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Abstract. We present a domain specific language, embedded in Haskell,
for general purpose parallel programming on GPUs. Our intention is
to explore the use of connection patterns in parallel programming. We
briefly present our earlier work on hardware generation, and outline the
current state of GPU architectures and programming models. Finally,
we present the current status of the Obsidian project, which aims to
make GPU programming easier, without relinquishing detailed control
of GPU resources. Both a programming example and some details of the
implementation are presented. This is a report on work in progress.

1 Introduction

There is a pressing need for new and better ways to program parallel machines.
Graphics Processing Units (GPUs) are one kind of such parallel machines that
provide a lot of computing power. Modern GPUs have become extremely inter-
esting for general purpose programming, i.e. computing functions that have little
or nothing to do with graphics programming.

We aim to develop high-level methods and tools, based on functional pro-
gramming, for low-level general purpose programming of GPUs. The methods
are high-level because we are making use of common powerful programming ab-
stractions in functional programming, such as higher-order functions and poly-
morphism. At the same time, we still want to provide control to the programmer
on important low-level details such as how much parallelism is introduced, and
memory layout. (These aims are in contrast to other approaches to GPU pro-
gramming, where the programmer expresses the intent in a high-level language,
and then lets a smart compiler try to do its best.)

Based on our earlier work on structural hardware design, we plan to inves-
tigate whether or not a structure-oriented programming style can be used in
programming modern GPUs. We are developing Obsidian, a domain specific
language embedded in Haskell. The aim is to make extensive use of higher order
functions capturing connection patterns, and from these compact descriptions to
generate code to run on the GPUs. Our hardware-oriented view of programming
also leads us to investigate the use of algorithmic ideas from the hardware design
community in parallel programming.



In the rest of the paper, we first briefly review our earlier work on hard-
ware description languages (Sect. 2), and introduce the GPU architecture we
are working with (Sect. 3). After that, we describe the current status of the lan-
guage Obsidian, and show examples (Sect. 4) and experimental results (Sect. 5).
Obsidian is currently very much work in progress; we discuss motivations and
current shortcomings (Sect. 6) and future directions (Sect. 7).

2 Connection patterns for hardware design and parallel
programming

Connection patterns that capture common ways to connect sub-circuits into
larger structures have been central to our research on functional and relational
languages for hardware design. Inspired by Backus’ FP language, Sheeran’s early
work on µFP made use of combining forms with geometric interpretations [23].
This approach to capturing circuit regularity was also influenced by contact with
designers of regular array circuits in industry – see reference [24] for an overview
of this and much other work on functional programming and hardware design.

Later work on (our) Ruby considered the use of binary relations, rather than
functions in specifying hardware [13]. Lava builds upon these ideas, but also
gains much in expressiveness and flexibility by being embedded in Haskell [1,
5]. The user writes what look like circuit descriptions, but are in fact circuit
generators. Commonly used connection patterns are captured by higher order
functions.

For example, an important pattern is parallel prefix or scan. Given inputs
[x0, x1 . . . xn−1], the prefix problem is to compute each x0 ◦ x1 ◦ . . . ◦ xj for
0 ≤ j < n, for ◦ an associative, but not necessarily commutative, operator.
For example, the prefix sum of [1..10] is [1,3,6,10,15,21,28,36,45,55].
There is an obvious sequential solution, but in circuit design one is often aiming
for a circuit that exploits parallelism, and so is faster (but also larger). In a
construction attributed to Sklansky, one can perform the prefix calculation by
first, recursively, performing the prefix calculation on each half of the input, and
then combining (via the operator) the last output of the first of these recursive
calls with each of the outputs of the second. For instance, to calculate the prefix
sum of [1..10], one can compute the prefix sums of [1..5] and [6..10], giving
[1,3,6,10,15] and [6,13,21,30,40], respectively. The final step is to add the
last element of the output of the first recursive call (15) to each element of the
output of the second.

To express the construction in Lava, we make use of two connection pat-
terns. two :: ([a] -> [b]) -> [a] -> [b] applies its component to the top
and bottom halves of the input list, concatenating the two sub-lists that re-
sult from these applications. Thus, two (sklansky plus) applied to [1..10]
gives [1,3,6,10,15,6,13,21,30,40]. Left-to-right serial composition has type
(a -> b) -> (b -> c) -> a -> c and is written as infix ->-. The description
of the construction mixes the use of connection patterns, giving a form of reuse,
with the naming of “wires”.



sklansky :: ((t, t) -> t) -> [t] -> [t]

sklansky op [a] = [a]

sklansky op as = (two (sklansky op) ->- sfan) as

where

sfan as = a1s ++ a2s’

where

(a1s,a2s) = splitAt ((length as + 1) ‘div‘ 2) as

a2s’ = [op(last a1s,a) | a <- a2s]

*Main> simulate (sklansky plus) [1..10]

[1,3,6,10,15,21,28,36,45,55]

Lava supports simulation, formal verification and netlist generation from
definitions like this. Circuit descriptions are run (in fact symbolically evaluated)
in order to produce an intermediate representation, which is in turn written
out in various formats (for fixed size instances). So this is an example of staged
programming [26].

The Sklansky construction is one way to implement parallel prefix, and there
are many others, see for instance Hinze’s excellent survey [11]. Those who develop
prefix algorithms suitable for hardware implementation use a standard notation
to represent the resulting networks. Data flows from top to bottom and the least
significant input is at top left. Black dots represent operators. For example,
Figure 1 shows the recursive Sklansky construction for 32 inputs.

Fig. 1. The Sklansky construction for 32 inputs. It recursively computes the parallel
prefix for each half of the inputs (corresponding to the use of two in the definition) and
then combines the last output of the lower (left) half with each of the outputs of the
upper (right) half. The dotted box outlines the recursive call on the lower half of the
inputs.

In this work, we plan to investigate the use of connection patterns, and
more generally an emphasis on structure, in parallel programming. We have cho-
sen to target GPUs partly because of available expertise among our colleagues
at Chalmers, and partly because reading papers about General Purpose GPU
(GPGPU) programming gave us a sense of déjà vu. Programs are illustrated
graphically, and bear a remarkable resemblance to circuit modules that we have
generated in the past using Lava. We see an opportunity here, as there is an
extensive literature, going back to the 1960s, about implementing algorithms on
silicon that may provide clues about implementing algorithms on GPUs. This
literature does not seem to have yet been scrutinised by the Data Parallel Pro-



gramming or GPGPU communities. This is possibly because GPUs are moving
closer to simply being data parallel machines, and so work on library functions
has taken inspiration from earlier work on Data Parallel Programming, such as
Blelloch’s NESL [2]. But some of the restrictions from the early data parallel
machines no longer hold today; for instance broadcasting a value to many pro-
cessors was expensive in the past, but is much easier to do on modern GPUs.
So a construction like Sklansky, which requires such broadcasting, should now
be reconsidered, and indeed we have found it to give good results in our initial
experiments (writing directly in CUDA). In general, it makes sense to spread
the net beyond the standard data parallel programming literature when looking
for inspiration in parallel algorithm design. We plan to explore the use of “old”
circuit design ideas in programming library functions for GPUs.

Below, we briefly review modern GPUs and a standard programming model.

3 Graphics Processing Units, accessible high performance
parallel computing

In the development of microprocessors, the addition of new cores is now the way
forward, rather than the improvement of single thread performance. Graphics
processing units (GPUs) have moved from being specialised graphics engines to
being suitable to tackle applications with high computational demands. For a
recent survey of the hardware, programming methods and tools, and successful
applications, the reader is referred to [20]. Figure 2, taken from that paper,
and due to NVIDIA, shows the architecture of a modern GPU from NVIDIA. It
contains 16 multiprocessors, grouped in pairs that share a texture fetch unit (TF
in the figure). The texture fetch unit is of little importance when using the GPU
for general purpose computations. Each multiprocessor has 8 stream processors
(marked SP in the figure). These stream processors has access to 16kB of shared
memory.

See reference [20] for information about the very similar AMD GPU archi-
tecture. We have used the NVIDIA architecture, but developments are similar
at AMD. Intel’s Larrabee processor points to a future in which each individual
core is considerably more powerful than in today’s GPUs [22].

The question of how to program powerful data-parallel processors is likely
to continue to be an interesting one. Unlike for current multicore machines, the
question here is how to keep a large number of small processors productively
occupied. NVIDIA’s solution has been to develop the architecture and the pro-
gramming model in parallel. The result is called CUDA – an extension of C
designed to allow developers to exploit the power of GPUs. Reference [17] gives
a very brief but illuminating introduction to CUDA for potential new users. The
idea is that the user writes small blocks of straightforward C code, which should
then run in thousands or millions of threads. We borrow the example from the
above introduction. To add two N ×N matrices on a CPU, using C, one would
write something like



// add 2 matrices on the CPU:

void addMatrix(float *a, float *b, float *c, int N)

{

int i, j, index;

for (i = 0; i < N; i++) {

for (j = 0; j < N; j++) {

index = i + j * N;

c[index]=a[index] + b[index];

}

}

}

 

Fig. 2. The NVIDIA 8800GTX GPU architecture, with 8 pairs of multiprocessors.
Diagram courtesy of NVIDIA.

In CUDA, one writes a similar C function, called a kernel, to compute one ele-
ment of the matrix. Then, the kernel is invoked as many times as the matrix has
elements, resulting in many threads, which can be run in parallel. A predefined
structure called threadIdx is used to label each of these many threads, and can
be referred to in the kernel.



// add 2 matrices on the GPU (simplified)

__global__ void addMatrix(float *a,float *b, float *c, int N)

{

int i= threadIdx.x;

int j= threadIdx.y;

int index= i + j * N;

c[index]= a[index] + b[index];

}

void main()

{

// run addMatrix in 1 block of NxN threads:

dim3 blocksize(N, N),

addMatrix<<<1, blocksize>>>(a, b, c, N);

}

Here, a two dimensional thread block of size N ×N is created.
CUDA uses barrier synchronisation and shared memory for introducing com-

munication between threads. Contents of shared memory (16kB per multipro-
cessor in the architecture shown in Figure 2) is visible to all threads in a thread
block. It is very much faster to access this shared memory than to access the
global device memory. We shall see later that Obsidian provides users with both
shared and global arrays, giving the user control over where data is to be stored.

Since many threads are now writing and reading from the same shared mem-
ory, it is necessary to have a mechanism that enables the necessary synchroni-
sation between threads. CUDA provides a barrier synchronisation mechanism
called syncthreads(). Only when all threads in a block have reached this bar-
rier can any of them proceed. This allows the programmer to ensure safe access
to the shared memory for the many threads in a thread block.

Now, a grid is a collection of thread blocks. Each thread block runs on a single
multiprocessor, and the CUDA system can schedule these individual blocks in
order to maximise the use of GPU resources. A complete program then consists
not only of the kernel definitions, but also of code, to be run on the CPU, to
launch a kernel on the GPU, examine the results and possibly launch new kernels.
In this paper, we will not go into details about how kernels are coordinated, but
will concentrate on how to write individual kernels, as this is the part of Obsidian
that is most developed. In Obsidian, we write code that looks like the Lava
descriptions in section 2, and we generate CUDA code like that shown above.
This is a considerably more complex process than the generation of netlists in
Lava.

4 Obsidian: a domain specific embedded language for
GPU programming

To introduce Obsidian, we consider the implementation of a parallel prefix kernel.
The implementation bears a close resemblance to the Lava implementation from
section 2:



sklansky :: (Choice a, Syncable (Arr s a)) =>

(a -> a -> a) -> Arr s a -> W (Arr s a)

sklansky op arr

| len arr == 1 = return arr

| otherwise = (two (sklansky op) ->- sfan ->- sync) arr

where sfan arr = do

(a1,a2) <- halve arr

let m = len a1

c = a1 ! (fromInt (m-1))

a2’ <- fun (op c) a2

conc (a1,a2’)

The most notable differences between the two implementations are that Obsidian
functions are monadic and that a datatype Arr is used where Haskell lists are
used in Lava. The pattern matching on the list used in Lava is here replaced
by guards. The function len :: Arr s a -> Int gives the length of the array.
These differences lead to a slightly different programming style.

The Obsidian version of the sklansky function implements the sought recur-
sive parallel prefix algorithm, but it contains no information about where in the
memory hierarchy the intermediate results are to be held. The following program
uses sklansky from above but turns it into a concrete kernel that computes all
the partial sums of an array of integers:

scan_add_kernel :: GArr IntE -> W (GArr IntE)

scan_add_kernel = cache ->- sklansky (+) ->- wb ->- sync

The function cache specifies that if the array is stored it should be stored in
the on-chip shared memory. Actually storing an array is done using the sync
function, which functionally is the identity function, but has the extra effect of
synchronising all processes after writing their data in shared memory, such that
they can exchange intermediate results. Using sync here allows for computations
or transformations to be performed on the data as it is being read in from
global device memory. In the scan add kernel above this means that the first
sklansky stage will be computed with global data as input, putting its result
into shared memory. A kernel computing the same thing but using the memory
differently can be implemented like this:

scan_add_kernel2 :: GArr IntE -> W (GArr IntE)

scan_add_kernel2 = cache ->- sync ->- sklansky (+) ->- wb ->-

sync

Here the array is first stored into shared memory. The sklansky stages are then
computed entirely in shared memory. The write-back function, wb, works in a
very similar way but specifies that the array should be moved back into the
global memory.

Now, scan add kernel can be launched on the GPU from within a GHCI
session using a function called execute:



execute :: ExecMode -> (GArr (Exp a) -> W (GArr (Exp b)) ->

[Exp a] -> IO [Exp b]

Here ExecMode can be either GPU for launching the kernel on the GPU or EMU
for running it in emulation mode on the system’s CPU. Below is the result1 of
launching the scan kernel on example input:

*Main> execute GPU scan_add_kernel [1..256]

[0,1,3,6,10,15, ... ,32131,32385,32640]

Beyond the combinators described so far, we have experimented with combi-
nators and permutations needed for certain iterative sorting networks. Amongst
these are evens that applies a function to each pair of elements of an array.
Together with rep that repeats a computation a given number of times and a
permutation called riffle a shuffle exchange network can be defined:

shex n f = rep n (riffle ->- evens f ->- sync)

The shuffle exchange network can be used to implement a merger useful in
sorters.

4.1 Implementation

As seen in the examples, an Obsidian program is built from functions between
arrays. These arrays are of type Arr s a. There are also type synonyms GArr
and SArr implemented as follows:

data Arr s a = Arr (IxExp -> a, Int)

type GArr a = Arr Global a

type SArr a = Arr Shared a

In Obsidian an array is represented by a function from indices to values and an
integer giving the length of the array.

In most cases the a in Arr s a will be of an expression type:

data DExp = LitInt Int

| LitBool Bool

| LitFloat Float

| BinOp Op2 DExp DExp

| UnOp Op1 DExp

| If DExp DExp DExp

| Variable Name

| Index DExp DExp

deriving(Eq,Show)

The above expressions are dynamic in the sense that they can be used to
represent values of Int, Float and Bool type. This follows the approach from
Compiling Embedded Languages [9]. However, to obtain a typed environment
in which to operate, phantom types are used.
1 The output has been shortened to fit on a line.



type Exp a = E DExp

type IntE = Exp Int

type FloatE = Exp Float

type BoolE = Exp Bool

type IxExp = IntE

As an example consider the program:

add_one :: GArr IntE -> W (GArr IntE)

add_one = fun (+1) ->- sync

This program adds 1 to each element of an array of integers. The function fun
has type (a -> b) -> Arr s a -> Arr s b. fun performs for arrays what map
does for lists. The sync function used in the example has the effect that the
array being synced upon is written to memory. At this point the type of the
array determines where in memory it is stored. An array of type SArr will end
up in the shared memory (which is currently 16KB per multi-processor). In this
version of Obsidian it is up to the programmer to make sure that the array fits
in the memory. An array of type GArr ends up in the global device memory,
roughly a gigabyte on current graphics cards. Using sync can have performance
implications since it facilitates sharing of computed values.

To generate CUDA code from the Obsidian program add one, it is applied
to a symbolic array of a given concrete length (in this example 256 elements):

input :: GArr IntE

input = mkArray (\ix -> (index (variable "input") ix)) 256

Applying fun (+1) to this input array results in an array with the following
indexing function:

(\ix -> (E (BinOp Add (Index (Variable "input") ix) (LitInt 1))))

At the code generation phase this function is evaluated using a variable rep-
resenting a thread Id. The result is an expression looking as follows:

E (BinOp Add (Index (Variable "input") (Variable "tid")) (LitInt 1))

This expression is a direct description of what is to be computed.
Importantly, the basic library functions can be implemented using the Arr

s a type and thus be applicable both to shared and global arrays. The library
function rev that reverses an array is shown as an example of this:

rev :: Arr s a -> W (Arr s a)

rev arr = let n = len arr

in return $ mkArray (\ix -> arr ! ((n - 1) - ix)) n

The function rev uses mkArray to create an array whose indexing function re-
verses the order of the elements of the given array arr. The Obsidian program
rev −>− sync corresponds2 to the following lines of C code:
2 in the real IC arrx and arry are replaced by identifiers generated in theW monad



arrx[ThreadIdx.x] = arry[n - 1 - ThreadIdx.x];

__syncthreads();

When an Obsidian function, such as the scan add kernel from the previous
section, is run, two data structures are accumulated into a monad called W. The
first is intermediate code IC and the second a symbol table. The W monad is a
writer monad extended with some extra functionality for generating identifier
names and to maintain the symbol table. You can think of the W monad as:

type W a = WriterT (IxExp -> IC) (State (SymbolTable,Int)) a

The IC used here is just a list of statements, (less important statements
have been removed to save space (...)). The IC contains a subset of CUDA. In
this version of Obsidian not much more than the Synchronize and assignment
statements of CUDA are used.

data Statement = Synchronize

| DExp ::= DExp

-- used later in code generation

| IfThenElse BoolE [Statement] [Statement]

deriving (Show,Eq)

type IC = [Statement]

The symbol table is a mapping from names to types and sizes:

type SymbolTable = Map Name (Type,Int)

Information needs to be stored into the SymbolTable whenever new inter-
mediate arrays are created. We have chosen to put this power in the hands of
the programmer using the sync function. The sync function is overloaded for a
number of different array types:

class Syncable a where

sync :: a -> W a

commit :: a -> W a

The types of the sync and the related commit function are shown in the class
declaration above. To illustrate what sync does, one instance of its implemen-
tation is shown:

instance TypeOf (Exp a) => Syncable (GArr (Exp a)) where

sync arr = do

arr’ <- commit arr

write $ \ix -> [Synchronize]

return arr’

commit arr = do

let n = len arr

var <- newGlobalArray (typeOf (arr ! (E (LitInt 0)))) n

write $ \ix -> [(unE (index var ix)) ::= unE (arr ! ix)]

return $ mkArray (\ix -> index var ix) n



The sync function commits its argument array and thereafter writes
[Synchronize] into the W monad. To see what this means, one should also look
at the commit function, in which a new array is created of the same size and
type as the given array. In the next step, an assignment statement is written
into W monad (added to the intermediate code). It assigns the values computed
in the given array to the newly created array. From the intermediate code and
the symbol table accumulated into the W monad, C code is generated following
a procedure outlined in figure 3.

Fig. 3. Steps involved in generating CUDA C code from Obsidian description. The
boxes represent functions and the arrows represent data structures.

The first step depicted in the figure is the running the Obsidian program.
This builds two data structures IC and SymbolTable. The IC goes through a
simple liveness analysis where for each statement information about what data
elements, in this case arrays, are alive at that point is added. An array is alive
if it is used in any of the following statements or if it is considered a result of
the program. The result of this pass is a new IC where each statement also has
a set of names pointing out arrays that are alive at that point.

type ICLive = [(Statement, Set Name)]

Now, the symbol table together with the ICLive object is used to lay out
the arrays in memory. Arrays that had type SArr are assigned storage in the
shared memory and arrays of type GArr in Global memory. The result of this



stage is a Memory Map. This is a mapping from names to positions in memory.
The picture also shows that another output from this stage is intermediate code
annotated with thread information, call it ICT. This is now done in a separate
pass over the IC but it could be fused with the memory mapping stage, saving a
pass over the IC. The ICT is just a list of statements and the number of threads
assigned to compute them:

type ICT = [(Statement,Int)]

This enables the final pass over the IC to move thread information into the
actual IC as conditionals. The resulting IC is used to output CUDA code.

To illustrate this, the code generated from a simple Obsidian program is
shown. The example is very artificial and uses sync excessively in order to create
more intermediate arrays :

rev_add :: GArr IntE -> W (GArr IntE)

rev_add = rev ->- sync ->- fun (+1) ->- sync

Figure 4 shows the CUDA C code generated from the rev add program. Here
it is visible how intermediate arrays are assigned memory in global memory. The
global memory is pointed to by gbase:

__global__ static void rev_add(int *source0,char *gbase){

extern __shared__ char sbase[] __attribute__ ((aligned(4)));

const int tid = threadIdx.x;

const int n0 __attribute__ ((unused)) = 256;

((int *)(gbase+0))[tid] = source0[((256 - 1) - tid)];

__syncthreads();

((int *)(gbase+1024))[tid] = (((int *)(gbase+0))[tid] + 1);

__syncthreads();

Fig. 4. Generated CUDA code.

The code in figure 4 does however not show how the ICT is used in assigning
work to threads. To show this a small part of the generated CUDA code from the
scan add kernel is given in figure 5. Notice the conditional if (tid < 128).
This line effectively shuts down half of the threads. It can also be seen here how
shared memory is used, pointed to by sbase. Moreover, from the line with (63 <
64) ? ... it becomes clear that there is room for some obvious optimisations.



__syncthreads();

if (tid < 128){

((int *)(sbase+1520))[tid] = ((tid < 64) ?

((tid < 64) ?

((int *)(sbase+496))[tid] :

((int *)(sbase+752))[(tid - 64)]) :

(((63 < 64) ?

((int *)(sbase+496))[63] :

((int *)(sbase+752))[(63 - 64)]) + ((tid < 64) ?

((int *)(sbase+496))[tid] :

((int *)(sbase+752))[(tid - 64)])));

}

Fig. 5. A small part of the CUDA code generated from the recursive implementation
of the Sklansky parallel prefix algorithm.

5 Results

Apart from the parallel prefix algorithm shown in this paper we have used Ob-
sidian to implement sorters. For the sorters, the generated C code performs quite
well. One periodic sorting network, called Vsort, implemented in Obsidian in the
style of the sorters presented in reference [6], has a running time of 95µsecs for
256 elements (the largest size that we can cope with in a single kernel). This
running time can be compared to the 28µsecs running time of the bitonic sort
example supplied with the CUDA SDK. However, for 256 inputs, bitonic sort
has a depth (counted in number of comparators between input and output), of
36 compared to Vsort’s 64. So we feel confident that we can make a sorter that
improves considerably on our Vsort by implementing a recursive algorithm for
which the corresponding network depth is less. (We implemented the periodic
sorter in an earlier version of the system, in which recursion was not available.)
The point here is not to be as fast as hand-crafted library code, but to come
close enough to allow the user to quickly construct short readable programs that
give decent performance. The results for sorting are promising in this respect.
Sadly, the results for the Sklansky example are rather poor, and we will return
to this point in the following section.

The programs reported here were run on an NVIDIA 8800GTS and timed
using the CUDA profiler.

6 Discussion

6.1 Our influences

As mentioned above, our earlier work on Lava has provided the inspiration for the
combinator-oriented or hardware-like style of programming that we are exploring
in Obsidian. On the other hand, the implementation of Obsidian has been much



influenced by Pan, an embedded language for image synthesis developed by
Conal Elliot [7]. Because of the computational complexity of image generation,
C code is generated. This C code can then be compiled by an optimising compiler.
Many ideas from the paper “Compiling Embedded Languages”, describing the
implementation of Pan have been used in the implementation of Obsidian [9].

6.2 Related work on GPU and GPGPU programming languages

We cannot attempt an exhaustive description of GPU programming languages
here, but refer the reader to a recent PhD thesis by Philipp Lucas, which con-
tains an enlightening survey [16]. Lucas distinguishes carefully between languages
(such as CG and HLSL) that aim to raise the level of abstraction at which
graphics-oriented GPU programs are written, and those that attempt to ab-
stract the entire GPU, and so must also provide a means to express the placing
of programs on the GPU, feeding such programs with data, reading the results
back to the CPU, and so on, as well as deciding to what extent the programmer
should be involved in stipulating those tasks. In the first group of graphics-
oriented languages, we include PyGPU and Vertigo. PyGPU is a language for
image processing embedded in Python [15]. PyGPU uses the introspective abil-
ities of Python and thus bypasses the need to implement new loop structures
and conditionals for the embedded language. In Python it is possible to access
the bytecode of a function and from that extract information about loops and
conditionals. Programs written in PyGPU can be compiled and run on a GPU.
Vertigo is another embedded language by Conal Elliot [8]. It is a language for 3D
graphics that targets the DirectX 8.1 shader model, and can be used to describe
geometry, shaders and to generate textures.

The more general purpose languages aim to abstract away from the graph-
ics heritage of GPUs, and target a larger group of programmers. The thesis by
Lucas presents CGiS, an imperative data-parallel programming language that
targets both GPUs and SIMD capable CPUs – with the aim being a combi-
nation of a high degree of abstraction and a close resemblance to traditional
programming languages [16]. BrookGPU (which is usually just called Brook) is
a classic example of a language [3] designed to raise the level of abstraction at
which GPGPU programming is done. It is an extension of C with embedded
kernels, aimed at arithmetic-intense data parallel computations. C is used to
declare streams3, CG/HLSL (the lower level GPU languages) to declare kernels,
while function calls to a runtime library direct the execution of the program.
Brook had significant impact in that it raised the level of abstraction at which
GPGPU programming can be done. The language Sh also aimed to raise the
level of abstraction at which GPUs were programmed [19]. Sh was an embedded
language in C++, so our work is close in spirit to it. Sh has since evolved into

3 Brook is referred to as a “stream processing” language, but this means something
different from what the reader might expect: a stream in this context is a possibly
multi-dimensional array of elements, each of which can be processed separately, in
parallel.



the RapidMind development platform [18], which now supports multicores and
Cell processors as well as GPUs. The RapidMind programming model has arrays
as first class types. It has been influenced by functional languages like NESL and
SETL, and its program objects are pure functions. Thus it supports both func-
tional and imperative styles of programming. A recent PhD thesis by Jansen
asserts that there are some problems with RapidMind’s use of macros to embed
the GPU programming language in C++, including the inability to pass kernels
(or shader programs) as classes [12]; the thesis proposes GPU++ and claims
improvement over previous approaches, particularly through the exploitation of
automatic partitioning of the programs onto the available GPU hardware, and
through compiler optimisations that improve runtime performance.

Microsoft’s Accelerator project moves even closer to general purpose pro-
gramming by doing away with the kernel notion and simply expressing programs
in a data parallel style, using functions on arrays [27]. Data Parallel Haskell [4]
incorporates Nested Data Parallelism in the style of NESL [2] into Haskell. GPU-
Gen, like Obsidian, aims to support GPGPU programming from Haskell [14]. It
works by translating Haskell’s intermediate language, Core, into CUDA, for col-
lective data operations such as scan, fold and map. The intention is to plug
GPUGen into the Nested Data Parallel framework of the Glasgow Haskell Com-
piler. Our impression is that we wish to expose considerably more detail about
the GPU to the programmer, but we do not yet have sufficient information about
GPUGen to be able to do a more complete comparison. Finally, we mention the
Spiral project, which develops methods and tools for automatically generating
high performance libraries for a variety of platforms, in domains such a signal
processing, multiplication and sorting [21]. The tuning of an algorithm for a given
platform is expressed as an optimisation problem, and the domain specific math-
ematical structure of the algorithm is used to create a feedback-driven optimiser.
The results are indeed impressive, and we feel that the approach based on an
algebra of what we would call combinators will interest functional programmers.
We hope to experiment with similar search and learning based methods, having
applied similar ideas in the simpler setting of arithmetic data-path generation
in Lava.

6.3 Lessons learned so far in the project

Our first lesson has been the gradual realisation that a key aspect of a usable
GPU programming language that exposes details of the GPU architecture to the
user is the means to express where and when data is placed in and read from the
memory hierarchy. We are accustomed, from our earlier experience in hardware
design, to describing and generating networks of communicating components –
something like data-flow graphs. We are, however, unused to needing to express
choices about the use of the various levels in a memory hierarchy. We believe that
we need to develop programming idioms and language support for this. It seems
likely, too, that such idioms will not be quite as specific to GPU programming as
other aspects of our embedded language development. How to deal with control
of access to a memory hierarchy in a parallel system seems to be a central



problem that must be tackled if we are to develop better parallel programming
methods in general. A typical example of a generic approach to this problem
is the language Sequoia, which aims to provide programmers with a means to
express how the memory hierarchy is to be used, where a relatively abstract
description of the platform, viewed as a tree of processing nodes and memories,
is a parameter [10]. Thus, programmers should write very generic code, which can
be compiled for many different platforms. This kind of platform independence
is not our aim here, and we would like to experiment with programming idioms
for control of memory access for the particular case of a CPU plus some form of
highly parallel co-processor that accelerates some computations.

A second lesson concerns ways to think about synchronisation on the GPU.
We naively assumed that sync would have nice compositional behaviour, but
we have found that in reality one can really only sync at the top level. The
reason why the CUDA code generated from the sklanky example works poorly
on the GPU is that it uses syncs in a way that leads to unwanted serialisation
of computations. Looking at our generated code, we see that it may be possible
to make major improvements by being cleverer about the placement of syncs.
For instance, the semantics of two guarantees that the two components act on
distinct data, and this can be exploited in the placing of syncs in the generated
code.

Finally, we have found that we need to think harder about the two levels of
abstraction: writing the kernels themselves and kernel coordination. This paper
concerned the kernel level. We do not yet have a satisfactory solution to the
question of how best to express kernel coordination. This question is closely
related to that about how to express memory use.

7 Future work

The version of Obsidian described here is at a very experimental stage. The qual-
ity of the C code generated needs to improve to get performance on par with the
previous version. The previous version however, was very limited in what you
could express. This older version is described in [25]. There is a clear opportu-
nity to perform classic compiler optimisations on the IC formed by running an
Obsidian program. Currently this is not done at all.

Ways to describe the coordination of kernels in code that is still short and
sweet are also needed. Some experiments using methods similar to Lava’s netlist
generation have been performed, but the resulting performance is not yet satis-
factory. In CUDA, Kernel coordination is in part described in the actual kernel
code. Kernels decide which parts of the given data to use. As future work we
will approach the kernel coordination problem at a lower more CUDA-like level.
We will, of necessity, need to develop programming idioms or combinators that
express how data is placed in the memory hierarchy. The isolation of this as
a central question is one of the more unexpected and interesting results of the
project. Right now work is focused on developing combinators that are more
clever in their treatment of syncs. This leads to new data structures that allow



the merging of syncs. This new approach seems to make efficient implementa-
tions of combinators such as two possible.

8 Conclusion

Obsidian provides a good interface for experimenting with algorithms on GPUs.
The earlier version described in [25] showed that it is possible to generate efficient
CUDA code from the kind of high level descriptions we are interested in. For the
kernel level, the work in progress described in this paper enhances the expressive
power of Obsidian, extending the range of algorithms that can be described, as
well as the degree of control exercised by the user. Future work will concentrate
on improving the performance of the resulting applications, as well as on support
for the kernel coordination level.
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