number of results but this limits the generality of this kernel. For example, a kernel
that computes two results per thread could only be applied to even length arrays.

The second part of the dot product algorithm is to compute the sum of all the
elements in the array of results from the multiplication step. This step is not as
direct as the previous one and the parallel solution imposes more limitations on
input data size than the multKernel did. The summation kernel will use the binary
tree shaped approach, as illustrated in figure 2.1. This summation kernel will be
applicable to arrays of length a power of two.

The summation kernel will be implemented using one thread per element and the
blocks will need to be of size a power of two for proper operation. In order to sum
up a large array, larger than the block size, the host must launch further grids to
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sum up the partial results. This imposes further limitations; for example if an array
of size 256*512 is to be summed up this can be done by launching 256 512-thread
blocks followed by a single 256-thread block to get the total sum. But if the array to
sum up is 100*512 elements it is harder to use this kernel to sum up the 100-element
partial result. Either this array needs to be padded with zeroes to 128 elements or
a specialized kernel that can handle 100 elements would need to be written to take
care of that case.

Below is the CUDA code that implements this kernel; it will be explained in detail
following the listing:

__global__ void sumKernel(float *result, float *x) {

unsigned int tid = threadIdx.x;

extern __shared__ float sm[];

sm[tid] = x[blockIdx.x * blockDim.x + tid];

for (int i = 1; i < blockDim.x; i *= 2) {

__syncthreads();

if (tid % (2*i) == 0) {

sm[tid] += sm[tid + i];

}

}

if (tid == 0) {

result[blockIdx.x] = sm[0];

}

}

The first line specifies that this kernel takes two pointers as arguments, a result

array and an input array called x. Then a short name for the local thread identity
is defined. This kernel will compute sums of block sized arrays in shared memory
and during these computations the local thread id will be used to index into that
memory. The global thread identity is only used to read in data from the large input
array.

The line extern __shared__ float sm[]; names the shared memory array. The
size of the shared memory array is set from the host when launching the grid.
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Now, data can be read from global memory to local memory using global thread id,
sm[tid] = x[blockIdx.x * blockDim.x + tid];.

The for loop runs log base 2 of the block size times. Each time through the loop
a number of threads will perform an addition. In the first iteration block size di-
vided by 2 threads will be active and add up elements, as shown in figure 2.1. The
__syncthreads() call is placed in the beginning of the loop so that it acts both
as a barrier synchronization between the iterations of the loop and as a barrier be-
tween the initial reading of global memory and the first iteration of the loop. The
conditional in the loop essentially shuts a number of threads off.

The very last thing this kernel does is writing the sum to global memory. This is
done by thread 0. No extra barrier is needed before writing the result to global
memory since thread zero will be the one to compute the final iteration through the
loop.

Now the multkernel and sumKernel can be used to implement a dot product algo-
rithm. The host code below implements dot product for 128*512 elements. The block
size in use will be 512 and in the multiplication step a 128 block grid is launched.
In the summation step two grids will be launched – first a grid of 128 elements and
then one containing a single block of 128 threads.

After allocating all device memory and uploading the arrays to GPU memory, the
host code would launch the following grids:

multKernel<<<128,512,0>>>(device_x,device_x,device_y);

sumKernel<<<128,512,512*sizeof(float)>>>(result, device_x);

sumKernel<<<1,128,128*sizeof(float)>>>(result,result);

After executing these grids, the result of the entire computation is stored at index
zero in the result array.

2.2.4 Conclusions

CUDA is a huge improvement compared to using graphics APIs for GPGPU pro-
gramming. This increases programmer productivity and has effect on what can be
expressed.

In the previous section a multiplication kernel and a summation kernel were imple-
mented separately. It is, however, possible to implement a fused multiply-sum kernel,
which may be desirable for performance purposes.
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__global__ void mult_sumKernel(float *result, float *x, float *y) {

unsigned int tid = threadIdx.x;

extern __shared__ float sm[];

sm[tid] = x[blockIdx.x * blockDim.x + tid] *

y[blockIdx.x * blockDim.x + tid];

for (int i = 1; i < blockDim.x; i *= 2) {

__syncthreads();

if (tid % (2*i) == 0) {

sm[tid] += sm[tid + i];

}

}

if (tid == 0) {

result[blockIdx.x] = sm[0];

}

}

Another transformation of the sumKernel that may be desirable is to unroll the
loops. Unrolling the loops however will impose further input size restrictions.

Section 6.7 shows some running time measurements of the mult_sumKernel.

There are limitations to how the __syncthreads() barrier can be applied. These
limitations are not enforced by the compiler which will gladly compile programs
that have unspecified behavior according to the programming manual. For example,
syncthreads() can only be used within a conditional if all threads follow the same
execution path through it [25].

2.3 Other GPGPU programming languages

2.3.1 OpenCL

OpenCL is an open standard for parallel programming designed by the Khronos
group [19]. OpenCL offers a programming model very similar to that of CUDA.
This section will list the similarities between OpenCL and CUDA and also point out
some differences..
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In OpenCL, just as in CUDA, the programmer specifies a hierarchy of threads (in
OpenCL terminology called work-items). Each work-item belongs to a group, a work-
group; corresponding to the CUDA block. The work-group belongs to an NDRange,
that corresponds to CUDA’s grid. OpenCL also makes the distinction between host
and device. The device is a processing unit capable of running OpenCL kernels and
the host runs a controlling thread, just as in CUDA.

OpenCL takes things one step further by being less platform bound. An OpenCL
application can be executed on a wider range of hardware by utilizing just-in-time
compilation. The kernels that make up an application will at runtime be specialized
for the kind of hardware that is present in the computer system. Amongst OpenCL
enabled devices are GPUs (both NVIDIA and AMD) and multi-core CPUs.
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Chapter 3

Embedded domain specific
languages

3.1 Introduction

Embedding domain specific languages within other programming languages is be-
coming popular. There are many examples of embedded languages in several areas,
see chapter 7. An embedded language is implemented as a library within a host
language. As a host language, Haskell is a well tested candidate. With Haskell’s
type class system, the embedded language blends in almost seamlessly.

Domain specific languages (DSLs) are languages that are written to solve problems
within a certain domain. Implementing a DSL in the traditional way, as a standalone
compiler, may be too expensive in time and effort. Implementing a DSL as an
embedded language spares the programmer from implementing the so called frontend
part of compiler. The frontend takes care of parsing and lexing, and building the
abstract syntax trees that the back-end of the compiler works on [29]. In an embedded
language there is a collection of library functions that create the same abstract
representations of programs that the frontend usually produces from a source code
listing. The embedded language implementor has the choice of implementing an
interpreter that computes the result of the program or to embed a compiler. An
embedded compiler could, for example, output assembly, virtual machine bytecode
or C code.

The presentation of embedded language design and implementation techniques given
here borrows extensively from Conal Elliot et al. Compililing embedded languages [12].
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That article describes the implementation of an embedded compiler for an image ma-
nipulation program called Pan.

3.2 Abstract syntax

An embedded language is a set of program generating functions in some other lan-
guage, here Haskell. These programs that are generated need to be represented in
some way. One such way to represent programs is as actual source code listings,
strings [18]. It is also possible to represent the programs with abstract syntax trees.
Below is an example of an expression data type for floating point expressions:

data FloatE

= Var String

| LitFloat Float

| FloatE ‘Add‘ FloatE

| FloatE ‘Sub‘ FloatE

| FloatE ‘Mul‘ FloatE

| FLoatE ‘Div‘ FloatE

| Sin FloatE

| Sqrt FloatE

Functions in the embedded language can be represented by Haskell functions over
the expression type. For example the function cos can be defined as follows:

cos :: FloatE -> FloatE

cos theta = Sin (LitFloat 1.5708 ’Sub’ theta)

3.3 Syntax

If the programmer using the embedded language were forced to express herself using
the constructors of the expression data type, the embedded approach would probably
not be popular. Haskell has a system for overloading that becomes very useful in the
implementation of embedded languages. This feature of Haskell makes the embedded
language blend in elegantly. This is done using the type class system. For example
there is a type class called Num for basic numeric types. An instance declaration for
the expression type looks like this:
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instance Num FloatE where

(+) a b = a ‘Add‘ b

(-) a b = a ‘Sub‘ b

(*) a b = a ‘Mul‘ b

fromInteger n = LitFloat (fromInteger n)

With this Num instance and one for Floating, that contains amongst other things
pi, cosine could be expressed using sine in the following way:

cos theta = sin (pi / 2 - theta)

This is an improvement compared to the first implementation of cosine. In some
sense the syntax of the host language is being hijacked and used as syntax for the
embedded language.

3.4 Inlining

The function, square, in the embedded language, can be thought of as taking a value
and giving back its square. As a Haskell function, it generates an expression that
contains the Mul constructor and two instances of the input. The definition of square
is.

square x = x * x

When applying square to cos t where cos is defined as above and t is a constant,
would result in a expression like the one expressed here in mathematical notation:
sin(π/2 − t) ∗ sin(π/2 − t). The definition of cos has been inlined at both the
occurrences of x in the square function. This replication of computations leads to
inefficient generated code if not properly taken care of in an optimization phase.

3.5 Optimization and smart constructors

The Compiling Embedded Languages [12] article suggests Common Subexpression
Elimination (CSE) to improve on the situation with code replication. However, it also
explains the use of Smart Constructors to apply some optimizations on the generated
code as it is being generated. For example, when implementing the (+) operation for



20

the embedded language, the inputs to it can be inspected and optimizations applied.
If both inputs to (+) are literals of the form LitFloat x, then the generated code
does not need to contain any add operation at all.

(+) (LitFloat x) (litFloat y) = LitFloat (x + y)

...

(+) x y = x ‘Add‘ y

In the last case of (+), where x and y are of a form that cannot be processed further,
the Add constructor is applied. The ... indicates that there may be many more
cases to capture here and some of them may be target architecture specific.

3.6 Conclusion

This section introduced the embedded language concept by drawing information
from the formative Compiling Embedded Languages paper [12]. The main topic
not considered here is the representation and manipulation of typed expressions.
An embedded language would most likely have more types than just floating point.
This is of course also addressed in [12] where Floats, Ints and Booleans all can be
represented in the same expression type. The programmer is given a typed interface
though by the use of phantom types [15].

In Pan, images are represented by functions from points (pairs of int expressions)
to colors. In order to produce a viewable image, this function needs to be applied at
every point in a grid (pixels). C code can be generated that does this by applying
the image function to a pair of symbolic points (variable expressions, Var "x" and
Var "y") and using the result as the body of a nested for loop that traverses the
grid.

The main benefit of the embedded language approach is the effort saved in imple-
mentation. There is no need to implement a compiler frontend. A large part of DSL
implementation is experimentation and trial and error concerning what features to
include and in what way. Being able to perform this cycle of feature implementation
and rejection in an embedded language is preferable from a productivity point of
view.



Chapter 4

Obsidian

4.1 Introduction

Obsidian is an embedded language for implementation of GPGPU kernels. The
goals of Obsidian is to give the programmer a higher level and more compositional
language in which to express GPU kernels. From the higher level descriptions of
GPGPU kernels, CUDA code is generated.

Obsidian consists of three parts. First of all there is a collection of operations that
can be performed on scalar types. In this category you find, as usual, operations
such as , + , -, * and /. On top of that Obsidian supplies arrays. The decision
was made to let the length of these arrays specify the degree of parallelism. When
generating CUDA code from an Obsidian description, each element of the resulting
array is computed by one thread. In the case of nested arrays, the top level array
in the nesting specifies the degree of parallelism and the inner arrays are computed
sequentially. With the arrays, Obsidian also supplies a library of functions on these
arrays. Lastly, there is the third part, a set of operations (combinators) used to
construct kernels and guide the code generation.

4.2 Array language

This section contains examples of functions from the array language part of Obsidian.
The array language consists of a an Array type Arr a and a collection of functions
on arrays. The Array language programs cannot by themselves be executed on the
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GPU. Instead, the array language programs need to be turned into GPU kernels
using the tools presented in section 4.4.

In Obsidian, an array is represented by an indexing function and a length.

data Arr a = Arr (IndexE -> a) Int

The length of the array is held in a Haskell Int and is static (not subject to change
during runtime). The length being static enables some optimizations that will be
explained later, see section 5.4.4. The IndexE type represents 32bit unsigned integers.
This will be explained in more detail in section 5.

Obsidian arrays can contain elements that are booleans, 32bit floating point numbers
or 32bit integers. Since Obsidian in the end is compiled into CUDA, booleans will
be represented by 32bit integers. The arrays can also contain tuples or arrays and
nesting thereof.

One of the most basic operation that can be performed on an array is to map a
function over it. This operation is data-parallel and is of course the first one added
into the library:

fmap :: (a -> b) -> Arr a -> Arr b

The fmap function can be used to write a program that increments every element of
an array:

incr = fmap (+1)

Another operation on arrays that springs to mind is foldr:

foldr :: (a -> b -> b) -> b -> Arr a -> b

An example use of foldr is to sum up an array. Given an array with the elements
{1,2,3,4,5,6}, foldr with the operation + and the the value 0 is (1+(2+(3+(4+(5+(6+0)))))).
The standard Haskell foldr on lists can be defined like this:

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr _ z [] = z

foldr f z (x:xs) = f x (foldr f z xs)
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As can be seen from the example above, foldr is a sequential computation. The
array language implementation of foldr is also entirely sequential but this is not a
problem. Being able to use both sequential and parallel operations in combination
is useful when implementing algorithms for GPUs.

In the array language there are many functions that Obsidian inherits from Lava.
Lava is a domain specific embedded language for hardware description [4]. There is
more information about the Lava hardware description language in the related work
section 7.3.1. The first two Lava inspired functions are pair and unpair:

pair :: Arr a -> Arr (a,a)

unpair :: Choice a => Arr (a,a) -> Arr a

The function pair takes an array of even length and returns an array of pairs where
the first element is paired up with the second, the third with the forth and so on.
The unpair function does the opposite, see figure 4.1.
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The Choice class contains those types that have an ifThenElse function defined on
them:

ifThenElse :: Choice a => BoolE -> a -> a -> a

There is also a function ?? defined that chooses either the first or the second element
of a tuple depending on a condition. This can be used to implement a program that
replaces every occurrence of a specific element in an array by some given constant:

condReplace e c = fmap (\x -> (x ==* e ?? (c,x)))

Using the functions pair, fmap and unpair, two higher order functions, pairwise
and evens, can be defined. pairwise is takes a two input function and applies it to
pairs of an array:

pairwise :: (a -> a -> b) -> Arr a -> Arr b

pairwise f = fmap (uncurry f) . pair

The function uncurry used in the implementation of pairwise is a higher order
function that takes a function of type a -> b -> c and the result is a function that
takes a pair (a,b) as input and produces a c.

evens is similar to pairwise but requires the function to be a two input/two output
function:

evens :: Choice a => ((a,a) -> (a,a)) -> Arr a -> Arr a

evens f = unpair . fmap f . pair

In the implementation of evens above, Haskell function composition (.) is used.

There is also a function called odds that is very similar to evens except that it lets the
first and the last element of the array pass through unchanged. The functions odds

behaves just like evens on the remaining elements of an array. Figure 4.4 illustrates
evens and odds on six inputs. The odds function is a bit more complicated to im-
plement. A way to pass the first and the last element of an array through unchanged
is needed, and doing so using as few conditionals as possible. The implementation
of the odds function is shown in chapter 5.

In chapter 6, Obsidian will be used to implement sorting networks. One building
block that is useful when constructing sorting networks is sort2. Given an array of
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Figure 4.4: The functions evens (left) and odds (right)

even length, sort2 gives an array where the elements at index 0 and 1 are sorted,
the elements at index 2 and 3 are sorted and so on. For example if the input array
is {1, 0, 4, 5, 3, 2} the result is {0, 1, 4, 5, 2, 3}.
The sort2 function can easily be implemented using evens given that we have a
compare and swap operation, cmp:

cmp :: (Choice a , Ordered a) => (a, a) -> (a, a)

cmp (a, b) = (min a b, max a b)

Now sort2 can be implemented as:

sort2 = evens cmp

The Ordered class provides a set of comparison functions:

(<*) :: Ordered a => a -> a -> BoolE

(<=*) :: Ordered a => a -> a -> BoolE

(>*) :: Ordered a => a -> a -> BoolE

(>=*) :: Ordered a => a -> a -> BoolE

Two other examples of functions from the array library are zipp and unzipp, see fig-
ure 4.3. These two functions are very similar to the Haskell zip and unzip functions
on lists:

zipp :: (Arr a, Arr b) -> Arr (a, b)

unzipp :: Arr (a, b) -> (Arr a, Arr b)

As an example, zipp and fmap can be used to implement the well known zipWith

function:
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zipWith :: ((a,b) -> c) -> (Arr a,Arr b) -> Arr c

zipWith f = fmap f . zipp

The functions zipp and zipWith here are uncurried. The Haskell counterparts are
curried. The reason for this is related to the choice to have array lengths define the
number of threads. Working with pairs is a common operation when using Obsidian.

Some functions in the array library only rearrange the elements of an array. These
functions could be called permutation functions. An example of a permutation is
rev that takes an array and reverses the order of the elements, see figure 4.2:

rev :: Arr a -> Arr a

There are also two functions called riffle and unriffle, figure 4.3. These are also
justified by their usefulness in sorting networks:

riffle :: Arr a -> Arr a

unriffle :: Arr a -> Arr a

The function riffle can be implemented using halve that splits an array down the
middle into two arrays, zipp and unpair:

riffle :: Arr a -> Arr a

riffle = unpair . zipp . halve

Chapter 5 also shows an alternative implementation of riffle that is more efficient
on a GPU.

The functions described so far are part of the array library of Obsidian. These
functions are in some sense the building blocks of which programs are constructed.
Most of the functions shown have been motivated by their usefulness in sorting
network implementation. As we explore more applications, there will surely be more
functions added to the library. In this section, there has been very little talk about
parallelism and how these programs are supposed to be executed on a GPU, but this
is deliberate. Section 4.4 will go into how GPU kernels are constructed using these
building blocks, and some new ones.
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rev :: Arr a -> Arr a

fmap :: (a -> b) -> Arr a -> Arr b

foldr :: (a -> b -> b) -> b -> Arr a -> b

pair :: Arr a -> Arr (a,a)

unpair :: Choice a => Arr (a, a) -> Arr a

halve :: Arr a -> (Arr a, Arr a)

split :: Int -> Arr a -> (Arr a,Arr a)

conc :: Choice a => (Arr a, Arr a) -> Arr a

zipp :: (Arr a, Arr b) -> Arr (a, b)

unzipp :: Arr (a, b) -> (Arr a, Arr b)

riffle :: Arr a -> Arr a

unriffle :: Arr a -> Arr a

singleton :: a -> Arr a

chopN :: Int -> Arr a -> Arr (Arr a)

Figure 4.5: A selection of functions from the array library

(??) :: Choice a => BoolE -> (a, a) -> a

(==*) :: Equal a => a -> a -> BoolE

(<*) :: Ordered a => a -> a -> BoolE

min :: Ord a => a -> a -> a

max :: Ord a => a -> a -> a

Figure 4.6: Example functions on elements
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4.3 Notes on recursion

Defining functions by means of recursion is very useful. However, when implementing
Obsidian array functions or kernels the programmer should be aware that it might
lead to code size explosion. This is a typical problem in embedded languages, and
is related to how definitions are inlined [12]. Recursion and function application in
general take place entirely in the Haskell world and will be completely gone in the
resulting generated code. What is left in the generated code is a completely unrolled
and inlined version of the computation.

The Haskell recursion should be viewed as a tool for program generation for the
Obsidian programmer. Recursion is a very useful tool and should be applied, but
with some care. The programmer should be aware that a recursive call to a function
in Obsidian will result in CUDA code with the body of that function inlined. There
will be many examples of this use of recursion as a code generation tool in the coming
sections.

4.4 GPU kernels

Section 4.2 showed how to express functions on arrays in Obsidian. This section goes
into how these array functions can be mapped onto the GPU in different ways. It
is in the language described in this section that parallelism and whether to share
computed values or recompute them becomes expressible.

A GPU kernel in Obsidian is represented by a data type a :-> b. This type can be
thought of as a program taking an a as input and producing a b. The kinds of kernels
that can be represented in this type are illustrated in figure 4.7. This figure shows a
program that performs some computation using a number of threads followed by a
barrier synchronization, and so on. The boxes marked with Pure can be thought of
as containing an array program like those in section 4.2.

4.4.1 Pure

One basic way to create a new GPU kernel is to take a given array language program,
such as incr = fmap (+1), from the previous section. This program increments
every element of an array. This array language program can be turned into a GPU
kernel by using the function pure:
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Figure 4.7: A GPU Kernel, an object of type a :-> b, can be thought of as some pure
computations interspersed by synchronization

incrKernel :: Num a => Arr a :-> Arr a

incrKernel = pure $ incr

4.4.2 Execute

A kernel such as incrKernel can be executed on the GPU from within a GHCI (the
Glasgow Haskell interpreter) session using a function called execute:

execute :: (Flatten a, Flatten b) =>

(Arr a :-> Arr b) -> [a] -> IO [b]

The class Flatten will be explained in detail in section 5.4, but instances of Flatten
are all the types that can be stored in the GPU memory. Examples of types that are
in Flatten are IntE, FloatE, BoolE. Arrays and pairs of things that are in Flatten

are also instances of Flatten.

Here, execute is used to run the kernel incrKernel on the GPU:

*Obsidian> execute incrKernel [0..9 :: IntE]

[1,2,3,4,5,6,7,8,9,10]

The elements of the Haskell list given to execute are used to create an input array
to the kernel. Following this, the kernel is executed on the GPU and the result is
read back and presented as a Haskell list again.

The code generated from the incrKernel program is presented below. The details
of this source code listing are explain below.
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__global__ void generated(word* input0,word* result0){

const unsigned int tid = (unsigned int)threadIdx.x;

const unsigned int bid = (unsigned int)blockIdx.x;

ix_int(result0,(tid + (10 * bid))) =

(ix_int(input0,(tid + (10 * bid))) + 1);

}

The generated CUDA kernel takes two arguments, an array of input words and an
array of output words. Words are 32-bit quantities that can be either floating point
or integer valued. This kernel uses no shared memory. The result is computed and
written directly back into global memory. This generated CUDA code differs from
what a CUDA programmer would write by hand mainly in the use of the ix_int

macro for indexing into an array. There is also a macro called ix_float for accessing
elements as floating point data. The generated CUDA code also uses blockIdx.x to
calculate the location of the input and output data. This means that many instances
of the generated kernel can be run in parallel over blocks of a large input array, as
indicated in figure 4.8. The code generation procedure is described in chapter 5.
Since this is the first example of generated code, it will be described line by line.

The first line specifies the name and inputs to the kernel. This is no different from
what a CUDA programmer might write by hand except for the type word used for
the input and output pointers:

__global__ void generated(word* input0,word* result0){

Generated kernels take one or more array as input. These are named input0, input1
and so on. The outputs are named result0, result1 and so on in the same way.

The second and third lines just set up aliases for the two integers threadIdx.x and
blockIdx.x. This of course makes no difference for the meaning of the program but
makes the program text a bit more readable:

const unsigned int tid = (unsigned int)threadIdx.x;

const unsigned int bid = (unsigned int)blockIdx.x;

The third line of the code is the interesting one in this case:

ix_int(result0,(tid + (10 * bid))) =

(ix_int(input0,(tid + (10 * bid))) + 1);
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Figure 4.8: Many instances of a kernel executed in parallel over blocks of an array.

Here, each thread assigns a value to position (tid + (10 * bid)) in array result0.
The value assigned is the value found at position (tid + (10 * bid)) in array
input incremented by one. The number, 10, that appears in the generated code is
the length of the array. If many instances of this kernels are launched as a grid, each
instance will produce a 10 element subarray into a larger array in global memory.

4.4.3 Sequential composition

Given two kernels f and g of the following types:

f :: a :-> b

g :: b :-> c

a new kernel f ->- g can be created. The ->- operator is sequential composition.
This means that f ->- g is a kernel that takes an a as input. It lets f compute a b

that is in turn passed to g. The ->- operator has the following type:

(->-) :: (a :-> b) -> (b :-> c) -> (a :-> c)

The following example illustrates the use of ->- by implementing a kernel that both
adds one to each element of an array and reverses the array:

incrRev :: Num a => Arr a -> Arr a

incrRev = pure incr ->- pure rev

It is also possible to specify the incrRev kernel as follows:

incrRev :: Num a => Arr a -> Arr a

incrRev = incrKernel ->- pure rev



34

Executing either of these two versions of incrRev on the GPU gives the following
result:

*Obsidian> execute incrRev [0..9]

[10,9,8,7,6,5,4,3,2,1]

The CUDA code generated from incrRev is very similar to that of incrKernel but
the indexing is reversed:

__global__ void generated(word* input0,word* result0){

const unsigned int tid = (unsigned int)threadIdx.x;

const unsigned int bid = (unsigned int)blockIdx.x;

ix_int(result0,(tid + (10 * bid))) =

(ix_int(input0,((9 - tid) + (10 * bid))) + 1);

}

The CUDA code for incr and increv are both executed using 10 threads in order to
compute the desired result. However, there is nothing in the actual kernel code that
specifies the number of threads that are executing it. Instead, that responsibility
falls on a controlling process running on the CPU. The controlling process invokes
the kernel using special CUDA syntax that looks like this:

generated<<<1,10,0>>>(input, output);

This call sets up the kernel generated to be executed on the GPU using 1 block, 10
threads and 0 bytes of shared memory. For more information about programming
directly in CUDA see section 2.2

The kernel incrRev could also have been expressed in this slightly different way:

incrRev :: Num a => Arr a -> Arr a

incrRev = pure $ rev . incr

4.4.4 Sync

When both arguments to ->- are implemented using pure alone, ->- is defined using
Haskell functional composition. However, incrRev can also be specified with an ex-
plicit storing of intermediate values between the rev and incr. This is accomplished
using a primitive kernel called sync:
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sync :: Flatten a => Arr a :-> Arr a

Adding a sync to the incrRev kernel does not influence the values computed at all.
It does, however, affect how the results are computed. More information about sync
can be found in section 4.4.5.

incrRevs :: (Num a, Flatten a) => Arr a :-> Arr a

incrRevs = pure incr ->- sync ->- pure rev

The incrRevs kernel computes the same result as incrRev did. However, it does so
by computing incr on the array, storing the intermediate results in shared memory
followed by computing the reverse. The CUDA C code for this version of incrRev
looks like this. Notice how the shared memory is used:

__global__ void generated(word* input0,word* result0){

const unsigned int tid = (unsigned int)threadIdx.x;

const unsigned int bid = (unsigned int)blockIdx.x;

extern __shared__ unsigned int s_data[];

word __attribute__((unused)) *sm1 = &s_data[0];

word __attribute__((unused)) *sm2 = &s_data[10];

ix_int(sm1,tid) =

(ix_int(input0,(tid + (10 * bid))) + 1);

ix_int(result0,(tid + (10 * bid))) =

ix_int(sm1,(9 - tid));

}

Using sync in Obsidian code does not always result in a call to CUDA __syncthreads().
Only if the number of threads needed to compute the elements of the array is larger
than the warp size is a __syncthreads() call generated. See section 2.2 for more
information about the warp concept. The approach taken here, to add a call to
synchtreads as soon as the number of threads writing is larger then warp size, is a
simplification. A more thorough approach would be to investigate the communica-
tion pattern of these writes and detect if all communication is within a single warp
or not. If all threads that communicate only do so with threads within the same
warp, there is no need to synchronize.

Below is code generated from the same Obsidian incrRev kernel but for arrays of
size 100 elements instead of 10; notice the call to __syncthreads():
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__global__ void generated(word* input0,word* result0){

const unsigned int tid = (unsigned int)threadIdx.x;

const unsigned int bid = (unsigned int)blockIdx.x;

extern __shared__ unsigned int s_data[];

word __attribute__((unused)) *sm1 = &s_data[0];

word __attribute__((unused)) *sm2 = &s_data[100];

ix_int(sm1,tid) =

(ix_int(input0,(tid + (100 * bid))) + 1);

__syncthreads();

ix_int(result0,(tid + (100 * bid))) =

ix_int(sm1,(99 - tid));

}

4.4.5 Sync and parallelism

The previous examples, incrKernel and incrRev, are very easily parallelizable.
In fact, given the choice we made to let the length of the result array decide the
number of threads used to compute it, these two examples are by default maximally
parallelized. However, there are examples where the result array is of length one
but where there is still room for parallelism in the computation of that one result.
One example of such a computation is summing up all the elements of an array. As
an example, take an array of these eight elements {0,1,2,3,4,5,6,7}. The elements
of this array can be summed up in parallel by creating a new array with the sums
{0+1,2+3,4+5,6+7} = {1,5,9,13}. All of these additions can be done in parallel. The
result of that, the array {1,5,9,13}, is then processed in the exact same way, producing
{1+5,9+13}. The procedure is repeated until there is only a single element. Now,
the sync kernel allows precisely this. The following examples show how sync can be
used to guide code generation. A number of different implementations of sum will
be given. The first version, sumSeq, sums up the elements of an array using a single
thread:

sumSeq :: Arr IntE :-> Arr IntE

sumSeq = pure $ singleton . (foldr (+) 0)

The GPU kernel sumSeq uses foldr (+) to add up all the elements of the input array.
The result array is created by taking the sum value and creating a one element array
using the singleton function.

The code generated from sumSeq for 8 elements looks like this:
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__global__ void generated(word* input0,word* result0){

const unsigned int tid = (unsigned int)threadIdx.x;

const unsigned int bid = (unsigned int)blockIdx.x;

ix_int(result0,(tid + bid)) =

(ix_int(input0,(0 + (8 * bid))) +

(ix_int(input0,(1 + (8 * bid))) +

(ix_int(input0,(2 + (8 * bid))) +

(ix_int(input0,(3 + (8 * bid))) +

(ix_int(input0,(4 + (8 * bid))) +

(ix_int(input0,(5 + (8 * bid))) +

(ix_int(input0,(6 + (8 * bid))) +

ix_int(input0,(7 + (8 * bid))))))))));

}

This kernel sums up the elements of an array of eight elements using foldr. That is
the elements are added like this (0 + (1 + (2 + (3 + (4 + (5 + (6 + 7))))))). But
as we saw, it is also possible to sum the values up by repeatedly adding up pairs of
elements from the original array. In Obsidian, this way of adding up the elements
can be expressed like this:

sum1 :: Int -> Arr IntE :-> Arr IntE

sum1 0 = pure id

sum1 n = pure op ->- sum1 (n-1)

where

op = fmap (uncurry (+)) . pair

The sum1 kernel uses pair to pair up the first element of the array with the second,
the third with the fourth and so on. On the resulting array, uncurry (+) is applied
to each pair, giving an array of half the length. This is composed using ->- with a
recursive call of sum1 that computes the sum on that shorter array. This summation
algorithm works for arrays of length a power of two. The Int argument to the sum1

kernel should be the log base two of the length of the array.

Now, the CUDA code generated from (sum1 3) and an input size of eight is still
single threaded. This is because of the decision that the length of the result array
dictates the number of threads needed. What is needed is a way to state that the
result of an array computation should be computed and stored as an intermediate
array. This is accomplished using sync. In terms of computation, sync is the identity
function on arrays but its use states that the array synced upon should be written
to shared memory using a number of threads equal to the length of that array.



38

As an example to illustrate this concept, sync is added to the sum1 kernel, here
called sum2:

sum2 :: Int -> Arr IntE :-> Arr IntE

sum2 0 = pure id

sum2 n = pure op ->- sync ->- sum2 (n-1)

where

op = fmap (uncurry (+)) . pair

The sum2 kernel uses n/2 threads to sum up an array of length n. Below is first the
code generated from sum1 and then the code generated from sum2 for comparison.

__global__ void sum1(word* input0,word* result0){

const unsigned int tid = (unsigned int)threadIdx.x;

const unsigned int bid = (unsigned int)blockIdx.x;

ix_int(result0,(tid + bid)) =

(((ix_int(input0,((tid << 3) + (8 * bid))) +

ix_int(input0,(((tid << 3) | 0x1) + (8 * bid)))) +

(ix_int(input0,(((tid << 3) | 0x2) + (8 * bid))) +

ix_int(input0,(((tid << 3) | 0x3) + (8 * bid))))) +

((ix_int(input0,(((tid << 3) | 0x4) + (8 * bid))) +

ix_int(input0,(((tid << 3) | 0x5) + (8 * bid)))) +

(ix_int(input0,(((tid << 3) | 0x6) + (8 * bid))) +

ix_int(input0,(((tid << 3) | 0x7) + (8 * bid))))));

}

__global__ void sum2(word* input0,word* result0){

const unsigned int tid = (unsigned int)threadIdx.x;

const unsigned int bid = (unsigned int)blockIdx.x;

extern __shared__ unsigned int s_data[];

word __attribute__((unused)) *sm1 = &s_data[0];

word __attribute__((unused)) *sm2 = &s_data[4];

ix_int(sm1,tid) =

(ix_int(input0,((tid << 1) + (8 * bid))) +

ix_int(input0,(((tid << 1) | 0x1) + (8 * bid))));

if (tid < 2){

ix_int(sm2,tid) =

(ix_int(sm1,(tid << 1)) +

ix_int(sm1,((tid << 1) | 0x1)));
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}

if (tid < 1){

ix_int(sm1,tid) =

(ix_int(sm2,(tid << 1)) +

ix_int(sm2,((tid << 1) | 0x1)));

}

if (tid < 1){

ix_int(result0,(tid + bid)) =

ix_int(sm1,tid);

}

}

In the generated code for the sum2 kernel, four stages can be seen. The first computes
the sums of the neighboring pairs of elements at indices 0 and 1, 2 and 3 and so on:

ix_int(sm1,tid) =

(ix_int(input0,((tid << 1) + (8 * bid))) +

ix_int(input0,(((tid << 1) | 0x1) + (8 * bid))));

The next stage does the same as the first but at this point the array is only 4 elements
long. An if statement shuts two threads off and then threads 0 and 1 compute sums.
This is followed again by a similar stage but where all but one thread are shut off.
The very last stage uses a single thread to write the computed sum into the result
array.

It is also possible to sum up an array using a combination of sequential and parallel
computation. One way to do this is the following:

sum3 :: Int -> Arr IntE :-> Arr IntE

sum3 0 = pure id

sum3 n = pure op ->- (if (n <= 4)

then sync

else pure id) ->- sum3 (n-1)

where

op = fmap (uncurry (+)) . pair

Here, a normal Haskell conditional is used to decide whether to sync or not. If code
is generated from the sum3 program for 32 elements, chunks of 4 elements would be
summed up sequentially per thread giving an array of length 8. The array of length
8 is then summed up using the parallel method.

Another kernel that does the same thing as the previous one is the following:
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sum4 :: Int -> Arr IntE :-> Arr IntE

sum4 n = pure ((fmap (foldr (+) 0)) . chopN 4) ->- sync ->- sum2 n

The kernel chops the array up into an array of arrays where the inner arrays have a
length of four. The inner arrays are summed up sequentially using foldr; the kernel
then proceeds by letting the parallel sum2 kernel sum up the resulting array. The
Int argument to sum4 tells how many stages the parallel summation should consist
of. So to sum up an array of 32 elements this should be 3, because 32 divided by 4
is 8 and summing up 8 elements needs 3 stages.

The kernels, sum3 and sum4 can be executed on the GPU like this:

*Test> execute (sum3 5) [0..31 :: IntE]

[496]

*Test> execute (sum4 3) [0..31 :: IntE]

[496]

And the CUDA code generated for the two of them differ only in the way the se-
quential summation is parenthesized:

__global__ void sum3(word* input0,word* result0){

const unsigned int tid = (unsigned int)threadIdx.x;

const unsigned int bid = (unsigned int)blockIdx.x;

extern __shared__ unsigned int s_data[];

word __attribute__((unused)) *sm1 = &s_data[0];

word __attribute__((unused)) *sm2 = &s_data[8];

ix_int(sm1,tid) =

((ix_int(input0,((tid << 2) + (32 * bid))) +

ix_int(input0,(((tid << 2) | 0x1) + (32 * bid)))) +

(ix_int(input0,(((tid << 2) | 0x2) + (32 * bid))) +

ix_int(input0,(((tid << 2) | 0x3) + (32 * bid)))));

if (tid < 4){

ix_int(sm2,tid) =

(ix_int(sm1,(tid << 1)) +

ix_int(sm1,((tid << 1) | 0x1)));

}

if (tid < 2){

ix_int(sm1,tid) =

(ix_int(sm2,(tid << 1)) +

ix_int(sm2,((tid << 1) | 0x1)));

}
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if (tid < 1){

ix_int(sm2,tid) =

(ix_int(sm1,(tid << 1)) +

ix_int(sm1,((tid << 1) | 0x1)));

}

if (tid < 1){

ix_int(result0,(tid + bid)) = ix_int(sm2,tid);

}

}

__global__ void sum4(word* input0,word* result0){

const unsigned int tid = (unsigned int)threadIdx.x;

const unsigned int bid = (unsigned int)blockIdx.x;

extern __shared__ unsigned int s_data[];

word __attribute__((unused)) *sm1 = &s_data[0];

word __attribute__((unused)) *sm2 = &s_data[8];

ix_int(sm1,tid) =

(ix_int(input0,((tid << 2) + (32 * bid))) +

(ix_int(input0,(((tid << 2) + 1) + (32 * bid))) +

(ix_int(input0,(((tid << 2) + 2) + (32 * bid))) +

ix_int(input0,(((tid << 2) + 3) + (32 * bid))))));

if (tid < 4){

ix_int(sm2,tid) =

(ix_int(sm1,(tid << 1)) +

ix_int(sm1,((tid << 1) | 0x1)));

}

if (tid < 2){

ix_int(sm1,tid) =

(ix_int(sm2,(tid << 1)) +

ix_int(sm2,((tid << 1) | 0x1)));

}

if (tid < 1){

ix_int(sm2,tid) =

(ix_int(sm1,(tid << 1)) +

ix_int(sm1,((tid << 1) | 0x1)));

}

if (tid < 1){

ix_int(result0,(tid + bid)) = ix_int(sm2,tid);

}

}
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4.4.6 Sync and sequentiality

The number of threads needed to compute a result can be reduced by computing a
number of elements in sequence. In Obsidian, this is done using the sync primitive.
The sync primitive signals that the array supplied as input should be computed and
written into memory. The number of threads used to compute the elements of the
array is equal to the length of the array. So, one way to halve the number of threads
used is to sync on an array of pairs instead of syncing on an array of scalar elements.
For example:

incrP :: Num a => Arr a :-> Arr (a,a)

incrP = pure (fmap (+1)) ->- pure pair ->- sync

The CUDA code generated for the kernel above uses half as many threads as the
incrKernel kernel implemented earlier:

__global__ void generated(word* input0,word* result0){

const unsigned int tid = (unsigned int)threadIdx.x;

const unsigned int bid = (unsigned int)blockIdx.x;

extern __shared__ unsigned int s_data[];

word __attribute__((unused)) *sm1 = &s_data[0];

word __attribute__((unused)) *sm2 = &s_data[10];

ix_int(sm1,(tid << 1)) =

(ix_int(input0,((tid << 1) + (10 * bid))) + 1);

ix_int(sm1,((tid << 1) + 1)) =

(ix_int(input0,(((tid << 1) | 0x1) + (10 * bid))) + 1);

ix_int(result0,((tid << 1) + (10 * bid))) =

ix_int(sm1,(tid << 1));

ix_int(result0,(((tid << 1) + 1) + (10 * bid))) =

ix_int(sm1,((tid << 1) + 1));

}

Of course, this means that the resulting array is an array of pairs:

*Obsidian> execute incrP [0..9 :: IntE]

[(1,2),(3,4),(5,6),(7,8),(9,10)]

It is now up to the user of the values to unpair them and process them further.

Even though GPUs are capable of managing thousands or threads, there is a need to
be able to compute more using fewer threads. For example, a kernel might reach the
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block limit of 512 or 1024 threads depending on the GPU. Another reason to compute
more per thread is to be able to better hide memory latencies. If a kernel performs
very little work per fetched data-element, the kernel’s execution time will most likely
be memory bandwidth bound. It is important to have enough computation going
on to hide long memory latencies; otherwise processing elements will stand idle and
wait for memory loads to finish.

Another way to introduce sequentiality is to split the array up into an array of arrays.
Only the top level array is computed in parallel and the elements of the sub-arrays
are computed in sequence. There is a function called chopN in the array library that
splits an array up into an array of arrays. Using chopN, the kernel looks like this:

incrC :: (Flatten a, Num a) => Arr a :-> Arr (Arr a)

incrC = pure (fmap (+1)) ->- pure (chopN 5) ->- sync

The generated CUDA code for arrays of 10 elements is.

__global__ void generated(word* input0,word* result0){

const unsigned int tid = (unsigned int)threadIdx.x;

const unsigned int bid = (unsigned int)blockIdx.x;

extern __shared__ unsigned int s_data[];

word __attribute__((unused)) *sm1 = &s_data[0];

word __attribute__((unused)) *sm2 = &s_data[10];

for (int i0 = 0; i0 < 5; i0 ++){

ix_int(sm1,((tid * 5) + i0)) =

(ix_int(input0,(((tid * 5) + i0) + (10 * bid))) + 1);

}

for (int i0 = 0; i0 < 5; i0 ++){

ix_int(result0,(((tid * 5) + i0) + (10 * bid))) =

ix_int(sm1,((tid * 5) + i0));

}

}

As can be seen from the code, syncing on an array of arrays means that the elements
of the inner arrays are computed in sequential for loops.

In the kernel above, chopN 5 was used. This means that the kernel can only correctly
be used with arrays that are a multiple of 5 elements. There are no static checks
that enforce this however.



44

4.4.7 Divide and conquer

General parallel composition of kernels is not efficient. Letting threads 0 to n − 1
compute one kernel and threads n to m−1 another leads to serialization. In CUDA,
you would express this using conditionals:

if (tid < n)

A

else

B

There are specific cases where this is not all that bad. If the values of n and m−n are
such that entire warps always choose the then or else branch, the execution takes
place in parallel. In general, however, the code above leads to serialization and is then
no different from sequential composition of kernels. The combinators described in
this section circumvent this problem by implementing a more limited form of parallel
composition. CUDA places one more severe restriction on the programs called A and
B above. They must not contain calls to __syncthreads. Hence, A and B cannot be
general kernels. The combinators shown in this sections make no such restriction on
the kernel taken as input.

In the divide and conquer paradigm, problems are solved by being split up into
smaller sub-problems that can be solved independently. The solutions to the sub-
problems are then merged into a solution to the original problem. For the purpose of
implementing divide and conquer algorithms of a certain kind, Obsidian provides a
combinator called two. The two combinator is a special case of parallel composition
but, as we have seen, general parallel composition is bad on the GPU. The two

combinator is limited to compose in parallel two instances of the same kernel. This
limitation enables the generation of efficient GPU code. The type of two is the
following:

two :: (Arr a :-> Arr b) -> Arr a :-> Arr b

The type says that two takes a kernel (Arr a :-> Arr b) and that the result is
again a kernel (Arr a :-> Arr b). The resulting kernel splits the input array down
the middle into two parts. It then executes the input kernel on both halves and
concatenates the two result arrays into a single result array. This combinator can
be used to solve divide and conquer problems that have the property that both
sub-problems are solved identically.
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For example, two can be used to find the minimum element of an array. First the
array is split in half and the minima of each half are found recursively. This is followed
by simply selecting the smaller of the two minima as the result. In Obsidian, using
two, this program is implemented as follows:

minimum :: Int -> Arr IntE :-> Arr IntE

minimum 0 = pure id

minimum n = two (minimum (n-1)) ->- pure min2 ->- sync

The array program min2 computes the minimum element in an array of length 2. It
is implemented using indexing, (!), and singleton to create a one element result
array:

min2 arr

| len arr /= 2 = error "Wrong input size"

| otherwise = singleton $ min a b

where

a = arr ! 0

b = arr ! 1

Below is the code generated from minimum for eight inputs. One thing to notice is
how the applications of two are implemented as indexing computations using bitwise
operations. The implementation of two will be shown in section 5.4:

__global__ void minimum(word* input0,word* result0){

const unsigned int tid = (unsigned int)threadIdx.x;

const unsigned int bid = (unsigned int)blockIdx.x;

extern __shared__ unsigned int s_data[];

word __attribute__((unused)) *sm1 = &s_data[0];

word __attribute__((unused)) *sm2 = &s_data[4];

ix_int(sm1,tid) =

min (ix_int(input0,(((tid << 1) & 0x6) + (8 * bid))),

ix_int(input0,((((tid << 1) & 0x6) | 0x1) + (8 * bid))));

if (tid < 2){

ix_int(sm2,tid) = min (ix_int(sm1,((tid << 1) & 0x2)),

ix_int(sm1,(((tid << 1) & 0x2) | 0x1)));

}

if (tid < 1){

ix_int(sm1,tid) = min (ix_int(sm2,0),ix_int(sm2,1));
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Figure 4.9: two, the divide and conquer combinator.

}

if (tid < 1){

ix_int(result0,(tid + bid)) = ix_int(sm1,tid);

}

}

Another combinator related to two is ilv. Instead of splitting the array in the
middle, ilv splits the array into one array of its even indexed elements and another
for the elements at odd indices. Then, just as in two, the same kernel is executed on
both arrays.

While two is given as a primitive, ilv can be implemented using two, riffle and
unriffle:

ilv :: (Arr a :-> Arr b) -> Arr a :-> Arr b

ilv f = pure unriffle ->- two f ->- pure riffle

For example, the ilv combinator can be used to implement mergers. A merger is
a useful building block when implementing sorters. This use of ilv will be demon-
strated in chapter 6.

Currently, using ilv generates quite complicated code. This may partly be because
ilv is a more complicated operation than two. But there may also be room for
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improvement in the implementation of ilv. To illustrate the differences in the code
generated from applications of two and ilv, the minimum kernel is implemented again
using ilv

minimum2 :: Int -> Arr IntE :-> Arr IntE

minimum2 0 = pure id

minimum2 n = ilv (minimum2 (n-1)) ->- pure min2 ->- sync

Below is the code generated from this version of minimun. Notice how much larger
the indexing expressions are compared to the generated code above.

__global__ void minimum2(word* input0,word* result0){

const unsigned int tid = (unsigned int)threadIdx.x;

const unsigned int bid = (unsigned int)blockIdx.x;

extern __shared__ unsigned int s_data[];

word __attribute__((unused)) *sm1 = &s_data[0];

word __attribute__((unused)) *sm2 = &s_data[4];

ix_int(sm1,tid) =

min (ix_int(input0,(((((((tid << 1) & 0x4) |

(tid & 0x1)) << 1) & 0x7) |

((tid >> 1) & 0x1)) + (8 * bid))),

ix_int(input0,((((((((tid << 1) & 0x4) | 0x2) |

(tid & 0x1)) << 1) & 0x7) |

((((((tid << 1) & 0x4) | 0x2) |

(tid & 0x1)) >> 2) & 0x1)) + (8 * bid))));

if (tid < 2){

ix_int(sm2,tid) =

min (ix_int(sm1,((tid << 1) & 0x2)),

ix_int(sm1,(((tid << 1) & 0x2) | 0x1)));

}

if (tid < 1){

ix_int(sm1,tid) =

min (ix_int(sm2,0),ix_int(sm2,1));

}

if (tid < 1){

ix_int(result0,(tid + bid)) = ix_int(sm1,tid);

}

}

The generated kernel shown above is a very small example. The generated code is
for eight elements. Comparing the performance of the minimum and minimum2 kernel
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would not likely show much difference on 8 elements. Instead, the problem is that
as larger and larger input size kernels are generated from minimum, the indexing cal-
culation complexity remains constant. In the minimum2 case, however, the indexing
calculation keeps growing as the number of inputs increases. For larger input sizes,
the difference in execution time is visible. The 256 element versions of minimum and
minimum2 have the following running time per block. The table also shows how much
time it takes to only transfer the dataset on which the test is performed:

Kernel Threads ns / block ns / block - transfer time
minimum 256 879 289
minimum2 256 1412 822
Data transfer – – 590 – –

The figures above show that the version of minimum based on two is almost 3 times
faster than that the one implemented using ilv.

The Obsidian implementation used in these examples applies some optimizations
to the expressions generated. These optimizations are shown in section 5.4.5. The
implementations of two and ilv are shown in section 5.4.4.

4.5 List of contributions

4.5.1 Compositionality

Obsidian makes combining kernels into larger kernels simpler in comparison to CUDA.
CUDA, being based in C, has quite cumbersome syntax. To make a kernel perform
the work of two given kernels often requires rewriting the two given kernels to make
them work together. There is an example of this, although simple, in section 2.2.4.

Another example of how CUDA is limited in compositionality is in section 4.4.7. That
section explains how CUDA makes it hard to reuse kernels as building blocks of other
kernels because of how the __syncthreads() barrier synchronization works. In that
section, it is also shown how Obsidian tackles that issue, through the introduction
of the two combinator.

4.5.2 Combinators for parallel programming

Our intention is to come up with a set of combinators for parallel programming that
ensures efficient execution on the GPU. One combinator for parallel programming
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that immediately springs to mind is par P Q. Given the programs P and Q, par P Q

means execute P and Q in parallel. The par combinator is not one we would encourage
use of when programming a GPU though. The GPU is an SIMD class computer and
not suited for task parallelism within a kernel. par P Q would, when executed on the
GPU, lead to serialization and P and Q would execute one after the other. For that
reason, we include a more limited form of parallel composition that we call two. The
two combinator takes a single program as argument that is intended to be executed
in parallel with itself. Executing P in parallel with itself is possible to do efficiently
on the GPU, since the threads will be executing the same instruction at all times,
not giving rise to any serialization.

4.5.3 Data/work partitioning

When programming in CUDA, decisions about the number of threads to use and
on how many data elements each thread should operate need to be taken early
in the implementation of an algorithm. In Obsidian, these decisions can easily be
made and changed all through the implementation process. One benefit of this is
that experiments can be performed more rapidly and the most efficient data/work
partitioning be found more easily. This ease of experimentation is a big advantage
of raising the level abstraction at which programs are written.

4.5.4 Indexing computations

CUDA programs are parameterized over a thread identity. Often, this thread identity
is used to compute the index of the element to use as input and output of the program.
This summation kernel from section 2.2.3 illustrates the concept:

__global__ void sumKernel(float *result, float *x) {

unsigned int tid = threadIdx.x;

extern __shared__ float sm[];

sm[tid] = x[blockIdx.x * blockDim.x + tid];

for (int i = 1; i < blockDim.x; i *= 2) {

__syncthreads();

if (tid % (2*i) == 0) {
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sm[tid] += sm[tid + i];

}

}

if (tid == 0) {

result[blockIdx.x] = sm[0];

}

}

In Obsidian, a summation kernel can be described as follows:

sum :: Int -> Arr IntE :-> Arr IntE

sum 0 = pure id

sum n = pure (pairwise (+)) ->- sync ->- sumUp (n-1)

Here, the indexing computations needed to assign elements to threads are taken care
of behind the scenes by the pairwise combinator.



Chapter 5

Implementation

This chapter shows the implementation of two different versions of Obsidian. The two
versions have a large common part, namely the array language and the operations
available on scalar data. On top of the array language is the part of Obsidian that
maps the array language computations onto the GPU and it is this part that has
been implemented in two different ways.

The two different versions each have their strengths and weaknesses, which will be
discussed in section 5.5.

5.1 Expressions

Now it is time to take a closer look at the expression type. We have already seen
several kinds of expressions in use, IndexE, IntE, FloatE and BoolE. These four
types are all actually type synonyms:

type IntE = Exp Int

type FloatE = Exp Float

type BoolE = Exp Bool

type IndexE = Exp Word

The Exp a type is a wrapper around an untyped expression data type called DExp:

data Exp a = E DExp

51
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Hence, all expressions in Obsidian are represented by the same DExp type. This is
an example of Phantom types [15]. Phantom types can be used to provide a typed
interface to an untyped structure.

The type DExp represents expressions that can be Int, Float, Bool or Word valued.
The DExp type models a subset of C’s expressions and can be used very directly in
the generation of C code as will be shown in later sections.

data DExp = LitInt Int

| LitUInt Word32

| LitBool Bool

| LitFloat Float

| Op2 Op2 DExp DExp

| Op1 Op1 DExp

| If DExp DExp DExp

| Index Name [DExp] Type

deriving(Eq,Show,Read)

The Op1 data type represents some of the unary operations for which there is support
on the GPU:

data Op1 = Not

| BitwiseComp

| Exp | Log | Sqrt

| Log2i

| Cos | Sin | Tan

| CosH | SinH | TanH

| ACos | ASin | ATan

| ACosH | ASinH | ATanH

| IntCastFloat

| IntCastInt

| IntCastUInt

| FloatCastFloat

| FloatCastInt

| FloatCastUInt

| UIntCastFloat

| UIntCastInt

| UIntCastUInt

The Op2 data type contains a selection of binary operations:
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data Op2 = Add | Sub | Div | Mul | Mod | Pow

| And | Or

| BitwiseAnd | BitwiseOr | BitwiseXor

| Lt | Leq | Gt | Geq | Eq

| Shl | Shr

| Min | Max

| Atan2

To make these expressions more pleasant to work with, suitable instances of Num,
Integral, Fractional amongst others are created. It is also here that optimizations
are applied. For example, (+) inspects its two arguments and performs operations
such as constant folding. More details about the optimizations performed are shown
in section 5.4.5.

5.2 Array language

In Obsidian, arrays are represented by a function from index to element and an
integer representing the length. That the length is a normal Haskell Int is sometimes
used in order to generate more efficient code.

data Arr a = Arr (IndexE -> a) Int

There are a number of functions defined in order to allow the programmer to create
and access arrays:

(!) (Arr f _) ix = f ix

len (Arr _ n) = n

mkArr f n = Arr f n

singleton = rep 1

rep n x = Arr (\ix -> x) n

Indexing into an array (!) is accomplished simply by applying the function part of
the array to an expression of type IndexE. The len function returns the length. The
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three functions that are left create arrays in different ways. The function mkArr

creates an array from a given indexing function and a length. singleton creates an
array of length one given an element. It does so by using rep that creates an array
that at each index contains the same given element.

Section 4.2 showed how to use some of the functions from the array library. This
section will go into the details of how the functions in that library are implemented.
To begin with, the functions (!), len and mkArr are used to implement array reversal:

rev :: Arr a -> Arr a

rev arr = mkArr ixf n

where

ixf ix = arr ! (fromIntegral (n-1) - ix)

n = len arr

An array is reversed by creating a new array whose indexing function is looking up
index n− 1− ix in the original array, where n is the length and ix is the index.

The implementation of the pair function from the array library is given below.

pair :: Arr a -> Arr (a,a)

pair arr | odd (len arr) = error "Pair: Odd n"

| otherwise =

mkArr (\ix -> (arr ! (ix ‘shiftL‘ 1),

arr ! ((ix ‘shiftL‘ 1 ) .|. 1))) nhalf

where

n = len arr

nhalf = div n 2

The pair function requires the input array to be of even length. If the input array
is of even length, an array of pairs is created. The element at index ix of the array
of pairs is found by indexing in the original array at indices ix∗2 and ix∗2 + 1. The
indexing computations are realized using bit shifts and bitwise or. A bitwise shift
left one step is equivalent to multiplication by 2. Since the zeroth bit is now cleared,
adding 1 and oring with 1 gives the same result. In this case, the multiplication
by 2 would most likely have been spotted by the CUDA compiler and automatically
been replaced by a shift instruction during compilation. The reason array library
functions are implemented using bitwise operations is that hopefully it will give
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more opportunity for optimizations to be applied by Obsidian. The optimizations
Obsidian applies to expressions are shown in section 5.4.5.

Going back from an array of pairs to an array is also useful. In the library, the
function unpair is implemented like this:

unpair :: Choice a => Arr (a,a) -> Arr a

unpair arr =

let n = len arr

in mkArr (\ix -> ifThenElse ((mod ix 2) ==* 0)

(fst (arr ! (ix ‘shiftR‘ 1)))

(snd (arr ! (ix ‘shiftR‘ 1)))) (2*n)

As the type shows, the unpair function requires the elements of the array to be in the
Choice class. This is because a conditional is used in the indexing function to locate
the sought element. This has some performance implications as well. The function
pair is efficient; the code generated is simply some indexing arithmetic while the
function unpair becomes a conditional (a diverging conditional), which is bad for
performance.

Other functions that come in pairs like the pair and unpair function have the same
issues, one of them being efficient and the other not. Two functions that have this
issue are halve and conc. These two functions are implemented as:

halve :: Arr a -> (Arr a,Arr a)

halve arr = split (len arr ‘div‘ 2) arr

split :: Int -> Arr a -> (Arr a,Arr a)

split m arr =

let n = len arr

h1 = mkArr (\ix -> arr ! ix) m

h2 = mkArr (\ix -> arr ! (ix + (fromIntegral m))) (n-m)

in (h1,h2)

conc :: Choice a => (Arr a, Arr a) -> Arr a

conc (arr1,arr2) =

let (n,n’) = (len arr1,len arr2)

in mkArr (\ix -> ifThenElse (ix <* fromIntegral n)

(arr1 ! ix)

(arr2 ! (ix - fromIntegral n))) (n+n’)
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However, zipp and unzipp are both efficient:

zipp :: (Arr a, Arr b) -> Arr (a,b)

zipp (arr1,arr2) = mkArr (\ix -> (arr1 ! ix,arr2 ! ix)) n

where n = min (len arr1) (len arr2)

unzipp :: Arr (a,b) -> (Arr a, Arr b)

unzipp arr = (mkArr (\ix -> fst (arr ! ix)) n,

mkArr (\ix -> snd (arr ! ix)) n)

where n = len arr

In section 4.2, evens was implemented using fmap, pair and unpair. The function
odds was also mentioned and will now be implemented. odds is a bit more com-
plicated to implement because it has special cases. The first and the last element
should be passed through unaffected while the middle elements should be processed
using evens. To make this operation as efficient as possible, operations that intro-
duce unnecessary conditionals should be avoided. One way to perform this operation
is to split the input array into one array containing the first element and another
containing the rest; then splitting the array containing the rest into two parts again,
one with the last element removed and one array consisting only of that last element.
Then evens could be performed on the middle part and the two one-element arrays
concatenated back onto it. This means using conc twice to fuse the two removed
elements back on, and giving nested conditionals, see the implementation of conc
above. The implementation used here avoids one of the extra levels of conditionals by
using array rotation functions (arrRotR and arrRotL) to rearrange the array using
only arithmetic on the indices (no conditionals). The elements of the input array are
rearranged so that the first and the last element end up next to each other at the
end of the array. That array is then split once and evens is applied. Following this
only a single conc is needed and a rotation of the elements in the opposite direction.

odds f arr = arrRotR 1 (conc (a1’,a2))

where

arr’ = arrRotL 1 arr

(a1,a2) = split (len arr -2) arr’

a1’ = evens f a1

The two array rotation functions are implemented as follows:
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arrRotL :: Int -> Arr a -> Arr a

arrRotL j arr =

mkArr (\ix -> arr ! ((ix + (fromIntegral j)) ‘mod‘ fromIntegral n)) n

where

n = len arr

arrRotR :: Int -> Arr a -> Arr a

arrRotR j arr = mkArr (\ix -> arr ! ((ix + offs) ‘mod‘ fromIntegral n)) n

where

offs = fromIntegral (n-j)

n = len arr

The functions evens and odds were justified by their usefulness in sorting applica-
tions. Two other functions that have applications in the same area are riffle and
unriffle. These two functions compute very specific permutations of an array. The
functions pair, unpair, halve, conc, zip and unzip can be used to implement the
two functions riffle and unriffle:

unriffle = conc . unzip . pair

riffle = unpair . zipp . halve

Applying unriffle to an array named “input” of length 8 gives the following index-
ing expression:

((tid < 4) ?

ix_int(input,(tid << 1)) :

ix_int(input,(((tid - 4) << 1) | 0x1)))

If tid is below half the length of the array (tid < 4), tid is multiplied by two
(shifted left one step). This means that threads 0 to 3 access the even indices of
“input”. If tid is 4 or higher, 4 is subtracted. For a thread id in the interval 0 to
7, being 4 or higher means that bit 2 is set. In the same interval, being less than 4
means that the same bit is not set. This means that the conditional can be entirely
removed from the expression above by rotating the tid one bit to the left, moving
the bit deciding “above or below” to position 0. Using this approach, the result of
unriffle on the same input array is.
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ix_int(input,(((tid << 1) & 0x7) | ((tid & 0x4) >> 2)))

The bits in use for the thread id have here been rotated using bitwise operations.
It is possible to implement riffle in a very similar way but then the bit rotation
goes in the other direction. Below are the implementations of riffle and unriffle

using this bit rotation approach:

riffle’ :: Arr a -> Arr a

riffle’ arr | even (len arr) =

mkArr (\ix -> arr ! (rotLocalR ix bits) ) n

where

n = len arr

bits = fromIntegral $ intLog n

riffle’ _ = error "riffle’ demands even length"

unriffle’ :: Arr a -> Arr a

unriffle’ arr | even (len arr) =

mkArr (\ix -> arr ! (rotLocalL ix bits) ) n

where

n = len arr

bits = fromIntegral $ intLog n

unriffle’ _ = error "unriffle’ demands even length"

These two functions are a bit more limited though. The functions rotLocalL and
rotLocalR rotates the bits least significant bits one step. This means that not only
does the length need to be even, but to produce correct results it also needs to be a
power of two.

This section showed the implementation of a selection of functions that make up the
array library. The other functions in this library are all implemented in a very similar
way. The functions riffle and unriffle are examples of functions that can be
implemented using existing primitives but are also given a lower level implementation
for efficiency reasons. The need for giving more low level implementations of certain
functions may be reduced by improved optimization techniques, but exploring this
is future work.

5.3 The monadic approach

This section describes a version of Obsidian different from the one used in all the
examples previously as well as the case studies in chapter 6. The information found
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here was previously published in [38] but the treatment here will be more in depth.

In this version of Obsidian, a GPU kernel has type GArr a -> GPU (GArr b). The
type GArr stands for global array, that is an array that resides in the GPU global
memory. This version of Obsidian allows the programmer to choose to place arrays
in global or shared memory. The type GPU a is a monad that contains some state
needed during code generation. As the code is generated, it is stored into a state
carried by this monad. More details about the GPU a type and code generation can
be found in section 5.3.5.

The following kernel illustrates the differences between this version and the one used
in the examples:

sum :: Int -> SArr IntE -> GPU (SArr IntE)

sum 0 = pure id

sum n = pure op ->- sync ->- sum (n-1)

where

op = fmap (uncurry (+)) . pair

This program to sum up an array is almost identical to the sum2 program in sec-
tion 4.4.5. Only the type is different. Here, SArr means that an array in shared
memory. So this program takes an array in shared memory and sums it up and gives
the result as an array in shared memory. In this version of Obsidian, the sum kernel
could also have been specified like this:

sum :: SArr IntE -> GPU (SArr IntE)

sum arr | len arr == 1 = return arr

| otherwise = (pure op ->- sync ->- sum) arr

where

op = fmap (uncurry (+)) . pair

Here, guards can be used and the length of the input array decides whether to proceed
recursively or not. This is not possible in the other version due to restrictions imposed
by the type of GPU kernels used there.

In order to be able to run this on some data, an array needs to be placed in shared
memory. For the purpose of moving arrays to and from shared memory there are
two functions:

cache :: GArr a -> GPU (SArr a)

wb :: SArr a -> GPU (GArr a)
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The function cache signals that when this array is synchronized it shall we written to
shared memory. wb signals the opposite – that when synced upon this array should
be written to global memory.

The two types GArr and SArr are defined like this:

data Arr s a = Arr (IndexE -> a, Int)

type GArr a = Arr Global a

type SArr a = Arr Shared a

Apart from the extra type parameter s in the arrays, this array type is completely
identical to that described in section 5.2. The only purpose of the extra type pa-
rameter is to keep track of which memory the array shall be stored in. It does not
influence the implementation of the array language library functions at all.

Now, a kernel can be created by wrapping up the sum program with a cache and a
wb:

kernel k = cache ->- k ->- wb ->- sync

Now this kernel can be executed just like the previous examples:

*Obsidian> execute (kernel sum) [0..7 :: IntE]

[28]

And the generated code, in this case, looks like this:

__global__ static void generated(int *source0,char *gbase){

extern __shared__ char sbase[] __attribute__ ((aligned(4)));

const int tid = threadIdx.x;

const int n0 __attribute__ ((unused)) = 8;

((int *)(sbase+0))[tid] =

(source0[(tid * 2)] + source0[((tid * 2) + 1)]);

__syncthreads();

if ((tid < 2)){

((int *)(sbase+16))[tid] =

(((int *)(sbase+0))[(tid * 2)] +

((int *)(sbase+0))[((tid * 2) + 1)]);

}
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__syncthreads();

if ((tid < 1)){

((int *)(sbase+0))[tid] =

(((int *)(sbase+16))[(tid * 2)] +

((int *)(sbase+16))[((tid * 2) + 1)]);

}

__syncthreads();

if ((tid < 1)){

((int *)(gbase+0))[tid] =

((int *)(sbase+0))[tid];

}

__syncthreads();

}

This code is a bit crude compared to the other examples of generated code seen so
far. For example, there are calls to __synchthreads where there need not be (and
all of them are actually unnecessary). But the main difference is in the handling of
memory. Here the arrays sbase and gbase are used to store the Obsidian arrays.

In this version of Obsidian, it is possible to synchronize arrays more freely than in
the other on,e where a sync needs to encompass all data. For example, an array can
be split in two halves and each half can be synchronized independently:

syncs :: SArr IntE -> GPU (SArr IntE)

syncs arr =

do

a1’ <- sync a1

a2’ <- sync a2

pure conc (a1’,a2’)

where (a1,a2) = halve arr

The code generated from the example above needs to manage, in shared memory,
two different arrays. It is not as clear as in the other version when arrays are alive
or not. An array is considered alive if it is going to be used again in the future. The
generated code for input arrays of length 8 looks like this:

__global__ static void generated(int *source0,char *gbase){

extern __shared__ char sbase[] __attribute__ ((aligned(4)));

const int tid = threadIdx.x;
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const int n0 __attribute__ ((unused)) = 8;

if ((tid < 4)){

((int *)(sbase+0))[tid] = source0[tid];

}

__syncthreads();

if ((tid < 4)){

((int *)(sbase+16))[tid] = source0[(tid + 4)];

}

__syncthreads();

((int *)(gbase+0))[tid] = ((tid < 4) ?

((int *)(sbase+0))[tid] :

((int *)(sbase+16))[(tid - 4)]);

__syncthreads();

}

Here, two arrays are maintained in shared memory, the first starting at sbase+0 and
the second at sbase+16 (4 32bit elements away).

The GPU Monad is implemented as follows:

type SymbolTable = Map Name (Type,Int)

data S = S { arrayId :: Int,

symtab :: SymbolTable }

type GPU a = StateT S (Writer IC) a

The state S contains a SymbolTable that is a mapping from names to types and
sizes. The names in the symbol table refer to intermediate arrays created when
generating the kernel. The state also holds an integer, arrayId, that is used to form
the name of the next intermediate array to use. After creating a new intermediate
array, arrayId is incremented. The monad also has a Writer that accumulates an
intermediate form of the kernel. The information stored in the SymbolTable and the
intermediate code (IC) are later used to create runnable CUDA code.

5.3.1 Pure

In this version of Obsidian, the pure function that makes a kernel out of an array
language program is defined as follows:
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pure :: (a -> b) -> a -> GPU b

pure f a = return $ f a

As can be seen, pure does not have any effect on the intermediate code being accu-
mulated in the GPU monad.

5.3.2 Sync

Calling sync on an array implies that the contents of that array should be computed
and stored in memory. This means that some restrictions are needed on what these
arrays can contain. Arrays that can be written to memory should be of a type that
is in the Syncable class:

class Syncable a where

sync :: a -> GPU a

commit :: a -> GPU a

The syncable class provides two functions, sync and commit. Of these, only sync is
exposed to the programmer. The commint function is used in the implementation of
sync. The most basic entity that can be synchronized is an array of one of the base
types, IntE, FloatE and BoolE. The instance below shows how sync is implemented
for one of these basic arrays.

instance TypeOf (Exp a) => Syncable (SArr (Exp a)) where

sync arr = do

arr’ <- commit arr

write [Synchronize]

return arr’

commit arr = do

let n = len arr

var <- newSharedArray (typeOf (arr ! 0)) n

write [(var,[unE tid]) ::= unE (arr ! tid)]

return $ mkArr (\ix -> index var ix) n

commit gets a new identifier from the GPU monad using newSharedArray. Then it
continues by accumulating a piece of code, an assignment, that computes the values
of the input Obsidian array and stores them in the new shared memory array just
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created. The next step is to create a new Obsidian level array that indexes into the
shared memory where the values just computed are stored.

sync calls commit but also inserts a Syncronize statement into the kernel code.
The reason sync is split up into two functions, sync and commit, is explained by the
following instance of Syncable for arrays of pairs:

instance (Syncable (Arr s a), Syncable (Arr s b)) =>

Syncable (Arr s (a,b)) where

sync arr = do

arr’ <- commit arr

write $ \ix -> [Synchronize]

return arr’

commit arr = do

(a1,a2) <- pure unzipp arr

a1’ <- commit a1

a2’ <- commit a2

arr’ <- pure zipp (a1’,a2’)

return arr’

Arrays of pairs are synchronized by unzipping the array into two arrays that are
committed separately. This is then followed by a single Synchronize in generated
code. This means that no call to CUDA __syncthreads()is generated between the
two assignments.

5.3.3 Sequential composition

In this version of Obsidian,The sequential composition operator is simply imple-
mented using the >=> operator from the monad library.

(>=>) :: (Monad m) => (a -> m b) -> (b -> m c) -> (a -> m c)

In order to give a consistent look a new operator ->- is defined simply by:

(->-) = (>=>)
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5.3.4 The two combinator

One useful combinator is two, used in section 4.4.7 for example. In this version of
Obsidian, it is hard to implement this combinator efficiently. The two combinator
takes a kernel and applies it, preferably in parallel, to each half of an array.

In this version of Obsidian, the easy route is chosen and the applications of f to
each half of the array happens sequentially. This is bad from a performance point
of view and one of the main motivations for trying a completely different Obsidian
implementation. It is possible that there is a way to make two more efficient even in
this version, but currently it is implemented as follows:

two f arr = do

(a1,a2) <- pure halve arr

a1’ <- f a1

a2’ <- f a2

pure conc (a1’,a2’)

The poor performance of two in this version is the main motivation for the newer
version described in 5.4.

5.3.5 Code generation

The CUDA generation process goes through a number of stages. First the Obsidian
program is run. An Obsidian program is just a Haskell program whose output is
something that can be turned into CUDA code. Running the Obsidian program
produces two things: intermediate code and a symbol table that maps names to
types and sizes. The intermediate code is of the following type:

data Statement

= Synchronize

| (Name,[DExp]) ::= DExp

| IfThen BoolE [Statement]

type IC = [Statement]

The intermediate code is a list of statements that can be assignments to arrays or
variables, conditional execution of a list of statements or a Synchronize statement
(corresponding directly to CUDAs __syncthreads()). The conditional statements
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can only be introduced by the code generator at a later stage. The IfThen statement
does not correspond to the Obsidian ifThenElse conditional.

Running the Obsidian program also results in a symbol table which is a structure of
the following type:

type SymbolTable = Map Name (Type,Int)

To illustrate this, here is the SymbolTable and IC generated from the sum kernel
(kernel sum) on page 59. First the symbol table in list syntax:

[ ("arr0",(Shared_Array Int,4))

, ("arr1",(Shared_Array Int,2))

, ("arr2",(Shared_Array Int,1))

, ("arr3",(Global_Array Int,1))

]

This symbol table holds four arrays. The first of these, arr0, is an array of four
integers residing in shared memory.

Below is the intermediate code. Statements have been truncated to fit on a line:

[ ("arr0",[Index "tid" []]) ::= Op2 Add (Index "source0" ...

, Synchronize

, ("arr1",[Index "tid" []]) ::= Op2 Add (Index "arr0" ...

, Synchronize

, ("arr2",[Index "tid" []]) ::= Op2 Add (Index "arr1" ...

, Synchronize

, ("arr3",[Index "tid" []]) ::= Index "arr2" [Index "tid" []]

, Synchronize

]

The intermediate code is a list of eight statements in this case. The first of these
computes the values that go into arr0. The symbol table above indicates that the
length of arr0 is four, so the variable tid in that statement must go from 0 to 3. If
sequential code were to be generated, a for loop could be used to compute arr0:

for (int tid = 0; tid < 4; ++tid) {

arr0[tid] = ...

}
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In the sum example, the values in arr0 will only be used to compute the values of
arr1. The values of arr1 will in turn only be used once, to compute the values
of arr2. This means that the memory used for arr0 can be freed up and reused
as soon as arr1 is computed. In order to discover when arrays can be freed, a
liveness analysis is performed over the IC. The result of this analysis associates to
each statement in the IC a set of arrays that are alive at that point:

type ICLive = [(Statement,Set Name)]

Again from the sum program, ICLive looks like this:

[ (("arr0",[Index "tid" []]) ::= Op2 Add (Index "source0" ...),

fromList ["arr0","source0"])

, (Synchronize,

fromList ["arr0"])

, (("arr1",[Index "tid" []]) ::= Op2 Add (Index "arr0" ...),

fromList ["arr0","arr1"])

, (Synchronize,

fromList ["arr1"])

, (("arr2",[Index "tid" []]) ::= Op2 Add (Index "arr1" ...),

fromList ["arr1","arr2"])

, (Synchronize,

fromList ["arr2"])

, (("arr3",[Index "tid" []]) ::= Index "arr2" [Index "tid" []],

fromList ["arr2","arr3"])

, (Synchronize,

fromList [])

]

The ICLive object can now be used to form a new list of statements where the mem-
ory is being used more efficiently. This step introduces the arrays gbase and sbase

in which all the data is stored. This step also attaches an integer to each statement
that specifies how many threads are needed to compute it. For an assignment state-
ment to an array, this integer is the length of the array and for any other statement
(Synchronize) it is zero and will not be used. An example of the intermediate code
at this stage is.
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[ (("((int *)(sbase+0))",[Index "tid" []]) ::= ... ),

4)

, (Synchronize,

0)

, (("((int *)(sbase+16))",[Index "tid" []]) ::= ... ),

2)

, (Synchronize,

0)

, (("((int *)(sbase+0))",[Index "tid" []]) ::= ... ),

1)

, (Synchronize,

0)

, (("((int *)(gbase+0))",[Index "tid" []]) ::= ... ,

1)

, (Synchronize,

0)

]

Only one more step is needed to produce CUDA code: each of the integers above
that symbolize the number of threads needed must be turned into a conditional that
shuts off those threads not needed in this assignment. The generated CUDA kernel
will run using the maximum of the number of threads needed by the statements.
Only those assignments needing fewer than the maximum number of threads will be
wrapped in a conditional. When this step has been performed, the generated code
has reached its final form:

((int *)(sbase+0))[tid] =

(source0[(tid * 2)] + source0[((tid * 2) + 1)]);

__syncthreads();

if ((tid < 2)){

((int *)(sbase+16))[tid] =

(((int *)(sbase+0))[(tid * 2)] +

((int *)(sbase+0))[((tid * 2) + 1)]);

}

__syncthreads();

if ((tid < 1)){

((int *)(sbase+0))[tid] =

(((int *)(sbase+16))[(tid * 2)] +

((int *)(sbase+16))[((tid * 2) + 1)]);

}
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__syncthreads();

if ((tid < 1)){

((int *)(gbase+0))[tid] =

((int *)(sbase+0))[tid];

}

__syncthreads();

5.4 The arrow based approach

The version of Obsidian that is described in this section, builds upon the lessons
learnt in the implementation of the monadic Obsidian described previously. Here,
kernels are more restricted in a way that makes code generation easier. The version
described here is also simplified in the sense that it does not allow the programmer
to control whether an array should be stored in global or shared memory. Kernels
here perform their computations entirely within shared memory.

It is in this version of Obsidian that all the examples in section 4.4 and chapter 6
are implemented.

In this version of Obsidian, a GPU kernel has the type a :-> b. This type has two
constructors, Pure and Sync:

data a :-> b

= Pure (a -> b)

| Sync (a -> Arr FData) (Arr FData :-> b)

Here, a kernel is a sequence of computations interspersed with barrier synchroniza-
tions, see figure 4.7. Compared to the monadic version described earlier, this makes
thinking about memory easier. The kernel data type, :->, only allows syncing on
data that can be turned into a single array (the a -> Arr FData, in the type). Also
notice that a kernel is simply a single sequence of such synced computations so all
data that is needed must be piped through all the way. This means that the CUDA
code can be generated having just two arrays that the data is ping-ponged between
at the syncs. This choice of always using two arrays is not entirely ideal. There
are cases where the computation could be performed in place. In that case it would
have been more space efficient to only use a single array worth of storage. Another
issue arises when the computation leaves parts of the array unchanged. In that situ-
ation, unchanged data will be copied unnecessarily. The current implementation of
Obsidian does not try to solve these issues.
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5.4.1 Pure

The function pure that creates a GPU kernel corresponds directly to the constructor
Pure of the :-> type:

pure :: (a -> b) -> a :-> b

pure = Pure

5.4.2 Sync

The implementation of sync is not as direct as that of pure. This is what the
implementation of sync looks like:

sync :: Flatten a => Arr a :-> Arr a

sync = Sync (fmap toFData) (pure (fmap fromFData))

The type FData represents things that can be written to the GPU memory. The
class Flatten provides two functions, toFData and fromFData, to convert to and
from a format storeable in memory. There are instances of Flatten for all the basic
types, IntE, FloatE and BoolE, as well as for arrays and pairs of things that can be
flattened.

The FData type is defined as follows:

data InternalRepr a

= Nil

| Unit a

| Tuple [InternalRepr a]

| For (Arr (InternalRepr a))

type FData = InternalRepr (DExp, Type)

A base type such as an IntE is turned into FData using the Unit constructor:

instance Flatten IntE where

toFData (E a) = Unit (a, Int)

fromFData (Unit (a,Int)) = E a
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A pair is turned into FData by using the Tuple constructor and arrays are turned
into FData using the For constructor. In the generated code, data represented by
the For constructor is computed in a for loop. This means that if the type synced
upon is an array of arrays, the inner arrays are computed by sequential for loops:

instance Flatten IntE where

toFData a = For (fmap toFData a)

fromFData (For a) = fmap fromFData a

5.4.3 Sequential composition

The type, :->, of GPU kernels is very similar to normal Haskell lists. There is a unit
GPU kernel, created by pure, corresponding to a list of length one. A GPU kernel
can also be a sync of something that produces an array of FData followed by a GPU
program. This resembles the : operator on lists. So, a kernel corresponds to a list
of computations separated by barrier synchronizations.

With this idea in mind, it is a good time to look at the implementation of the
sequential composition operator (->-):

(->-) :: (a :-> b) -> (b :-> c) -> (a :-> c)

Pure f ->- Pure g = Pure (g . f)

Pure f ->- Sync g h = Sync (g . f) h

Sync f h1 ->- h2 = Sync f (h1 ->- h2)

Composing two kernels that are both created with Pure is the same as Haskell
function composition. The next case, where pure f is composed with Sync f h,
means that some more computation should take place before the sync, that is the
kernel should perform g.f then sync and continue with h. The last case is something
constructed using Sync composed with anything else. In this case ->- proceeds
recursively.

5.4.4 The two combinator

As explained in section 4.4.7, the task of the two combinator is to make a special
kind of parallel composition efficient on the GPU.

The two combinator takes a kernel, k, with type (Arr a :-> Arr b) as input. The
type of two k is (Arr a :-> Arr b) but operating on arrays twice as long as those
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k is designed for. What two does is take a kernel and run it twice in parallel on both
halves of an input array. Since the :-> type only allows synchronization across all
threads, the two instances of the kernel must be woven together. This could be done
naively like this:

two :: (Arr a :-> Arr b) -> Arr a :-> Arr b

two (Pure f) = Pure $ twof f

two (Sync f g) = Sync (twof f) (two g)

twof :: Choice b => (Arr a -> Arr b) -> (Arr a -> Arr b)

twof f arr = conc (a1’,a2’)

where

(a1,a2) = halve arr

(a1’,a2’) = (f a1,f a2)

But taking this approach will result in generated code with conditionals checking “is
this thread in the low half of the array or not?”. The code generated from two incr

illustrates this:

__global__ void generated(word* input0,word* result0){

const unsigned int tid = (unsigned int)threadIdx.x;

const unsigned int bid = (unsigned int)blockIdx.x;

ix_int(result0,(tid + (8 * bid))) =

((tid < 4) ?

(ix_int(input0,(tid + (8 * bid))) + 1) :

(ix_int(input0,(tid + (8 * bid))) + 1));

}

One possible code transformation on the above code is to move the conditional
inwards. This can be accomplished using the following alternative implementation
of twof:

twof’ :: (Arr a -> Arr b) -> Arr a -> Arr b

twof’ f arr =

mkArr (\i -> f (

mkArr (\j -> arr ! (ifThenElse (top i)

(j + fromIntegral m)

j)) m) ! (bot i)) nl

where



73

m = len arr ‘div‘ 2

top i = i >=* (fromIntegral m)

bot i = i ‘mod‘ (fromIntegral m)

nl = len arr

This version of twof is a bit limited as it takes no regard to functions f that alter
the length of the array. This detail will be corrected again in the final version of
twof shown further down. But first the code generated for the example (two incr)
using the above version of twof looks like this:

__global__ void generated(word* input0,word* result0){

const unsigned int tid = (unsigned int)threadIdx.x;

const unsigned int bid = (unsigned int)blockIdx.x;

ix_int(result0,(tid + (8 * bid))) =

(ix_int(input0,(((tid >= 4) ?

((tid % 4) + 4) :

(tid % 4)) + (8 * bid))) + 1);

}

Now, this code still contains a conditional. However it is possible to completely
optimize this away. In Obsidian, this is done by implementing two using bitwise
operations and not conditionals:

twof :: (Arr a -> Arr b) -> Arr a -> Arr b

twof f arr =

Arr (\i -> f (

Arr (\j -> arr ! ((i .&. num2) .|. j)) n2) !

(i .&. mask)) n

where

n = len arr

n2 = n ‘div‘ 2

bit = logInt n2

num2 = fromIntegral $ 2^bit

mask = complement num2

The bitwise operations in the above code listing, (i .&. num2) .|. j, take the bit
that tells whether to index in the high part or the low part from i. This is done
using (i .&. num2). num2 points out which bit decides the division. The index, j,
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indexes into the half size arrays, created by the division. j and the division bit are
ored together; creating the index into the original array. All that is left now is to
make this work correctly when two is used with a function whose input array and
output array differ in length. This is done by moving the interesting bit from i after
obtaining it. If f halves the length of the array this means that the interesting bit
(the division bit) is located one step to the left compared to earlier and needs to be
shifted right before being used.

twof :: (Arr a -> Arr b) -> Arr a -> Arr b

twof f arr =

Arr (\i -> f (

Arr (\j -> arr ! ((sh bit bit2 (i .&. num2)) .|. j)) n2) !

(i .&. mask)) nl

where

n2 = len arr ‘div‘ 2

bit = logInt n2

bit2 = logInt nl2

num2 = fromIntegral $ 2^bit2

mask = complement num2

nl = 2 * nl2

nl2 = len (f (Arr (\j -> arr ! variable "X") n2 ))

sh :: (Bits a) => Int -> Int -> a -> a

sh b1 b2 a | b1 == b2 = a

| b1 < b2 = a ‘shiftR‘ (b2 - b1)

| b1 > b2 = a ‘shiftL‘ (b1 - b2)

This version of twof also takes care of functions that alter the length of the array.
It does this by computing f applied to a symbolic array and checking the length of
the result. This illustrates how the the fact that array lengths are Haskell integers
is used. Now, generating the code for two incr gives the code below. This result is
due to the optimizations on expressions described in section 5.4.5:

__global__ void generated(word* input0,word* result0){

const unsigned int tid = (unsigned int)threadIdx.x;

const unsigned int bid = (unsigned int)blockIdx.x;

ix_int(result0,(tid + (8 * bid))) =
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(ix_int(input0,(tid + (8 * bid))) + 1);

}

Repeated applications of two, such as those that occur when recursively using two

to generate kernels, leads to complicated indexing expressions. The following section
considers some transformations on expressions that manage fairly well to reduce the
size of the indexing computations in the case of nested applications of two.

5.4.5 Optimization of expressions

This version of Obsidian applies a number of transformations on expressions. These
transformations have been chosen in a rather ad-hoc way by generating code and
investigating that generated code, by hand, for optimization candidates. The trans-
formations are added to the actual implementations of the operators that they op-
erate on, not as a separate pass over the expressions once they are created in their
entirety. For example, the implementation of (+) has a special case for a + 0 re-
sulting in just a. As a result of this, each transformation is only given very local
knowledge of the expression it is optimizing. A greedy approach has been chosen; a
transformation is applied if it results in fewer operations being used (given its very
local knowledge) or if inspection of the generated code shows that the transformation
was beneficial. This leads to the problem that a transformation that seems beneficial
given some kinds of program will be detrimental in other situations. This problem
is acknowledged and placed on the future work list for investigation.

An important aspect here is that operations such as (+), shiftL and .&. (for bitwise
and) on the Obsidian types (IntE, FloatE, BoolE) build expression trees. This means
that the operations will, in the end, find their way into the CUDA code. For example
if the Obsidian (+) operation is used, which is defined as part of a Haskell Num instance
for expressions, it will correspond to a CUDA addition in the generated code. It is,
however, not always necessary that there is a one to one correspondence between the
operations expressed by the programmer in the Obsidian code and the operations
that end up in the CUDA code. For example, if the Obsidian (+) operation is used
with two known constants, it is better to add them directly and let the resulting sum
show up the generated CUDA. The operations that can be performed in Haskell and
thus not end up in the generation will be called compile time operations and those
that end up in the generated code will be referred to as runtime operations.

This approach, applying transformations to expressions as they are created, is called
smart constructors. For more details on smart constructors see for example [12].
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Bit shift operations on unsigned integers

In Obsidian, thread ids are unsigned integers. The optimizations described here are
applied to unsigned integer expressions as they are created in an Obsidian program.
The purpose of this is to make the indexing calculations in the resulting generated
CUDA code more efficient.

Shifting left or right by zero has no influence:

a ‘shiftL‘ 0 = a

a ‘shiftR‘ 0 = a

Shifting a constant:

(E (LitUInt a)) ‘shiftL‘ n = E (LitUInt (a ‘shiftL‘ n))

(E (LitUInt a)) ‘shiftL‘ n = E (LitUInt (a ‘shiftR‘ n))

This is an example of where a value is computed at compile time. That is, the shiftL
and shiftR operations on the right hand side are evaluated instantly and result in
a constant in the generated code.

Shifting twice in the same direction:

shiftL (E (Op2 Shl a (LitInt n1))) n = (E a) ‘shiftL‘ (n+n1)

shiftR (E (Op2 Shr a (LitInt n1))) n = (E a) ‘shiftR‘ (n+n1)

Shifting some bit pattern in the same direction by some distances twice is the same
as shifting it once by the combined distance. Here, the Haskell Bits type class helps
us by specifying that the shift distance argument to the bit shift operations (shiftL
and shiftR) is always a constant.

Shifting left then right or right then left by same amount:

shiftL (E (Op2 Shr a (LitInt n1))) n

| n == n1 = (E a) .&. (complement (fromIntegral (2^n-1)))

shiftR (E (Op2 Shl a (LitInt n1))) n

| n == n1 = (E a) .&. (fromIntegral (2^(32-n)-1))

This allows two shift operations to be replaced by a single and operation.
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Shifts distribute over bitwise and:

shiftL (E (Op2 BitwiseAnd a b)) n

| eitherLit a b =

((E a) ‘shiftL‘ n) .&. ((E b) ‘shiftL‘ n)

shiftR (E (Op2 BitwiseAnd a b)) n

| eitherLit a b =

((E a) ‘shiftR‘ n) .&. ((E b) ‘shiftR‘ n)

This transformation is not as easy to justify given the limited local knowledge upon
which the decision to apply a transformation or not is made. The reason is that the
transformation does not give fewer operations on the right hand side. The eitherLit
condition on a and b is true if either of them is a constant known at compile time.
This condition makes sure that at least applying this transformation does not increase
the number of operations in the given expression.

shifting and bitwise or:

shiftL (E (Op2 BitwiseOr a b)) n

| eitherLit a b =

((E a) ‘shiftL‘ n) .|. ((E b) ‘shiftL‘ n)

shiftR (E (Op2 BitwiseOr a b)) n

| eitherLit a b =

((E a) ‘shiftR‘ n) .|. ((E b) ‘shiftR‘ n)

Bitwise and on unsigned integers

Bitwise and with zero is zero:

(.&.) (E (LitUInt 0)) a = 0

(.&.) a (E (LitUInt 0)) = 0

Bitwise and with 0xFFFFFFFF, identity:

(.&.) a (E (LitUInt 0xffffffff)) = a

(.&.) (E (LitUInt 0xffffffff)) a = a
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Under some circumstances (a .|. b) .&. c = a .&. c. This happens when b’s
and c’s binary representations are completely disjoint, meaning that b .&. c = 0.
This rule is applied as follows:

(.&.) (E (Op2 BitwiseOr a (LitUInt b)))

(E (LitUInt c))

| b .&. c == 0 = (E a) .&. (E (LitUInt c))

Because of commutativity of bitwise and there is also a version of the above trans-
formation with the arguments flipped:

(.&.) (E (LitUInt c))

(E (Op2 BitwiseOr a (LitUInt b)))

| b .&. c == 0 = (E a) .&. (E (LitUInt c))

Shifting right introduces zeros at the left end of a binary number. This transforma-
tion detects the scenario where a value is shifted right n steps and thereafter bitwise
anded with a number that leaves the value unchanged. This happens whenever the
number being anded with, consists of all ones except for the n leftmost bits. The n
leftmost bits, can be either one or zero. This transformation is applied because this
scenario occurs in some examples of generated code.

(.&.) a@(E (Op2 Shr _ (LitInt n)))

(E (LitUInt x)) | lookup n patterns == (Just x) = a

The patterns list simply lists tuples of shift distances and corresponding bit pattern.
If the value anded with is such that according to the list it will influence the result
at all, it is discarded.

Most of the transformations described in this section come in a second version as
well, the only difference being the order of the arguments.

Bitwise or on unsigned integers

Transformations on expressions containing bitwise or have so far been harder to find.
Indexing expressions generated by Obsidian when using nested applications of ilv
result in sequences of or interleaved with ands that the present set of transformations
does very little good on.



79

There are some simple transformation to apply to expressions containing or. The
first one is bitwise or with zero.

Bitwise or with zero

(.|.) a (E (LitUInt 0)) = a

(.|.) (E (LitUInt 0)) a = a

The rule above states that bitwise oring something with zero leaves that something
unchanged. Using bitwise or with a number consisting of all bits set, leads to a
result with all bits set.

Bitwise or with 0xffffffff

(.|.) a (E (LitUInt 0xffffffff)) = E (LitUInt 0xffffffff)

(.|.) (E (LitUInt 0xffffffff)) a = E (LitUInt 0xffffffff)

The last transformation takes care of the case where both inputs to bitwise or are
know at compile time. As seen before, this leads to an expression not containing the
bitwise or operation.

Bitwise or between two constants

orOptU (E (LitUInt a)) (E (LitUInt b)) = E (LitUInt (a .|. b))

Unexplored

Bitwise xor (exclusive or) is interesting but has not been considered during the
implementation of the optimizations or the combinators of Obsidian. Bitwise xor

relates to bitwise and and or like this:
a ‘xor‘ b = (a .&. ~b) .|. (~a .&. b) = ~(a .&. b) .&. (a .|. b)

Using these identities may be key to making some cases of nested ands and ors in
the generated code disappear. This is left as work to investigate for the future.

5.4.6 Code generation

In order to generate C code from an Obsidian description, it is first necessary to
gather some information about the program. In order to be able to run the kernel
correctly, the number of threads needed and the amount of shared memory required
needs to be discovered. All intermediate arrays in the computation will be stored in
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Figure 5.1: A Kernel alternately using the arrays sm1 and sm2 for storage.

the GPU shared memory. A GPU kernel can be seen as a sequence of computations
separated by barrier synchronizations. The amount of shared memory that is needed
for a kernel in total is the maximum of the memory requirements of the computations
separated by syncs times 2. The memory requirement is twice the maximum size
because two shared memory arrays will be used alternately, see figure 5.1. So the
memory requirement of a kernel is found by going through the entire program and
measuring the size of each intermediate array. The number of threads needed to
write an intermediate array is the same as the length of that array. So the number
of threads needed is given by the maximum length intermediate array. The pseudo
code below illustrates how finding the shared memory requirements can be done:

sharedMemReq :: (a :-> b) -> a -> Int

sharedMemReq (Pure _) = 0

shaerdMemReq (Sync f g) input =

maximum (memory_needed_for (f input))

(sharedMemReq g (f input))

A Pure computation needs no shared memory. The result is written directly to the
output in global memory. In the Sync case, enough memory to store the result of f
applied to input is needed.

When the number of threads and the amount of shared memory needed has been
computed, it is time to generate the actual code. When generating the code for a
particular stage in the kernel, the number of threads needed to compute that stage
is needed. If the number of threads needed for the kernel in total is larger than the
number of threads needed for a given stage, the code for that stage is enclosed in a
conditional that disables a number of threads. Examples of where this happens are
some of the summation kernels in section 4.4.5.

Now, the code generation process will be gone through for a hypothetical example,
figure 5.2. The description of the code generation process assumes two functions, f
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and g, of the following types:

f :: Arr IntE -> Arr IntE

g :: Arr IntE -> Arr IntE

The kernel for which code is generated is.

example :: Arr IntE :-> Arr IntE

example = pure (fmap f) ->- sync ->- pure rev ->-

sync ->- pure (fmap g)

The data structure that represents the example kernel has the following form:

Sync f1 (Sync f2 (Pure f3))

Here f1, f2 and f3 are the functions:

f1 = fmap toFData . fmap f :: Arr IntE -> Arr FData

f2 = fmap toFData . rev . fmap fromFData :: Arr FData -> Arr FData

f3 = fmap g . fmap fromFData :: Arr FData -> Arr IntE

Given this data structure, CUDA code is generated by applying the function f1 to
a symbolic, named, input array:

input = mkArr (\ix -> index "input" ix Int) 256

Notice how the input array used needs to provide a length, an integer. The result of
applying f1 to input is an array of FData. This array of FData is used to create a C
assignment statement by examining the shape of the elements of the array. In this
case, the element is something created with the Unit constructor of the FData type
constructor and hence a single assignment is needed:

sm1[tid] = f(input[tid]);

__syncthreads();

Had the array synced upon been an array of pairs, the Tuple constructor would have
been used in the element and two assignments would have been generated:
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sm1[tid << 2] = f(input[tid << 2]);

sm1[tid << 2 + 1] = f(input[tid << 2 + 1]);

__syncthreads();

In the generated code, sm1 is used since it is the first time data is written into shared
memory. Now, a new symbolic array must be created to pass to the next function,
f2. This array must represent indexing into sm1. Now, the function f2 is applied to
this array. f2’s main function is the reversal of the array which will be visible in the
indexing:

sm2[tid] = sm1[256 - 1 - tid];

__syncthreads();

The same procedure is repeated for the last stage, function f3, but since we have
arrived at an instance of the Pure constructor we know this is the last computation
of the kernel. The result of this function should be written to the output array of
the kernel:

output[tid] = g(sm2[tid]);

In its entirety the kernel generated by the procedure described above looks like this:

sm1[tid] = f(input[tid]);

__syncthreads();

sm2[tid] = sm1[256 - 1 - tid];

__syncthreads();

output[tid] = g(sm2[tid]);

The CUDA code above looks slightly different to the examples of real generated code
shown in other places in this document. The difference is that the code shown uses
a couple of macros for indexing into arrays. There is one macro for indexing into the
array, treating it as an array of integers, called ix_int. There is also a similar macro
for indexing into the array as an array of floating point values, called ix_float. The
data itself is stored in arrays of 32-bit words (unsigned int). The reason for this is
that a choice was made to store arrays of pairs as a single array where the elements of
the pairs are laid out next to each other. This means that if Obsidian is working on
arrays of (IntE,FloatE) pairs, integer and floating point values will be interleaved
in the CUDA level array.

This section gave an outline of how CUDA code is generated from an Obsidian
kernel. Details have been left out, but the key ideas and concepts are present in the
description.



83

Figure 5.2: A sketch of how code is generated for a kernel.

5.4.7 Sidetrack

Sections 4.4.5 and 4.4.6 show how sync can be used to guide code generation and
how data elements can be grouped for processing in sequence by a single thread. For
example, elements can be paired up using pair and then one thread can be used to
compute on them. Currently, this method of work grouping has an unwanted side
effect. Paired up elements are stored next to each other when applying sync; this
means that in some cases data-elements would be moved in memory needlessly, just
for the purpose of work grouping. The needless movement of data also imposes extra
overhead by requiring additional indexing calculations.

The example that showed work grouping by pairing looked like this:

incrP :: Num a => Arr a :-> Arr (a,a)

incrP = pure (fmap (+1)) ->- pure pair ->- sync

This example instructs each thread to operate on two neighboring elements. It is,
however, also possible to instruct the threads to operate on the elements at index
tid and tid+ n/2, where n is the length of the array. This could be done with using
something like:

syncNHalf = pure (pair . riffle) ->- sync ->- pure (unriffle . unpair)
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What is sought after is a method to specify that thread tid should compute the
result at index tid and tid + n/2 without the need to move those two elements
next to each other and then move them back. An experiment in this direction was
performed but did not lead to fully satisfactory results. A new synchronization
primitive called syncHow was added to Obsidian. This synchronization primitive
took an extra argument of type How:

syncHow :: How -> Arr a :-> Arr b

The how argument contains instructions on how the data is supposed to be written to
memory. Assume a function pairNth :: int -> How that creates a How object that
instructs thread tid to compute value at index tid and tid + n. With this function,
a new version of incrP can be implemented:

incrP :: Num a => Arr a :-> Arr (a,a)

incrP = pure (fmap (+1)) ->- syncHow (pairNth 4)

The code generated by this incrP for eight elements uses four threads to compute
the eight result values:

__global__ void generated(word* input,word* result){

unsigned int tid = (unsigned int)threadIdx.x;

extern __shared__ unsigned int s_data[];

word __attribute__((unused)) *sm1 = &s_data[0];

word __attribute__((unused)) *sm2 = &s_data[8];

ix_int(result,tid) = (ix_int(input,tid) + 1);

ix_int(result,(tid + 4)) = (ix_int(input,(tid + 4)) + 1);

}

The generated code above shows a small discrepancy with the other examples of
generated code. It does not make use of the blockIdx to compute on several blocks
as the other kernels do. This is simply because that was not part of Obsidian at the
time this experiment was performed.

Because of the complexity it introduced, this sidetrack is left largely unexplored. It
is possible that with a decent set of combinators for creating these How objects it
could lead to something good. Those combinators would need to contain operations
that are array length dependent for example.
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At the time of this experiment, the How type was implemented as a function from a
thread id to a list of thread ids. Each thread was associated with a list of virtual
thread ids by the How function. An obvious risk with this is that the programmer
supplies functions that make no sense here. This should have been hidden away as
an abstract data type only allowing certain unproblematic How objects to be created.
It is also somewhat unclear what should happen with these How objects when kernels
are composed into larger kernels.

There is one more problem with this approach. One of the goals of Obsidian is to
free the programmer from the kind of indexing computations that are so common in
data-parallel programming using CUDA. But this approach in some sense puts that
indexing computing back into the hands of the programmer again.

5.5 Comparison of the two implementations

In this section, the two implementations shown in section 5.3 and section 5.4 are
compared. The version described in section 5.3 is referred to as monad Obsidian and
that described in section 5.4 is called arrow Obsidian.

Monad Obsidian was described first. In this version of Obsidian a GPU kernel is just
a function, a monadic function, taking an array as input. This lets the programmer
implement kernels using guards and conditionally choose different paths depending
on array length. This cannot be done in arrow Obsidian. For example, a kernel that
computes the maximum value of an array implemented using guards looks like this:

maxKernel :: SArr IntE -> GPU (SArr IntE)

maxKernel arr | len arr == 1 = return arr

| otherwise =

(two maxKernel ->- pure maxOfTwo ->- sync) arr

where

maxOfTwo arr = singleton (max (arr ! 0) (arr ! 1))

It feels very natural when implementing this kernel to use the length of the input
array to make the decision on whether to split and recurse or not. In arrow Obsidian,
the version used in the examples, an extra argument that specifies the recursion depth
would be required:

maxKernel :: Int -> Arr IntE :-> Arr IntE
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Monad Obsidian also allows more freedom in the use of sync. In arrow Obsidian,
all data needed in the future has to be streamed through the syncs. At each appli-
cation of sync, all the data needed in the future must be stored and re-read. This
makes monad Obsidian more pleasant to work with and also allows for more efficient
implementations of some kernels. Kernels that split their input data in parts and
leave some parts unused until later are more natural in monad Obsidian. In arrow
Obsidian, such a kernel would need to store and read back unchanged elements from
memory at all synchronizations until the point where the data is used. However, the
cost of this freedom is the extra work that takes place in the monad Obsidian code
generation.

Monad Obsidian has efficiency problems when it comes to the divide and conquer
combinator. It may of course be possible to improve upon this performance but as
it is now this is the main motivation for starting work on the other version.

One strength of arrow Obsidian is the simplified code generation procedure enabled
by the restricted view on kernels. In this version, it is clear that at most two memory
arrays need to be managed. The first of these arrays contains all the data before the
sync and the other one contains all the data after the sync. There is no need for
any liveness analysis during code generation in this version.

Also, the abstract data type used to describe kernels enables the more efficient im-
plementation of the divide and conquer combinator, two.

5.6 Future work

There are areas where Obsidian needs improvement. The efficiency of generated code
is one such place. One thing that is very apparent when looking at the generated code
is that CSE, Common Subexpression Elimination, would be beneficial. Applying a
CSE step is future work. When applying CSE in the setting of Data-parallel GPGPU
programming, some issues should be considered. The balance to strike between
recomputation and register storage space is most likely different from that of single
threaded CPU programs. Memory access to local shared memory in the GPU is no
more expensive than register access in current generation GPUs.

The optimizations described in section 5.4.5 are selected on a rather ad-hoc basis.
A firmer grasp of what kind of optimizations are needed must be obtained. Another
important aspect of this is that it is always better to not generate code that needs a
lot of optimization in first place. This may be accomplished by thinking more closely
about what kind of combinators make the most sense both to the programmer and the
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GPU architecture. The optimizations currently implemented are completely context
unaware. For example, it may happen that code such as tid & 0x7 is generated
at a place where it is impossible for tid to be above 7. Taking care of cases such
as this would require some knowledge about what range a variable is in at this
particular place of the program. Finally the role that bitwise xor might play during
optimization of expressions must also be investigated.

The two versions of Obsidian show some interesting symmetries. The two combinator
results in efficient code in the arrow based version and poor code in the monad based
version. Consider instead a combinator, one, that splits an array in two parts just
like two does but only applies the input kernel to one of the halves instead. The one

combinator is very easily implemented in monad Obsidian and leads to generated
code that is very efficient. In the arrow based version, because of the limitation
that all data must be streamed through all the uses of sync, this leads to code that
performs a lot of unnecessary copying back and forth of unchanged data. This seems
to suggest that the arrow based approach should be augmented with more operations
in the representation of kernels to enable passing unchanged data along efficiently.
However, it is probable that generalizing the arrow based version will lead to the
need to reintroduce some of the complexities of the monad based version. This may
be a necessary step to take though and will be evaluated as future work.

Section 5.4.7 illustrated a problem that arises in both versions of Obsidian, that work
grouping and data placement are co-dependent. It would be nice if it were possible
to let a single thread operate on more than one data-element without imposing
unnecessary data-movement and or superfluous indexing computations. Finding a
satisfactory solution to this problem is left for investigation as future work.

The two versions of Obsidian described here take the step to CUDA rather directly.
It may be desirable to find a more general intermediate language to compile the Ob-
sidian programs into and then turn that into CUDA or some other parallel language
such as OpenCL. Besides being less tied to a single platform, an approach such as this
may provide an easier setting for performing code transformations before generating
the final CUDA kernels.

Currently, Obsidian is limited in one very fundamental way. The kinds of algorithms
that can be expressed must have the property that from the size of the inputs alone
the size of the outputs are determined. In some sense this means that the kind of ker-
nels we can express in Obsidian are hardware circuit like. Allowing the programmer
to express algorithms that are more general and data-dependent is desired. However,
it does introduce extra complexity. Exploring what these complexities are and how
to circumvent them is left as future work.
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Kernels are not the whole story, when it comes to GPGPU programming; there is
also the level above that, which deals with the coordination of kernels. Usually,
the program to accelerate on the GPU is split up into many parts that can be
solved by launching groups of kernels. This coordination of kernels is not expressible
in Obsidian currently. One approach to adding this capability would be to add
a second embedded language, a kernel coordination language. For example, this
language might be based on Haskell/CUDA bindings.



Chapter 6

Case studies

6.1 Reduction

Reduction is a generalization of the concept seen in section 4.4.5 with the summation
kernels. Given a sequence S of length n and an operation, ⊕ (that needs to be
associative to enable parallelism), the reduction of the array using the operation is
defined as S0 ⊕ S1 ⊕ ...⊕ Sn.

This kernel highlights one of the strengths of a higher level language compared to
CUDA. In Obsidian, it is possible to make the reduction kernel parameterized on the
operation to use. From this parameterized description, code for particular reductions,
such as sum or max, can be generated.

The reduction kernel can, just like sum, be implemented in many different ways.
First the basic parallel way from the sum2 example is.

reduce :: Flatten a => Int -> (a -> a -> a) -> Arr a :-> Arr a

reduce 0 f = pure id

reduce n f = pure op ->- sync ->- reduce (n-1) f

where

op = fmap (uncurry f) . pair

Now, reduce can be used to compute for example sums, minimum and maximum

*Obsidian> execute (reduce 3 (+)) [0..7 :: IntE]

[28]

89
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*Obsidian> execute (reduce 3 min) [0..7 :: IntE]

[0]

*Obsidian> execute (reduce 3 max) [0..7 :: IntE]

[7]

Reduce can also be used to sum up an array of 3D vectors. A 3D vector type can be
defined as follows:

type Vec3 a = (a,a,a)

And addition of 3D vectors can be defined like this:

vecPlus :: Num a => Vec3 a -> Vec3 a -> Vec3 a

vecPlus (x1,y1,z1) (x2,y2,z2) = (x1+x2,y1+y2,z1+z2)

Now, reduce is applicable to arrays of 3D vectors without change:

*Obsidian> let input = replicate 8 (1,1,1) :: [Vec3 IntE]

*Obsidian> execute (reduce 3 vecPlus) input

[(8,8,8)]

All the tweaks applied in the summation examples, section 4.4.5, are applicable to
reduce as well. Instead, a different change to the kernel is performed here. What
reduce does is apply the operation to neighboring elements; it is also possible to split
the input array in half and apply the operation between the first elements of both
arrays, the second elements and so on. This can be implemented using zipWith:

reduce’ :: Flatten a => Int -> (a -> a -> a) -> Arr a :-> Arr a

reduce’ 0 f = pure id

reduce’ n f = pure (zipWith (uncurry f) . halve) ->- sync ->-

reduce’ (n-1) f

This change to the reduction kernel affects the memory access patterns of the threads
executing the generated code. Below is code generated from (reduce’ 3 (+)):
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__global__ void generated(word* input0,word* result0){

const unsigned int tid = (unsigned int)threadIdx.x;

const unsigned int bid = (unsigned int)blockIdx.x;

extern __shared__ unsigned int s_data[];

word __attribute__((unused)) *sm1 = &s_data[0];

word __attribute__((unused)) *sm2 = &s_data[4];

ix_int(sm1,tid) =

(ix_int(input0,(tid + (8 * bid))) +

ix_int(input0,((tid + 4) + (8 * bid))));

if (tid < 2){

ix_int(sm2,tid) =

(ix_int(sm1,tid) + ix_int(sm1,(tid + 2)));

}

if (tid < 1){

ix_int(sm1,tid) =

(ix_int(sm2,tid) + ix_int(sm2,(tid + 1)));

}

if (tid < 1){

ix_int(result0,(tid + bid)) = ix_int(sm1,tid);

}

}

This code is generated for an input array of eight elements. In the first stage, thread
i accesses element i and i + 4 not i ∗ 2 and i ∗ 2 + 1, expressed using shifts and or,
as seen in the snippet of code below from sum2:

ix_int(sm1,tid) =

(ix_int(input0,((tid << 1) + (8 * bid))) +

ix_int(input0,(((tid << 1) | 0x1) + (8 * bid))));

There are no performance measurements of the reduction kernel alone presented in
this thesis. There are however comparisons of dot product kernels differing only in
which reduction kernel they use. These comparisons are shown in section 6.7.

6.2 Dot product

Section 2.2.3 showed how to implement a dot product kernel in CUDA. In this
section, a number of different ways to implement dot product in Obsidian will be
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shown. As the CUDA example illustrated, the dot product algorithm consists of
a multiplication part and a summation part. For the summation part, the kernels
reduce or reduce’ can be used.

The multiplication kernel is defined using zipWith from the array library, section 4.2:

mult :: Num a => (Arr a,Arr a) :-> Arr a

mult = pure $ zipWith (uncurry (*))

The mult kernel takes two input arrays. These arrays are then multiplied together
element-wise using zipWith.

The CUDA code generated from mult, shown below, is less general than the hand-
written version in section 2.2.3. The generated code has the constant 256 where the
handwritten version uses blockDim.x. The reason for this is that Obsidian, at the
moment, has no means to express constructs dependent on blockDim. There is no
block concept exposed to the Obsidian programmer.

__global__ void mult(word* input0,word* input1,word* result0){

const unsigned int tid = (unsigned int)threadIdx.x;

const unsigned int bid = (unsigned int)blockIdx.x;

ix_float(result0,(tid + (256 * bid))) =

(ix_float(input0,(tid + (256 * bid))) *

ix_float(input1,(tid + (256 * bid))));

}

As a building block in other kernels the Obsidian mult kernel is general. It can be
combined with other kernels and it is just at the very end, the code generation, that
a fixed size has to be chosen.

The dot product algorithm can now be implemented using either reduce or reduce’.
The Obsidian dot product kernels below correspond to the fused multiply and sum-
mation kernel, mult_sumKernel in section 2.2.4:

dotProd :: (Flatten a, Num a) => Int -> (Arr a, Arr a) :-> Arr a

dotProd n = mult ->- sync ->- reduce n (+)

dotProd’ :: (Flatten a, Num a) => Int -> (Arr a, Arr a) :-> Arr a

dotProd’ n = mult ->- sync ->- reduce’ n (+)
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The code generated from dotProd for 256 elements is shown below. The dotProd’

code looks very similar but uses another access pattern into memory

__global__ void dotProd(word* input0,word* input1,word* result0){

const unsigned int tid = (unsigned int)threadIdx.x;

const unsigned int bid = (unsigned int)blockIdx.x;

extern __shared__ unsigned int s_data[];

word __attribute__((unused)) *sm1 = &s_data[0];

word __attribute__((unused)) *sm2 = &s_data[256];

ix_float(sm1,tid) =

(ix_float(input0,(tid + (256 * bid))) *

ix_float(input1,(tid + (256 * bid))));

__syncthreads();

if (tid < 128){

ix_float(sm2,tid) =

(ix_float(sm1,(tid << 1)) +

ix_float(sm1,((tid << 1) | 0x1)));

}

__syncthreads();

if (tid < 64){

ix_float(sm1,tid) =

(ix_float(sm2,(tid << 1)) +

ix_float(sm2,((tid << 1) | 0x1)));

}

__syncthreads();

if (tid < 32){

ix_float(sm2,tid) =

(ix_float(sm1,(tid << 1)) +

ix_float(sm1,((tid << 1) | 0x1)));

}

if (tid < 16){

ix_float(sm1,tid) =

(ix_float(sm2,(tid << 1)) +

ix_float(sm2,((tid << 1) | 0x1)));

}

if (tid < 8){

ix_float(sm2,tid) =

(ix_float(sm1,(tid << 1)) +

ix_float(sm1,((tid << 1) | 0x1)));

}

if (tid < 4){
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ix_float(sm1,tid) =

(ix_float(sm2,(tid << 1)) +

ix_float(sm2,((tid << 1) | 0x1)));

}

if (tid < 2){

ix_float(sm2,tid) =

(ix_float(sm1,(tid << 1)) +

ix_float(sm1,((tid << 1) | 0x1)));

}

if (tid < 1){

ix_float(sm1,tid) =

(ix_float(sm2,(tid << 1)) +

ix_float(sm2,((tid << 1) | 0x1)));

}

if (tid < 1){

ix_float(result0,(tid + bid)) = ix_float(sm1,tid);

}

}

In Obsidian, there are a number of transformations that can be applied to the dot
product kernel very easily. For example, The multiplications can be fused with the
first stage of the reduction. This fusing means that the multiplication does not take
place as a discrete step followed by a sync. This transformation also leads to the
kernel computing its value using half as many threads. All that needs to be done to
perform this change to the kernel is to remove the sync that separates the mult and
the reduce:

dotProd1 :: (Flatten a, Num a) => Int -> (Arr a, Arr a) :-> Arr a

dotProd1 n = mult ->- reduce n (+)

dotProd1’ :: (Flatten a, Num a) => Int -> (Arr a, Arr a) :-> Arr a

dotProd1’ n = mult ->- reduce’ n (+)

The effect this transformation has on running time is shown in section 6.7.

6.3 Mergers

A merger has the property that if it is given two sorted sequences as input it merges
them into one sorted output sequence. These mergers can then be used in the
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Figure 6.1: Small merging network.

Figure 6.2: A four input merging network.

implementation of sorting kernels. This section shows how two well known merging
networks, Odd-even merge and Batcher’s Bitonic merger [3], can be implemented in
Obsidian.

A four element version of the odd-even merger will be illustrated in pictures. The
smallest merging network can be thought of as a component that takes two input
values and outputs them in order, as illustrated by figure 6.1.

Larger merging networks can be built by connecting together a number of small ones.
Figure 6.2 shows how a merger that merges two sequences of length two can be built
using the small two input merger.

The first merger implemented in this section is called the odd-even merger. More in-
formation about this merger can be found in [3]. The right-hand picture in figure 6.3
illustrates this merger’s access pattern.

mergeOE :: (Choice a, Flatten a) => ((a,a) -> (a,a)) -> Int -> (Arr a :-> Arr a)

mergeOE f 1 = pure (evens f)

mergeOE f n = ilv (mergeOE f (n-1) ) ->- sync ->- pure (odds f)

The function mergeOE above describes the network parameterized over a two input
merger component. The definition of mergeOE states that given two odd-even merg-
ers that take n inputs, a merger that operates on 2n elements can be implemented.
This is done by interleaving the inputs to the two smaller mergers and then com-
bining the results with a last use of odds. What was just described is the recursive
decomposition of the odd-even merger. This recursion has its base in the application
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of the two input/two output merger component. At the base case, the array is 2
elements long and evens is used as a kind of type conversion allowing f to operate
on two element arrays rather than pairs.

The two input/two output merger component that is used in the examples here is
shown below:

cmp :: (Choice a, Ordered a) => (a, a) -> (a, a)

cmp (a,b) = (min a b, max a b)

If the input array to odd-even merge is an even length array where the first and
second halves are individually sorted, then the output is a sorted array:

*Obsidian> let input = [0,2,4,6,1,3,5,7 :: IntE]

*Obsidian> execute (mergeOE cmp 3) input

[0,1,2,3,4,5,6,7]

The butterfly network can also be used to implement mergers [9]. A merger im-
plemented using the butterfly network merges two sequences where the first one is
sorted and the second one is sorted in the reversed order. The picture on the left
side in figure 6.3 illustrates the butterfly network.

bfly :: (Choice a, Flatten a) =>

((a,a) -> (a,a)) -> Int -> (Arr a :-> Arr a)

bfly f 0 = pure id

bfly f n = ilv (bfly f (n-1)) ->- sync ->- pure (evens f)

The butterfly code is slightly simpler than the odd-even merge code. Odd-even merge
has a special case evens at the bottom of the recursion that bfly does not have.

*Obsidian> let input = [0,2,4,6,7,5,3,1 :: IntE]

*Obsidian> execute (bfly cmp 3) input

[0,1,2,3,4,5,6,7]

Both mergeOE and bfly use ilv. As a result of using ilv, the CUDA kernels gen-
erated from these mergers are inefficient. A merger that does not use ilv can be
constructed by using the shuffle exchange network. The shuffle exchange network
(shex) is implemented by sequentially composing a number of stages that all con-
sist of (evens f . riffle). Composing several stages sequentially can be done in
Obsidian using a function called compose:
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compose :: [a :-> a] -> a :-> a

compose [] = pure id

compose (x:xs) = x ->- compose xs

To implement shex, n (log base two of array length) riffle-evens interspersed by syncs
are composed. In this implementation of shex the more efficient riffle’ is used:

shex f n = compose prg

where

stages = replicate n (pure (evens f . riffle’))

prg = intersperse sync stages

shex behaves exactly as bfly did. It takes an array where the first half is sorted and
the second half is sorted in the reverse order and outputs a sorted array:

*Obsidian> let input = [0,2,4,6,7,5,3,1 :: IntE]

*Obsidian> execute (shex cmp 3) input

[0,1,2,3,4,5,6,7]

The code generated for an eight input shex looks like this:

__global__ void shex(word* input0,word* result0){

const unsigned int tid = (unsigned int)threadIdx.x;

const unsigned int bid = (unsigned int)blockIdx.x;

extern __shared__ unsigned int s_data[];

word __attribute__((unused)) *sm1 = &s_data[0];

word __attribute__((unused)) *sm2 = &s_data[8];

ix_int(sm1,tid) =

(((tid & 0x1) == 0) ?

min (ix_int(input0,((tid >> 1) + (8 * bid))),

ix_int(input0,(((tid >> 1) | 0x4) + (8 * bid)))) :

max (ix_int(input0,((tid >> 1) + (8 * bid))),

ix_int(input0,(((tid >> 1) | 0x4) + (8 * bid)))));

ix_int(sm2,tid) =

(((tid & 0x1) == 0) ?

min (ix_int(sm1,(tid >> 1)),

ix_int(sm1,((tid >> 1) | 0x4))) :

max (ix_int(sm1,(tid >> 1)),

ix_int(sm1,((tid >> 1) | 0x4))));
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ix_int(result0,(tid + (8 * bid))) =

(((tid & 0x1) == 0) ?

min (ix_int(sm2,(tid >> 1)),

ix_int(sm2,((tid >> 1) | 0x4))) :

max (ix_int(sm2,(tid >> 1)),

ix_int(sm2,((tid >> 1) | 0x4))));

}

This code may not look very nice at first glance. There are a lot of repeated calcula-
tions that could be removed using common subexpression elimination. However, it
is not that bad. Section 6.7 shows some running time measurements of the kernels
generated in this section.
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6.4 Sorting networks

In this section, a number of sorters will be implemented in Obsidian. Sorting on
GPUs has been explored using many different approaches, see for example [34, 7, 32].

The sorters presented here are so-called sorting networks. They are algorithms that
have a fixed number of compare and swap operations, independent of the actual data
set being sorted. See [3] for more details about sorting networks.

The first algorithm is Odd-even transposition sort. This is the “bubble-sort” of
sorting networks. It is not the most efficient sorting network but because of its
simplicity it is a good place to start.

Odd-even transposition sort is implemented using the array language building blocks
evens and odds. Figure 6.4 shows a four input version of odd-even transposition
sort. The sorter is implemented by alternating between using evens and odds. If
the input array is of length 2n, n stages of evens and n stages of odds are needed.
Another way to look at it is that in total there are n stage of combined even-odds
stages. This is how the Obsidian version is implemented. In the Obsidian code below
a stage is defined to contain one instance of evens composed with one of odds. This
stage is then composed n times using the function compose from the previous section:

sortOET :: (Flatten a, Ordered a, Choice a) => Int -> Arr a :-> Arr a

sortOET n = compose (replicate n stage)

where

stage = pure (evens cmp) ->- sync ->- pure (odds cmp) ->- sync

The next sorting network is called odd-even merge sort. This sorter is built around
the odd-even merger from section 6.3. This merger can be applied to an array of 2n
elements where each half (n elements) is sorted. The result is a sorted array of 2n
elements. The strategy is to recursively build this network so that at the bottom
neighboring pairs of elements are merged. In the next step arrays of 4 elements are
merged with arrays 4 elements and so on. The approach is: split the array in two
halves, sort each half recursively and merge the results. In Obsidian this pattern is
accomplished using two:

sortOE :: Int -> (Arr IntE :-> Arr IntE)

sortOE 0 = pure id

sortOE n = two (sortOE (n-1)) ->- sync ->- mergeOE n cmp



101

Figure 6.4: A four input version of odd-even transposition sort.

*Obsidian> execute (sortOE 3) [0,7,1,2,3,6,5,4 :: IntE]

[0,1,2,3,4,5,6,7]

Bitonic sort is implemented using a similar recursive approach. This sorter uses
the butterfly merger instead. The butterfly merger requires one of the arrays to be
merged to be sorted in the reversed order. The implementation needs to make sure
that this is the case by reversing the corresponding part of the array before every
merge. The resulting Obsidian code is.

sortB :: Int -> (Arr IntE :-> Arr IntE)

sortB 0 = pure id

sortB n = two (sortB (n-1)) ->- pure revHalf ->- sync ->- bfly n cmp

where

revHalf arr = let (a1,a2) = halve arr

in conc (a1, rev a2)

*Obsidian> execute (sortB 3) [0,7,1,2,3,6,5,4 :: IntE]

[0,1,2,3,4,5,6,7]

Bitonic sort can also be implemented using the shuffle-exchange network defined in
section 6.3. Since bfly and shex have the same input output behavior, shex can be
plugged in directly.

sortBshex :: Int -> (Arr IntE :-> Arr IntE)

sortBshex 0 = pure id

sortBshex n = two (sortBShex (n-1)) ->- pure reverseHalf ->- sync ->- shex cmp n

where reverseHalf arr = let (a1,a2) = halve arr

in conc (a1,rev a2)
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Section 6.7 compares the execution time of the sorting algorithms implemented in
this section. In this comparison there is also a handwritten version of bitonic sort
for reference.

6.5 Parallel prefix

This section shows the implementation of a parallel prefix (also called scan) kernel
known as sklansky after J. Sklansky[35].

The prefix sum of a sequence, s = s0, s1, . . . , sn, given an associative binary operator
⊕, is a new sequence a such that:

a0 = s0
a1 = s0 ⊕ s1
a2 = s0 ⊕ s1 ⊕ s2
. . .
an = s0 ⊕ ...⊕ sn

Since the operator⊕ is associative, the prefix sums can be computed in many different
ways. For more information on prefix networks, see for example [5].

Figure 6.5 shows the recursive decomposition of the Sklansky parallel prefix network.
The Sklansky algorithm is implemented by splitting the input array in two halves and
recursively applying Sklansky to both halves. The two sub-results are then joined by
applying the operation between the element at the highest index of the first result
with all the elements in the second sub-result. This is done using a function called
fan:

fan op arr = conc (a1, (fmap (op c) a2)

where

(a1,a2) = halve arr

c = a1 ! (fromIntegral (len a1 - 1))

Now, a kernel sklansky can be implemented like this:

sklansky :: (Flatten a, Choice a) =>

Int -> (a -> a -> a) -> (Arr a :-> Arr a)

sklansky op 0 = pure id

sklansky op n = two (sklansky (n-1) op) ->- pure (fan op) ->- sync
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The result of executing sklansky on the GPU looks as follows:

*Obsidian> execute (sklansky 3 (+)) [0..7 :: IntE]

[0,1,3,6,10,15,21,28]

The code generated from sklansky 7 (+) is shown below. This is the 128 element
version of the code:
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__global__ void sklansky128(word* input0,word* result0){

const unsigned int tid = (unsigned int)threadIdx.x;

const unsigned int bid = (unsigned int)blockIdx.x;

extern __shared__ unsigned int s_data[];

word __attribute__((unused)) *sm1 = &s_data[0];

word __attribute__((unused)) *sm2 = &s_data[128];

ix_int(sm1,tid) = (((tid & 0xffffff81) < 1) ?

ix_int(input0,(tid + (128 * bid))) :

(ix_int(input0,((tid & 0x7e) + (128 * bid))) +

ix_int(input0,(tid + (128 * bid)))));

__syncthreads();

ix_int(sm2,tid) = (((tid & 0xffffff83) < 2) ?

ix_int(sm1,tid) :

(ix_int(sm1,((tid & 0x7c) | 0x1)) + ix_int(sm1,tid)));

__syncthreads();

ix_int(sm1,tid) = (((tid & 0xffffff87) < 4) ?

ix_int(sm2,tid) :

(ix_int(sm2,((tid & 0x78) | 0x3)) + ix_int(sm2,tid)));

__syncthreads();

ix_int(sm2,tid) = (((tid & 0xffffff8f) < 8) ?

ix_int(sm1,tid) :

(ix_int(sm1,((tid & 0x70) | 0x7)) + ix_int(sm1,tid)));

__syncthreads();

ix_int(sm1,tid) = (((tid & 0xffffff9f) < 16) ?

ix_int(sm2,tid) :

(ix_int(sm2,((tid & 0x60) | 0xf)) + ix_int(sm2,tid)));

__syncthreads();

ix_int(sm2,tid) = (((tid & 0xffffffbf) < 32) ?

ix_int(sm1,tid) :

(ix_int(sm1,((tid & 0x40) | 0x1f)) + ix_int(sm1,tid)));

__syncthreads();

ix_int(sm1,tid) = ((tid < 64) ?

ix_int(sm2,tid) :

(ix_int(sm2,63) + ix_int(sm2,tid)));

__syncthreads();

ix_int(result0,(tid + (128 * bid))) = ix_int(sm1,tid);

}
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6.6 Parallel prefix on large arrays

In this section, an algorithm for computing the parallel prefix sums for large arrays
on the GPU will be developed. Currently this cannot be done entirely in Obsidian;
a short CUDA program needs to be written also. All the kernels needed in the
implementation can be written in Obsidian but the program that coordinates and
runs these kernels will be written in CUDA.

The previous section describes how to implement a parallel prefix kernel. This kernel
can compute the parallel prefix sums of arrays of short length, such as 128 or 256
elements for example. If the array we want to compute the prefix sums on is of
length n ∗ 128, we can run n instances of the kernel next to each other over the
input array. In order to turn this into a prefix sum the n sub-results need to be
merged. This merging can be done in a very similar way to how the Sklansky kernel
is implemented. That is the value at the maximum index of sub-result number 1
needs to be combined with all the elements of sub-result number 2. When the sub-
results 1 and 2 have been merged the value at the maximum index of that array can
be combined with all the elements of sub-results number 3 and so on. Combining
the sub-results this way is sequential; however, the task can be parallelized.

Say that n sub-results of length 128 have been computed; call the values at the
maximum index of these sub-results m0 through mn. In order to get the large prefix,
sum all elements of sub-result 1 need to have m0 added to them, all elements of
sub-result 2 need m0⊕m1 added to them. The last sub-result needs m0⊕ . . .⊕mn−1

added to it. Now this is another example of a prefix sum. So, to compute the large
prefix sum, compute n small ones saving their maxima in an auxiliary array. The
prefix sum of this auxiliary array is then computed and the results thereof distributed
over the n sub-results.

Below is a slightly modified Sklansky kernel that not only computes the prefix sum,
but also outputs the topmost result to a special array.

sklansky2 :: (Flatten a, Choice a) =>

Int -> (a -> a -> a) -> (Arr a :-> (Arr a,Arr a))

sklansky2 n op = sklansky n op ->- pure out

where

out arr = (arr,singleton (arr ! (n-1)))

where n = fromIntegral $ len arr
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Below is the second kernel needed. This kernel takes two arrays as input. The second
input array is a singleton array whose element will be combined with every element
of the first array using the function op passed in:

distribute :: (a -> a -> a) -> ((Arr a, Arr a) :-> Arr a)

distribute op = pure distr

where

distr (a1,a2) = fmap (op (a2 ! 0)) a1

As an example, CUDA code for computing the parallel prefix sum of 262144 integers
is implemented. This will be done using a kernel for 512 elements generated from the
sklansky2 Obsidian program. The number of elements (262144) has been chosen to
simplify the description here. Since 512*512=262144, the first step in this algorithm
is to launch 512 instances of the 512 element sklansky kernel on the GPU. Following
this, the 512 block maxima are scanned and lastly the scanned block maxima are
distributed over the array of results from the first step. The block maximum of the
second scan is simply discarded. This means that a possible optimization is to use
another scan kernel for this stage that does not output block maxima.

int* dvalues;

int* blockmaxs, *unused;;

// Allocate GPU memory.

cudaMalloc((void**)&unused, 1);

cudaMalloc((void**)&blockmaxs, sizeof(int) * 512);;

cudaMalloc((void**)&dvalues, sizeof(int) * 262144);

cudaMemcpy(dvalues, values, sizeof(int) * 262144 ,

cudaMemcpyHostToDevice);

// Compute the prefix sums.

sklansky<<< 512, 512, sizeof(int)*1024>>> ((word*)dvalues,

(word*)dvalues,

(word*)blockmaxs);

sklansky<<< 1, 512, sizeof(int)*1024>>> ((word*)blockmaxs,

(word*)blockmaxs,

(word*)unused);
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distribute<<<511 , 512,0 >>> ((word*)(dvalues + 512),

(word*)blockmaxs,

(word*)(dvalues + 512));

// Copy result back to host memory.

int *result = (int *)malloc(sizeof(int) * 262144);

cudaMemcpy(result, dvalues, sizeof(int) * 262144,

cudaMemcpyDeviceToHost);

6.7 Notes on performance

6.7.1 Dot product

Section 2.2.3 showed one way to implement dot product in CUDA. In section 6.2,
Obsidian versions of the dot product algorithm were implemented. This section
compares the performance of these Obsidian kernels to the handwritten one from
section 2.2.3.

This table contains the running time per block when launching 32768 blocks of
256 threads on the GPU. The table contains two kernels generated using Obsidian,
dotProd and dotProd’ and one handwritten kernel, from section 2.2.3, referred to
as dotProdCuda in the table:

Kernel Threads Elems per block ms per block
dotProd 256 256 0.0015
dotProd’ 256 256 0.0014
dotProdCuda 256 256 0.0030

The two generated kernels show very similar running times. Since the only difference
between dotProd and dotProd’ is the memory access pattern, the conclusion is that
in this case the access pattern did not have much effect. However, most of the
accesses are to shared memory and there the restrictions are not as severe as with
global memory accesses. The difference between the handwritten kernel and the
generated ones in running time is most likely due to the unrolling of the loops that
takes place in the generated code.
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The table below shows the running times of the two dot product kernels that use
half as many threads:

Kernel Threads Elems per block ms per block
dotProd1 128 256 0.0013
dotProd1’ 128 256 0.0013

6.7.2 Mergers

The table below shows the execution time per block of the mergers implemented in
section 6.3. 32768 instances of the merger kernel where launched and the average
execution time per block found. The number 32768 was chosen since it is clearly
enough to keep all the multiprocessors of the current generation GPUs fully loaded
and in that way give an indication on how the kernel performs under full load. The
running times in the table below where obtained using an NVIDIA GTX320M GPU.

Kernel Threads Elems per block ms per block
Odd-even merge 256 256 0.0036
Butterfly 256 256 0.0023
Shuffle exchange 256 256 0.0015

Odd-even merge and the butterfly merger both use ilv in their implementation.
This leads to large indexing expressions (many operator applications) and it is most
likely thar this is reflected in the execution time.

Figure 6.3 shows that for a given size odd-even merge performs fewer operations
compared to the butterfly but still the butterfly network outperforms it in execution
speed. This discrepancy most likely comes from the use of odds in odd-even merge.
The butterfly network only uses evens. The implementation of odds has an extra
level of conditionals compared to that of evens. This extra conditional may be the
cause of the higher execution time of odd-even merge.

6.7.3 Sorters

Here, the performance of the sorters from section 6.4 is estimated. The amount of
time it takes per block to execute on the GPU is measured by launching a large
number of blocks on the GPU. In this case 32768 blocks were launched. The time
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it takes for the GPU to finish all those blocks is then divided by 32768, giving the
figures in the ms field in the table below. The time measurements presented here
were obtained on an NVIDIA GTX320M GPU.

Kernel Threads Elems per block ms per block
Odd-even merge sort 256 256 0.0086
Bitonic sort (bfly) 256 256 0.0061
Bitonic sort (shex) 256 256 0.0038
Odd-even transposition 256 256 0.0238
Handcoded Bitonic 256 256 0.0061

The sorter listed in the table as “Handcoded Bitonic” is implemented directly in
CUDA. The source code is given below:

__global__ void bitonic(int *input, int *output){

extern __shared__ int sm[];

unsigned int tid = threadIdx.x;

int j,k;

sm[tid] = input[tid + NUM_ELEMS * blockIdx.x];

__syncthreads();

for (k=2;k<=NUM_ELEMS;k*=2) {

for (j=k>>1;j>0;j=j>>1) {

int ixj=tid^j;

if (ixj>tid) {

int a = sm[tid];

int b = sm[ixj];

if ((tid&k)==0 && a>b) { sm[tid] = b; sm[ixj] = a;}

if ((tid&k)!=0 && a<b) { sm[tid] = b; sm[ixj] = a;}

}

__syncthreads();

}

}

output[tid + NUM_ELEMS * blockIdx.x] = sm[tid];

}
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6.7.4 Parallel prefix

In order to estimate the relative performance of the Sklansky parallel prefix kernel
generated using Obsidian, a 1 million element (1048576 elements to be exact) scan
algorithm was implemented. Implementing this 1 million element scan is done in
almost the same way as described in section 6.6, but with some minor changes to
accommodate for increase in number of elements. The large scan algorithm is im-
plemented using three different Sklansky parallel prefix kernels. One of the kernels
is handwritten directly in CUDA but no effort has been made on performance opti-
mization. Another kernel is also written directly in CUDA with some performance
considerations such a unrolling of loops. The third kernel is the Sklansky kernel
generated using Obsidian.

The table below shows the average time it takes to compute the parallel prefix sum of
1 million integers using the three different kernels. These values have been obtained
on a NVIDIA GTX320M GPU:

Kernel Threads ms
Handwritten no opt. 512 4.36
Handwritten opt. 256 2.93
Obsidian Generated. 512 3.84

The same experiments performed on a NVIDIA GTX480 GPU produces the following
values:

Kernel Threads ms
Handwritten no opt. 512 0.34
Handwritten opt. 256 0.23
Obsidian Generated. 512 0.32

As can be seen from the figures above, the code generated using Obsidian is in this
case comparable to handwritten CUDA. When reading these results, some consider-
ation should also be made to the programmer effort in each kernel implementation.
The Obsidian code requires least effort and is also describing the recursive decompo-
sition of the Sklansky kernel directly. In the CUDA version, the programmer needs
to apply some effort to express the recursive decomposition using indexing calcula-
tions. This is not trivial. The handwritten optimized version of the kernel represents
a lot of work in optimization effort and thought. In this light, the performance of
the generated Obsidian code must be considered good.
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6.7.5 GPU details

The running time measurements have been obtained using two different GPUs. The
GPU specifications reported below are as they appear using the the deviceQuery

program that comes with the NVIDIA CUDA SDK.

GPU Compute Capability Multi Processors Cores Clock
GTX320M 1.2 6 48 0.95Ghz
GTX480 2.0 15 480 1.40Ghz

The computers housing these GPUs have the following specifications:

System Type GPU CPU System memory
Stationary GTX480 Intel Core I7 2.80 Ghz 12 Gb
Laptop GTX320M Intel Core2Duo 2.66 Ghz 4 Gb
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Related work

7.1 Embedded GPGPU programming languages

The following subsections list three competing approaches to embedded GPGPU
programming language implementation. The abstraction level of these languages
must be considered higher than that offered by Obsidian. These languages offer as
primitives the kind of operations that Obsidian can be used to implement.

7.1.1 Accelerator

Accelerator is an embedded language for parallel programming implemented in C] [39].
The programmer is offered a set of operations on data-parallel arrays such as reduc-
tions (for example sum and product) and transformations (such as rotate, shift and
transpose).

The programmer writes programs in C] using standard data structures but has to
convert the data into the data-parallel arrays before using any GPU accelerated
functions on it. Being part of the .Net framework, Accelerator is also accessible for
F] programmers. F] is a functional programming language.

The reference [33] shows the implementation of a convolver (an algorithm often used
for image smoothing) in Accelerator. From the Accelerator implementation of the
convolver both GPU and multi-core CPU code is generated. The CPU code makes
use of SIMD extensions. Accelerator utilizes Just In Time (JIT) compilation on the
data-parallel parts of the algorithms. In that way, the available resources are being
used properly while the source code remains platform independent.

113
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Further information about Accelerator is available in reference [31].

7.1.2 Accelerate

Data.Array.Accelerate is an embedded language for general purpose computing on
GPUs [8]. Just like Obsidian, Accelerate is embedded in Haskell and it also targets
NVIDIA CUDA as backend. The approach taken to generating the CUDA code is
quite different in Accelerate compared to Obsidian.

In Accelerate, there are scalar and collective operations. The collective operations
are the keys to exploiting the parallel resources of the GPU. Amongst the collective
operations are map, fold and zipWith. The collective and scalar operations are kept
separate by the type system to ensure that no nested parallelism can be expressed.

Each of the collective operations corresponds to a skeleton, a code template with
“holes” that are filled in with the parts specific to the current operation. For ex-
ample, if the programmer uses map f, the map skeleton will be used with the code
representing f pasted into its body. The Accelerate code skeleton concept does not
match up entirely with kernels. A code skeleton may consist of one or more CUDA
kernels.

In some sense, Accelerate is solving a problem different from that approached in
Obsidian. The Accelerate collective operations that are given as skeletons are very
similar to the kernels that can be implemented in Obsidian. In that light, Obsidian
is a lower level language than Accelerate and the two languages are not in direct
competition.

In Data.Array.Accelerate, the dot product algorithm can be implemented as:

dotProd :: Vector Float -> Vector Float -> Acc (Scalar Float)

dotProd xs ys

= let

xs’ = use xs

ys’ = use ys

in

fold (+) 0 (zipWith (*) xs’ ys’)

For comparison, the Obsidian implementation from chapter 6 is.

dotProd :: (Flatten a, Num a) => Int -> (Arr a, Arr a) :-> Arr a

dotProd n = pure (zipWith (uncurry (*))) ->- sync ->- reduce n (+)
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The definition of mult has been inlined in the code above to make the similarities
clearer.

The two versions of dotProd are not very different. Each consists of a reduction,
fold in Accelerate and reduce in Obsidian, and a zipWith. The main difference
between the two implementations is the use of sync in Obsidian. The real difference
between these two programs however is what they are intended to do. The Accelerate
dotProd computes the dot product of two arrays of any length. For example, it can
be used on two arrays of length 1 million elements. This is not what the Obsidian
version is intended to do. The code generated from the Obsidian dotProd is a kernel
intended to be used as a building block for algorithms on large arrays.

Another important difference between the two languages is that fold and zipWith

are built-in operations in Accelerate. The counterparts in Obsidian are implemented
using lower level smaller building blocks. The idea behind this is that there are many
ways to sum up elements of an array on the GPU and the programmer should be
able to choose the most suitable way.

The Obsidian dotProd contained a use of sync between the summation and the
computation of the products. This sync could be removed, leading to the fusion of
the products computation with the first stage of the reduction. In the Accelerate
code, there is an implicit global synchronization barrier between the fold and the
zipWith stage of the algorithm. The zipWith part is computed by launching a grid
of kernels; the system then waits for all those kernels to finish before launching a grid
of fold kernels. These two synchronization concepts are not completely analogous,
but the comparison is meant to illustrate the difference in programmer control and
abstraction level.

The reference [8] shows benchmarks for the applications, dot product, Black-Scholes
and sparse-matrix vector multiplications with competitive results. The highly opti-
mized CUDA libraries compared to are faster, but still the results are impressive.

7.1.3 Nikola

Nikola is the latest addition to the collection of embedded GPGPU DSLs. Just like
Obsidian and Accelerate, Nikola uses CUDA as its backend [22]. Nikola also has
operations such as map and zipwith in its expression data type. This indicates that
Nikola must also be considered a higher level language than Obsidian. Listed as one
of the strengths of Nikola in [22] is the ability to generate CUDA functions from
functions in Haskell. This enables reuse of generated code.
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The reference [22] shows two benchmarks, Black-Scholes and Radix sort. Compared
to native Haskell implementations of the same algorithms. In the Black-Scholes
case, Nikola surpasses native Haskell for data sets larger than 32kB. Compared to
Accelerate, in the previous section, the Nikola version seems to be in the area of 2
orders of magnitude slower, for 1 million data elements, on similar hardware. At
least this is the picture that can be extrapolated from [8] and [22].

7.2 Embedded languages for graphics and image

manipulation

The embedded languages listed in this section are specialized for the graphics and
image manipulation area. As such they are not as directly related to the Obsidian
project as those of the previous section. However, these languages have been an
important influence and source of information in the implementation of Obsidian.

7.2.1 Pan

Pan is a domain specific embedded language for image manipulation and creation [10].
In Pan, an image is represented by a function from points in two dimensions to col-
ors. As this function is evaluated over a two dimensional region, an image appears.
Pan is compiled into C code and performs various optimizations such as algebraic
simplification, CSE and code hoisting.

7.2.2 Vertigo

Vertigo is another embedded language for functional graphics [11]. Vertigo can be
used to describe textures and surfaces and also to express shaders. A shader is a
program that describes the reflexive properties of a surface. Shaders are traditionally
expressed in C like languages. The reason for this is to appeal to graphics program-
mers. Conceptually, a shader fits very nicely in the functional paradigm. The code
generated by Vertigo targets DirectX 8.1.
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7.2.3 PyGPU

PyGPU is a language for writing image processing algorithms [20]. PyGPU is em-
bedded in Python which seems to be both a benefit and a drawback. Python is a
dynamic language and these are hard to compile. The ability to inspect the bytecode
of functions at runtime, on the other hand, is noted as a benefit.

PyGPU offers a library of image manipulation functions to the programmer. Some of
these are familiar, like reductions, but they are extended to two dimensional arrays
to fit better with image manipulation applications. Others are less familiar like the
convolve operation.

In [21] there are a number performance measurements performed on a NVIDIA 6600
GPU. The benchmarks used are skin detection and convolutions, amongst others.
The performance reached is between 0.5 and 4 GPixel operations per second, obtained
on a GPU with a 4.8 GPixel operations per second theoretical peak performance.
The performance measurements are not compared to any competing approach to
image processing.

7.3 Embedded languages

In this section, two other embedded domain specific languages with rock based named
are presented, Lava and Feldspar. The rock based names follow a tradition started
by Mary Sheeran with her Ruby language [16]. Lava is mentioned because it is the
main influence on the programming style of Obsidian. Feldspar is closely related to
Obsidian and even uses the same array representation as Obsidian.

7.3.1 Lava

Lava is a hardware design language embedded in Haskell [4]. In Lava a circuit can
be specified and simulated. Lava also connects to external tools to offer verification
of the designed circuits. Lava is the main influence on Obsidian in terms of program-
ming style. In many cases a Lava program and an Obsidian program will look very
similar. As an example this is the Odd-even merger taken from[9]:

mergeOE 1 cmp = cmp

mergeOE n cmp = ilv (mergeOE (n-1) cmp) >-> mid (evens cmp)
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Compare this code to the Obsidian merger in section 6.3. They are not very different.
However, in Lava, a circuit taking inputs can be represented as a Haskell function
taking a list of inputs. In Obsidian, the Arr data type serves the same end. This
means that Obsidian functions like conc, that are given for free in Lava, need a
special implementation.

7.3.2 Feldspar

Feldspar is a DSL for Digital Signal Processing (DSP) algorithms embedded in
Haskell [2]. Feldspar is built upon a Core language, a small language with fea-
tures easily compilable into C. The core language, however, is functional. On top of
the core language there is a Vector library. The vectors are represented as functions
from indices to elements; this idea is borrowed from Obsidian.

The version of Feldspar described in reference [2] is compiled into entirely sequential
C code but there are plans to make use of the parallel capabilities of DSP processors
in the future.

7.4 Data-parallel programming languages

This section contains short descriptions of functional data-parallel programming lan-
guages. Both languages mentioned here support nested data-parallelism. Nested
data-parallelism means that data-parallel operations can be applied in parallel to
nested data structures. For example, this means that every array in an array of
arrays can be summed up in parallel. Nested data-parallelism is implemented by a
flattening procedure. The programmer can express nested data-parallelism but in
the compilation procedure all data is transformed into flat arrays and the operations
are transformed into segmented flat data-parallel operations.

7.4.1 NESL

NESL is one example of a functional programming language that allows the program-
mer to express nested data-parallelism [13]. NESL is compiled into an intermediate
language called VCODE for which backends exist for a range of machines such as
Cray and the Connection Machine. In NESL, parallelism is exposed to the program-
mer as a set of operations on sequences. Amongst these operations are scan, sum
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and permute. The flattened versions of these operations (segmented versions) are
implemented as a low level library called CVL for efficiency reasons.

7.4.2 Data parallel Haskell

Data Parallel Haskell (DPH) [17] brings the ideas from NESL to the Haskell program-
ming language. In DPH, the programmer is offered a set of operations on parallel
arrays. The operations will be familiar to a Haskell programmer with for example
mapP, filterP and zipWithP that are the familiar map, filter and zipWith, but
for parallel arrays.

7.5 C/C++ based approaches to GPGPU

programming

7.5.1 CUDA

CUDA is NVIDIA’s language for general purpose computations on GPUs[25]. CUDA
is based on the C programming language but with a small set of extensions for
implementing kernels that run on the GPU and some extra syntax for launching such
kernels. CUDA was released in 2006 and at that point was a great improvement for
people wanting to use the NVIDIA GPU for general purpose.

CUDA is the target language for Accelerator, Nikola and Obsidian.

7.5.2 OpenCL

OpenCL is another language for parallel programming but OpenCL targets both
GPUs and multi-core CPUs [19]. Programming in OpenCL is very similar to pro-
gramming in CUDA.

7.6 Conclusion

There are many languages targeting data-parallel programming and GPUs. Some
of these try to hide the details of the underlying architecture completely and rely
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heavily on optimization techniques to obtain performance on the target platform
or platforms. The benefit of such an approach is of course that it gives a degree
of platform independence. To target a new platform, a new set of optimizations
and code generation might be needed, but the language offered to the programmer
remains the same. There have always been some programmers who use a lower
level language alternative. The C programming language did not abolish the use of
Assembly. And Haskell did not abolish the use of C. Obsidian wants to sit in between
the higher level approaches to GPGPU programming and the CUDA/OpenCL level
and offer some of the benefits of each of those levels.
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Conclusion

Future computer systems will contain multi- and many-core processors. Methods
for expressing fine- and coarse-grained parallelism will be needed to an increasing
degree.

Parallel programming is not easy. Easy to use and powerful, expressive, languages
are needed that allow programmers to be creative. A suitable level of abstraction
must be found that maximizes both platform independence and performance. This
goal is probably very hard to achieve but still we must aim for it.

Obsidian is trying to raise the level of abstraction for the GPGPU programmer in
a way that allows for easier code reuse and better compositionality of GPU kernels
compared to CUDA. The intention is to still allow the programmer to make the
kinds of decision that influence performance on the target platform. Choices of work
division and memory locations of data should be in the hands of the programmer.
These choices should not affect compositionality of kernels. The context in which
a kernel is used should specify the parameters by which it operates following the
guidelines put in place by the programmer.

By no means are these goals all reached by Obsidian today. There are still many
paths left to explore. But the implementations of Obsidian shown in this thesis
illustrate that it is possible to express quite complex kernels using small elegant
and high level descriptions, while maintaining the kind of compositionality that is
desired and obtaining generated code of reasonable quality. The abstraction level of
Obsidian also allows the programmer to think about the problem rather then how
to express it using indexing computations. The example of the sklansky parallel
prefix network from chapter 6 illustrates this. In that chapter, the Obsidian Sklansky
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kernel implementation describes the recursive decomposition of the algorithm to the
letter. A direct implementation in CUDA would most likely not be possible without
spending quite some time computing all the access patterns on a piece of paper before
starting to program. At least, this is my personal view.

The generated code shows some opportunities for further optimization as pointed
out in the future work section. Adding Common Subexpression Elimination alone
will not solve the performance problem entirely. What is needed is to increase the
level of control available to the programmer. Allowing the programmer to specify the
work grouping without imposing any data movement is very important and would
most likely move the performance of generated code up more than what adding
CSE would. Grouping work in different ways amongst the threads is a common
technique in CUDA programming for obtaining performance, avoiding inefficient
memory access patterns and hiding memory latency. The problem left is to figure
out what tools to place in the programmers to hands to accomplish this goal.

In Obsidian, the programmer has some control over the way work is split up into
units for processing by a thread. The sync operation can be used both to introduce
sequentiality and to parallelize an algorithm. This comes from the choice to let the
length of target arrays define the number of threads to use. Nested arrays or the
pairs in an array of pairs are computed in sequence while each element of top-level
arrays is produced in parallel. As a tool offered to the programmer, this method
gives the desired degree of control but in the current version, arrow Obsidian, the
grouping of work introduces unnecessary data movement. The version of Obsidian
called monad Obsidian also experimented with allowing the programmer to place
arrays either in shared memory or in global memory. To accomplish this, the Haskell
type system was used to differentiate between shared and global arrays. This is a
feature that is not available in arrow Obsidian and it has not been much missed. In
arrow Obsidian, a kernel assumes it is computing on values stored in shared memory
entirely. However, it is clear that from a performance point of view making use of the
memory hierarchy of the GPU in the correct way is necessary and both approaches
tried seem to do that equally well.

The performance measurements undertaken (described in section 6.7) have a draw-
back in that they are all comparisons either between kernels all generated in Obsidian
or to handwritten code originating from the same research group as the author. When
only Obsidian kernels have been used in the comparison, all this shows is the relative
performance of using a given Obsidian programming technique compared to another.
It is desirable to compare Obsidian generated kernels to code generated from some
other embedded language for GPGPU programming. However, The other approaches
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shown in the related work (chapter 7) all choose a higher level approach making di-
rect comparison hard. One way around this would be to write larger applications
using both Obsidian and CUDA. The kernels would be implemented in Obsidian and
the glue code written in CUDA. The performance of this Obsidian/CUDA program
could then be compared to the same algorithm expressed in some other language.
This has not yet been done but it is likely that in that setting an Obsidian application
would perform well but for the price of increased implementation effort in writing
the CUDA glue code. As the future work states, looking at methods for addressing
the higher level problem of kernel management and launching from within Obsidian
is required. That would make a future comparison to other approaches much easier.

The performance measurements also show that, compared to handwritten kernels, the
generated code perform quite well, at least if the programmer effort that goes in to the
kernels is also taken into consideration. Obsidian also encourages experimentation
from the programmer by offering a rapid edit, compile and run cycle.

The trend with increasing numbers of processing elements in multi- and many-core
processors is likely to continue. In order to feed all these processing elements with
data, more complicated and layered memory hierarchies are appearing. Modern
GPUs and the Cell processor [30] have programmer managed local memories where
traditional CPUs have hardware managed caches. Multi-paradigm parallel program-
ming skills are required from the programmer. GPUs require a mix of data-parallel
programming on the kernel level and task parallelism on the kernel coordination
level. If we are to rise to the challenge posed by the new generation of computing
devices, new languages at different levels of abstraction are needed. Computer scien-
tists throughout the world are together contributing to a toolbox for the programmer
to use when facing these new challenges. Obsidian aspires to be part of that toolbox.
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